then begin m:=s[c[k-1,j]]+v[c[k,i],c[k-1,j]]; d:=c[k-1,j]; end;
s[c[k,i]]:=m; { S[c[k,j] ] 记录第K个阶段的第J个结点到 终点的最短距离}
h[c[k,i]]:=d;{h[j]记录第j阶段最优路径经过的编号} end; end; writeln(s[n]);
三、动态规划中的几个概念
1、阶段
把解题的次序称为规划方向,把地位相同的结点称为一个 阶段。
2、状态
每一阶段的一个结点称为这个阶段的一个状态。如例1 中的第3阶段,有3个结点C1、C2、C3,称第3阶段有4种 状态,分别是C1、C2、C3。
3、状态转移方程 除边界外的任一阶段都得由其前面的阶段递推得到,这递
如:输入数据: N=7 4 3 2 1 4 4 t[i] 3 4 2 2 4 r[i] 输出 14 1 2+3 4+5 6+7
分析:
设F[i] 表示第i个人到第N个人买票所要的最小 时间。
F[i]=min{t[i]+f[i+1],r[i]+f[i+2] } (i=1,2,…,n-1)
F[n]=t[n] 目标是求f[1], 即所有歌迷总的买票时间的最小 值。
推的过程就表现出了阶段的动态演变。这种根据已有状态求得
未知状态的过程,我们称之为状态转移,状态转移的规则用数 学语言来描述,就称为状态转移方程。状态转移方程的形式多 样,如例1中的形式为G[i]=min{G[j]+ei,j},ei,j∈E。
例题2:排队买票问题
一场演唱会即将举行。现有N(0〈N<=200〉个歌迷 排队买票,一个人买一张,而售票处规定,一个人每次最 多只能买两张票。假设第i位歌迷买一张票需要时间Ti(1 〈=I〈=n〉,队伍中相邻的两位歌迷(第j个人和第j+1个 人)也可以由其中一个人买两张票,而另一位就可以不用 排队了,则这两位歌迷买两张票的时间变为Rj,假如 Rj<T(j)+T(j+1),则这样做就可以缩短后面歌迷等待的时间, 加快整个售票的进程。现给出N,Tj和Rj,求使每个人都买 到票的最短时间和方法。