生物化学检验常用分析技术
- 格式:pptx
- 大小:1.60 MB
- 文档页数:32
临床生物化学检验的常用技术探析临床生物化学检测基于生物化学原理,对人体生理产物和提取物进行定性定量的生物化学分析,下面是为大家的一篇探究临床生物化学检验常用技术的,欢送阅读查看。
1.1 生物化学生物化学是研究在生命体发生的化学反响和生命体化学组成的学科,是生物与化学的穿插专业,属于生物学的一个分支。
生物化学研究的主要对象是组成生物体的一些成分,如蛋白质、核酸、糖和无机物,从离子反响到酶促反映,从物质代谢到遗传变异,都属于生物化学的研究范畴。
生物化学能够对生命体的化学本质进行阐述,因此对疾病的检验治疗具有重要意义。
1.2 临床生物化学检验生物化学能够对生命体内的生物化学反响进行较为明确的研究,因此迅速被应用到医疗行业,临床生物化学检验就是利用生物化学的知识构建起的对有关生理和疾病的化学成分进行研究分析的方法。
通常,临床生物化学检验是采集人体的体液,对体液中的特定物质进行定性定量的分析,以判断人体生理状况和疾病状况。
临床生物化学检验在现代医学中扮演了重要角色,对大多数疾病的诊断和观察,都有不可替代的作用。
生物化学检验在临床上的应用,从传统的化学实验室方法,到现在的生化自动化体外检测,再到未来的生物芯片技术,开展历程是从定性到定量,从人工到自动,从缓慢到高通量,从人工数据分析到计算机信号分析,其在临床中与影像学检验扮演了医学诊断最核心的两个手段[1].目前为止,生物化学检验的领域大多在疾病的检测和相关生理数据的监控上,在蛋白质等大分子和无机离子层面得到广泛应用。
2.1 光谱分析技术光谱技术是现代物理中有效测定物质组成和含量的方法,该方法在物理学,考古学等领域都有极大的运用,而将其利用到临床,也能开展出一套完善的物质检测技术。
光谱分析技术是临床生物化学检验最常用的技术。
该技术主要是利用物质对特定的光谱具有吸收或者发射或者散射的能力,来通过检测光谱对物质的种类和含量进行分析。
按照物质发射光谱的能力进行临床检验的方法有火焰光度法、原子发射光谱法和荧光光谱法,分别检验特定物质发射的光谱来确定该物质的种类和量,其中火焰分析法,利用物质被电弧或者火花的作用,产生高温气态时变成等离子体,检测其激发的光谱,来确定物质组分和含量。
生物化学中的产物分离与分析技术生物化学是研究生物分子组成、结构、功能及其相互关系的科学。
在生物化学研究中,分离和分析生物分子产物是非常重要的一步,它涉及到生物分子结构与功能的解析、分子生物学的研究、药物的开发等诸多领域。
本文将介绍几种生物化学中常用的产物分离与分析技术。
1. 薄层色谱法薄层色谱法(Thin Layer Chromatography,TLC)是一种有效的分离和检测方法,可用于分离并检测各种不同类型的生物分子。
该技术使用涂有吸附剂的无机玻璃或塑料片作为站相,将需要分离的生物产物沿着板上的小坑过渡带动,然后通过化学计量法刻画产物中分离的成分。
薄层色谱法通常将分离的生物分子涂抹在薄层或高效率的站相上。
2. 凝胶层析法凝胶层析法(Gel Filtration Chromatography,GFC)是一种基于分子大小分离物质的技术。
在凝胶层析法中,生物产物被置于化学柱中的凝胶上,大分子会被凝胶过滤,而小分子则连同流动相移动,并进入到柱中。
随着时间的推移,被分离的小分子通过化学柱的末尾,而大分子则被凝胶滞留在柱中。
这种技术可以应用于分离蛋白质、DNA 合成物等生物产物。
3. 离子交换层析法离子交换层析法(Ion Exchange Chromatography,IEC)是一种通过电荷相互吸引分离不同电荷的产物的方法。
在离子交换层析法中,采用含有离子官能基的保持体,将待分离的生物产物通入柱中,并用离子洗涤液逐步冲洗,各种离子一次稀释并分离。
不同离子的相互吸引会让它们在柱中的保持体上停留不同的时间,进而达到分离的效果。
离子交换层析法通常用于制备、纯化带电生物分子。
4. 亲和层析法亲和层析法(Affinity Chromatography, AC)是一种分离纯化目标生物分子的高效和选择性技术。
该技术使用亲和柱(通常用聚合物、水凝胶或矽胶等作为固定支持的矩阵),将含有目标生物分子的样本通过亲和柱。
因为取决于目标分子的亲和性,仅目标分子会与支持矩阵表面上提前标记的区分分子结合。
常见的生物化学实验方法生物化学实验是研究生物分子结构、功能和相互作用的重要手段,广泛应用于生物医学研究、药物开发和环境保护等领域。
本文将介绍一些常见的生物化学实验方法。
一、色谱技术色谱技术是一种分离和分析物质的方法,根据分子的化学性质和大小差异,将混合物分离成各个组分。
常见的色谱技术包括气相色谱(GC)、液相色谱(LC)和薄层色谱(TLC)等。
在生物化学实验中,色谱技术常用于对生物样品中的分子进行纯化和分析。
例如,气相色谱可用于分析氨基酸和脂肪酸等小分子化合物,液相色谱则可以用于分离蛋白质、核酸和多糖等生物大分子。
二、电泳技术电泳技术是利用电场作用下物质的电荷和大小差异,将混合物分离成各个组分的方法。
常见的电泳技术包括聚丙烯酰胺凝胶电泳(PAGE)、聚丙烯酰胺凝胶电泳(SDS-PAGE)和凝胶过滤电泳等。
在生物化学实验中,电泳技术常用于分离和检测蛋白质和核酸等生物大分子。
例如,聚丙烯酰胺凝胶电泳可用于分离和测定蛋白质分子量,SDS-PAGE则可以用于检测蛋白质的纯度。
三、质谱技术质谱技术是利用质量分析仪器对物质的质量和结构进行分析的方法。
常见的质谱技术包括质谱仪、飞行时间质谱(TOF-MS)和液相色谱质谱联用(LC-MS)等。
在生物化学实验中,质谱技术常用于鉴定和定量生物分子。
例如,利用质谱仪可以对蛋白质进行鉴定,通过测定样品中蛋白质的质量和碎片离子的质量谱图,确定蛋白质的氨基酸序列。
四、核酸杂交技术核酸杂交技术是利用互补的DNA或RNA序列进行结合,从而检测目标序列的方法。
常见的核酸杂交技术包括Southern blot、Northernblot和in situ hybridization等。
在生物化学实验中,核酸杂交技术常用于检测和定量特定DNA或RNA序列的存在。
例如,Southern blot可用于检测DNA片段在基因组中的分布和拷贝数,Northern blot则可用于检测特定mRNA的表达水平。
医学检验主管检验师资格考试复习资料生物化学(11)临床化学常用分析技术一、光谱分析(分光光度技术)利用各种化学物质所具有的发射、吸收或散射光谱谱系的特征,来确定其性质、结构或含量的技术,称为光谱分析技术。
特点:灵敏、快速、简便。
是生物化学分析中最常用的分析技术。
分类(一)可见及紫外分光光度法分光光度法的理论基础是朗伯-比尔定律。
mber-Beer定律:A=k·b·cA为吸光度k—吸光系数b—光径,单位:cmc—溶液浓度,单位:g/L2.摩尔吸光系数:在公式“A=k·b·c”中,当c=1mol/L,b=1cm时,则常数k可用ε表示。
3.比吸光系数:在公式“A=k·b·c”中,当c为百分浓度(w/v),b为cm时,则常数k可用E%表示,称为比吸光系数或百分吸光系数。
(二)原子吸收分光光度法原子吸收分光光度法是基于元素所产生的原子蒸气中待测元素的基态原子,对所发射的特征谱线的吸收作用进行定量分析的一种技术。
即在一定条件下,原子的吸光度同原子蒸气中待测元素基态原子的浓度成正比。
常用的定量方法有:标准曲线法、标准加入法、内标法。
1.标准曲线法:将一系列浓度不同的标准溶液按照一定操作过程分别进行测定,以吸光度为纵坐标,浓度为横坐标绘制标准曲线。
在相同条件下处理待测物质并测定其吸光度,即可从标准曲线上找出对应的浓度。
由于影响因素较多,每次实验都要重新制作标准曲线。
2.标准加入法:把待测样本分成体积相同的若干份,分别加入不同量的标准品,然后测定各溶液的吸光度,以吸光度为纵坐标,标准品加入量为横坐标,绘制标准曲线,用直线外推法使工作曲线延长交横轴,找出组分的对应浓度。
本法的优点是能够更好地消除样品基质效应的影响,较为常用。
3.内标法:在系列标准品和未知样品中加入一定量样本中不存在的元素(内标元素),分别进行测定。
以标准品与内标元素的比值为纵坐标,标准品浓度为横坐标绘制标准曲线,再根据未知样品与内标元素的比值依曲线计算出未知样品的浓度。
临床生物化学检验常规项目分析质量指标以及临床化学常用分析技术临床生物化学检验是一种常规医学检验方法,通过检测人体血液、尿液、体液等样本中的化学成分,评估人体的生理功能和病理变化,为临床医生提供确诊、治疗和监测疾病的重要依据。
在临床生物化学检验中,常见的项目包括血糖、血脂、肝肾功能等指标。
本文将对临床生物化学检验常规项目的分析质量指标以及临床化学常用的分析技术进行探讨。
一、临床生物化学检验常规项目分析质量指标临床生物化学检验常规项目分析质量指标主要包括准确性、精确性和灵敏度。
准确性是指检验结果与实际值之间的接近程度。
为了保证准确性,临床生物化学检验常规项目需要使用准确可靠的检验方法和仪器,保证样品采集和保存的标准化,以及质量控制的有效性。
精确性是指同一样本在不同条件下重复检验的结果的一致性。
为了保证精确性,临床生物化学检验常规项目需要使用稳定可靠的试剂和仪器设备,并进行严格的质量控制和质量评价。
此外,操作人员的培训和技术水平也对结果的精确性有重要影响。
灵敏度是指检验方法能够检测样本中低浓度分析物的能力。
临床生物化学检验常规项目中,一些指标如甲状腺相关激素、肿瘤标志物等需要具备较高的灵敏度,能够提供更加精准的诊断和治疗。
二、临床化学常用分析技术临床化学常用的分析技术包括光度法、比色法、电化学法、质谱法等。
光度法基于分析物在特定波长的光线下吸收光的原理。
通过光度计测量样品吸光度的变化,可以计算出样品中分析物的浓度。
光度法广泛应用于临床生物化学检验中的各种项目,如血糖、血脂等。
比色法基于分析物在染色试剂作用下产生显色反应的原理。
通过比较比色试剂与样品显色的程度,可以确定样品中分析物的浓度。
比色法常用于临床生物化学检验中的糖化血红蛋白、尿液蛋白等项目。
电化学法基于分析物在电极上发生氧化还原反应产生电流的原理。
根据电流的大小可以计算出样品中分析物的浓度。
电化学法常用于临床生物化学检验中的血液电解质、血气分析等项目。
临床生物化学检验常规项目分析质量指标以及临床化学常用分析技术临床生物化学检验是一种通过检测人体内生物化学物质的含量和特性,来帮助医生判断患者身体健康状况和诊断疾病的方法。
常规项目是临床生物化学检验中最常用的项目,包括血液中常见生化指标的检测,如血糖、肾功能指标、肝功能指标等。
在临床生物化学检验中,常规项目的分析质量指标主要有以下几个方面:准确性:即检测结果与真值之间的偏离程度。
准确性是检验结果是否与患者真实状况一致的重要指标。
为了保证准确性,需要严格控制实验操作的每一个环节,例如标本采集、样品储存、试剂的准确配比等。
精密度:即同一个样本的重复测定结果的离散程度。
精密度反映了方法的稳定性和可重复性,可以通过重复测定同一标准物浓度来评估。
精密度越高,结果的可靠性就越高。
灵敏度:即能够检测到的最低浓度。
灵敏度是指方法对低浓度其中一种物质的检出能力。
灵敏度高意味着方法可以检测到更低浓度的物质,对于血液中微量物质的检测很重要。
特异性:即方法对于目标物质的特异性。
特异性是指方法是否能够准确地检测目标物质,而不受其他物质的影响。
特异性高意味着方法可以准确地区分目标物质和其他干扰物质。
在临床化学常用分析技术方面,主要有以下几种方法:分光光度法:利用物质吸收或发射特定波长的光来测量物质的浓度。
根据不同物质的特性,可以选择紫外、可见或红外光谱范围进行检测。
电化学法:利用电极与溶液中的物质发生反应,测定物质浓度或电位变化。
常见的电化学方法有电解法、电导法、电位滴定法等。
酶法:利用特定酶与底物发生反应,通过测量反应产物的生成速率或光学信号变化来测定物质浓度。
酶法广泛应用于血糖、肝功能等项目的检测。
色谱法:根据物质在固定相和液相之间的分配系数差异,通过固定相或液相中分离物质,再测定物质浓度。
常见的色谱方法有气相色谱法和液相色谱法。
质谱法:结合色谱技术和质谱技术,将待测物质通过分离技术与质谱技术相结合分析。
质谱法具有高灵敏度、高选择性和高准确性的优点,广泛应用于生物化学分析中。
生物化学检验常用技术生物化学检验是医学领域中非常重要的一个环节,它通过对人体体液、组织和细胞中的化学成分进行分析和测定,为疾病的诊断、治疗和预防提供重要的依据。
在生物化学检验中,有许多常用的技术,下面我们就来一一介绍。
一、光谱分析技术光谱分析技术是利用物质对不同波长的光的吸收、发射或散射特性来进行分析的方法。
其中,最常见的是分光光度法。
分光光度法是基于物质对光的选择性吸收而建立的分析方法。
它通过测量物质在特定波长下的吸光度,来计算物质的浓度。
这种方法操作简单、快速、灵敏度较高,广泛应用于测定蛋白质、核酸、糖类、酶等生物大分子的含量。
另外,原子吸收光谱法也是光谱分析技术中的一种重要方法。
它主要用于测定金属元素的含量,在生物化学检验中常用于检测血液、尿液等样本中的微量元素,如铁、锌、铜等。
二、电化学分析技术电化学分析技术是基于物质在溶液中的电化学性质而建立的分析方法。
其中,电位分析法是一种常见的电化学分析技术。
电位分析法通过测量电极电位来确定溶液中物质的浓度。
例如,在pH 测定中,使用玻璃电极和参比电极组成电池,根据测量的电位值计算溶液的 pH 值。
此外,电导分析法通过测量溶液的电导来确定物质的含量。
这种方法常用于水质分析和电解质浓度的测定。
三、色谱分析技术色谱分析技术是一种分离和分析混合物中各组分的有效方法。
常见的色谱技术包括气相色谱法和液相色谱法。
气相色谱法适用于分析挥发性和热稳定性较好的化合物。
在生物化学检验中,可用于检测血液中的药物浓度、脂肪酸组成等。
液相色谱法则适用于分析热不稳定、不易挥发的大分子化合物,如蛋白质、核酸等。
高效液相色谱法(HPLC)具有分离效率高、灵敏度高、分析速度快等优点,广泛应用于生物化学检验中的药物分析、激素测定等领域。
四、免疫分析技术免疫分析技术是利用抗原与抗体的特异性结合反应来进行检测的方法。
常见的免疫分析技术包括酶联免疫吸附测定(ELISA)、放射免疫分析(RIA)和化学发光免疫分析(CLIA)等。