第9讲方阵问题
- 格式:doc
- 大小:120.50 KB
- 文档页数:3
方阵问题同学们要参加运动会入场式,要实行队列操练,解放军排着整齐的方队接受检阅等,无论是训练或接受检阅,都要按一定的规则排成一定的队形,于是就产生了这个类的数学问题,今天我们将共同研究和分析这类问题。
士兵排队,横着排叫行,竖着排叫列,若行数与列数都相等,正好排成一个正方形,这就是一个方队,这种方队也叫做方阵(亦叫乘方问题)。
方阵的基本特点:(1)方阵不论哪一层,每边上的人(或物)数量都相同,每向里一层,每边上的人数就少2。
(2)每边人(或物)数和四周人(或物)的关系;四周人(或物)数=[每边人(或物)数-1]×4每边人(或物)数=四周人(或物)数÷4+1(3)中实方阵的总人数(或物)=每边人(或物)数×每边人(或物)数(4)空心方阵的总人(或物)数=(最外层每边人(或物)数-空心方阵的层数)×空心方阵的层数×4例1.三年级一班参加运动会入场式,排成一个方阵,最外层一周的人数为20人,问方阵最外层每边的人数是多少?这个方阵共有多少人?分析:根据四周人数与每边人数的关系可知:每边人数=四周人数÷4+1,能够求出这个方阵最外层每边的人数,那么这个方阵队列的总人数就能够求了。
解:(1)方阵最外层每边的人数:20÷4+1=5+1=6(人)(2)整个方阵共有学生人数:6×6=36(人)答:方阵最外层每边的人数是6人,这个方阵共有36人。
例2.明明用围棋子摆成一个三层空心方阵,如果最外层每边有围棋子15个,明明摆这个方阵最里层一周共有多少棋子?摆这个三层空心方阵共用了多少个棋子?分析:(1)方阵每向里面一层,每边的个数就减少2个,知道最外面一层,每边放15个,能够求出最里层每边的个数,就能够求出最里层一周放棋子的总数。
(2)根据最外层每边放棋子的个数减去这个空心方阵的层数,再乘以层数,再乘以4,计算出这个空心方阵共用棋子多少个。
解:(1)最里层一周棋子的个数是:(15-2-2-1)×4=40(个)(2)这个空心方阵共用的棋子数是:(15-3)×3×4=144(个)答:这个方阵最里层一周有40个棋子;摆这个空心方阵共用144个棋子。
方阵问题-北京版四年级数学上册教案一、教学目标1.了解方阵的概念。
2.掌握方阵中行和列的概念。
3.能够根据题目要求用方阵进行简单的计算。
二、教学内容1. 方阵的定义方阵是一个n×n的矩形,其中n为正整数。
方阵中有n行和n列。
如果一个矩形既有n行又有n列,那么它就是一个方阵。
2. 方阵中的行和列一个n×n的方阵中,第i行指的是该方阵中从上到下的第i行,第j列指的是该方阵中从左到右的第j列,其中i和j均为正整数且i和j的取值范围均为1到n。
3. 利用方阵解决问题方阵在解决一些简单的数学问题时非常有用。
比如在加减法练习中,我们可以使用方阵的形式将问题简化。
例如,有以下一道题目:77 + 48 =我们可以使用方阵的形式来解决这个问题:十位数个位数7 7 74 4 8通过上表的方阵形式,我们可以得到解答:77 + 48 = 125同样,我们可以使用方阵的形式来解决更复杂的问题。
1.多媒体教学法在教学过程中,引入多媒体教学法,辅以多种形式的动态展示来促进学生的兴趣和理解。
2.探究式学习法在教学过程中,引导学生主动探究和发现问题的方法,培养学生的学习兴趣和思考能力。
3.个案阐述法在教学过程中,通过具体的例子来展示方阵的应用场景,帮助学生更好地理解和掌握方阵的概念和应用。
四、教学步骤1.导入引出方阵的概念,通过生活实际例子来预习方阵的概念。
2.示范让学生通过课本上的例子来感受方阵的形式和特点。
3.小组探究学生分小组协作探究一些小问题,从而加深对方阵的理解。
4.分享小组分享探究结果,相互借鉴和补充,进一步理解方阵的应用。
5.巩固通过多种形式,让学生练习方阵的运算技巧,加深对方阵的练习和理解。
6.总结让学生总结方阵的应用场景和运用方法。
通过考察学生在教学过程中的表现,综合评价学生掌握方阵的程度和应用能力。
除此之外,还可以开展小测验等评价方式。
六、教学方法1.以多媒体教学法为主,引导学生探究和发现问题。
四年级方阵问题知识点总结一、矩阵的基本概念1. 矩阵的定义矩阵是一个由若干数构成的矩形数表,它是数学中的一种重要工具,用来表示多个数的集合。
矩阵通常用大写字母表示。
2. 矩阵的元素矩阵的每个数称为矩阵的元素。
矩阵中的元素按照行列的顺序排列,可以用下标表示。
3. 矩阵的行和列矩阵中的横向排列的数字构成矩阵的一行,纵向排列的数字构成矩阵的一列。
二、加减乘除运算1. 加法两个相同阶数(即行数和列数相同)的矩阵相加时,只需对应位置上的元素相加即可。
2. 减法两个相同阶数的矩阵相减时,也是对应位置上的元素相减。
3. 数与矩阵相乘一个数与矩阵相乘时,只需把这个数与矩阵中的每一个元素相乘。
4. 矩阵相乘两个矩阵相乘时,首先要保证第一个矩阵的列数和第二个矩阵的行数相等,然后按照矩阵乘法的定义进行计算。
5. 矩阵的转置将原矩阵的行变为列,列变为行。
6. 矩阵的逆如果一个方阵乘以它的逆矩阵等于单位矩阵,则该方阵有逆矩阵。
三、矩阵的性质1. 矩阵的相等当且仅当两个矩阵的相同位置上的元素都相等时,这两个矩阵相等。
2. 矩阵的零元素矩阵中所有元素都为零的矩阵称为零元素矩阵,一般用O表示。
3. 矩阵的单位元素主对角线上元素全为1,其它元素全为0的矩阵称为单位元素矩阵,一般用E表示。
4. 矩阵的相加和相乘的结合律矩阵的相加和相乘满足结合律。
四、特殊矩阵1. 对称矩阵矩阵A的转置矩阵与原矩阵相等,即A的转置矩阵等于A,称为对称矩阵。
2. 上三角矩阵主对角线以下的元素全为0的矩阵称为上三角矩阵。
3. 下三角矩阵主对角线以上的元素全为0的矩阵称为下三角矩阵。
以上就是四年级方阵问题的知识点总结。
通过掌握这些知识点,学生可以更好地解决方阵问题,提高数学问题的解决能力和逻辑思维能力。
小学数学《方阵问题》方阵问题[含义]将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题。
[数量关系](1)方阵每边人数与四周人数的关系:四周人数=(每边人数-1)x4每边人数=四周人数÷4+1(2)方阵总人数的求法:实心方阵:总人数=每边人数x每边人数空心方阵:总人数=(外边人数)-(内边人数)内边人数=外边人数-层数x2(3)若将空心方阵分成四个相等的矩形计算,则:总人数=(每边人数-层数)x层数x4[解题思路和方法]方阵问题有实心与空心两种。
实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。
例1 在育才小学的运动会上,进行体操表演的同学排成方阵,每行22人,参加体操表演的同学一共有多少人?解22x22=484(人)答:参加体操表演的同学一共有484人。
例2 有一个3层中空方阵,最外边一层有10人,求全方阵的人数。
解10*10-(10-3x2)*(10-3x2)=84(人)答:全方阵84人。
练习题1.同学们围成一个正方形做游戏,每边站20人,四个顶点都有人,最外圈一共有()人.A. 72B.76C.802.一个8x8的方阵(每列8人,有8列),如果想增加两行、两列,排成一个10x10的方阵,那么需要增加()人。
A.32B. 36C.40D.443.王大爷在一个正方形鱼池边上植树,每隔4米种一棵,每边等距离植10棵树(四个角上都植有树),鱼池的一周长()米。
A.160B.156C.164D.1444.四年级同学举行队列表演,共组成4个方队,每个方队排成6行,每行6人。
最外圈的同学穿蓝色运动服,其余同学穿红色运动服。
一共要准备()套红色运动服。
A.80B.64C. 36D. 165.若干名学生排成8列长方形的队列,若增加120人或减少120人都能组成一个新的正方形队列,那么,原有学生()人.A.902B.136C.240D.3606.一张正方形餐桌配4把椅子,一张圆形餐桌配6把椅子,某饭店买了5张正方形餐桌配把椅子,又买了4张圆形餐桌配-_把椅子,两次一共配了____把椅子。
第九讲方阵问题教室姓名学号【知识要点】在方阵问题中横的排叫做行,竖的排叫做列,如果行数和列数都相等,则正好排成一个正方形,这就是所谓的“方阵”。
解决方阵问题时,要搞清楚方阵中的一些量(如层数、最外层个数、最里层个数、总个数)之间的关系,解题时要开动脑盘,用多种方法来解题。
【经典例题】★例1:同学们举行团体操表演,排成了一个10行10列的正方形方队,如果去掉一行一列要减少多少人?★例2:育新小学召开秋季运动会,准备在正方形的操场周围插上彩旗。
如果4个角上都要插上一面彩旗,要使每边有7面彩旗,那么一共要准备多少面彩旗才行?★例3:晓晓爱好围棋,他用棋子在棋盘上摆了一个二层空心方阵,外层每边有8个棋子,你知道他一共用了多少个棋子吗?★★例4:某小区要对一块空地进行绍绿化,把这些树种成方阵的样子。
最外面一周有36棵树。
问这个方阵外层每边有多少棵树?★★例5:一群学生排成一个空心方阵,最外层有36人,最内层有20人,这群学生一共有多少人?【池中戏水】★1、育红小学学生进行管乐队排练,学生排成一个正方形,一共11行,每行11人。
后来由于服装不够,只好去掉一行一列,去掉了多少个学生?★2、48个同学在操场上做游戏,他们站成一个正方形,4个点上都有人,每条边上站几个同学?★3、要在五边形的水池边上摆上花盆,使每一边都有4盆花,最少需要几盆花?★4、三(1)班进行广播操比赛时,排成一个实心方阵,最外边一层总人数是20人,这个方阵共有多少人?★5、三(2)班同学庆“六一”活动,排成外层每边6人的两层空心方阵,共有多少人?【江中畅游】★★1、亮亮用石子围成一个3层空心方阵,最外一层每边有石子17个,亮亮摆这个方阵用了多少个石子?★★2、学校有32人,排成一个两层中空方阵,这个方阵的外层每边站多少个同学?★★3、小明用围棋子摆一个方阵,这个方阵的横、竖各一列的棋子之和为21枚。
他摆这个方阵共用了多少枚棋子?【海中冲浪】★★★1、有学生若干人,如列成3层中空方阵,就多9人;如中空部分再加两层,则少15人,有多少学生?【温馨提示】下节课我们将学习长方形与正方形的周长,请作好预习。
三年级知识点:方阵问题方阵问题同学们要参加运动会入场式,要进行队列操练,解放军排着整齐的方队接受检阅等,无论是训练或接受检阅,都要按一定的规则排成一定的队形,于是就产生了这一类的数学问题,今天我们将共同研究和分析这类问题。
士兵排队,横着排叫行,竖着排叫列,若行数与列数都相等,正好排成一个正方形,这就是一个方队,这种方队也叫做方阵(亦叫乘方问题)。
方阵的基本特点:(1)方阵不论哪一层,每边上的人(或物)数量都相同,每向里一层,每边上的人数就少2。
(2)每边人(或物)数和四周人(或物)的关系;四周人(或物)数=[每边人(或物)数-1]×4每边人(或物)数=四周人(或物)数÷4+1(3)中实方阵的总人数(或物)=每边人(或物)数×每边人(或物)数(4)空心方阵的总人(或物)数=(最外层每边人(或物)数-空心方阵的层数)×空心方阵的层数×4春天绿叶分割线例1.三年级一班参加运动会入场式,排成一个方阵,最外层一周的人数为20人,问方阵最外层每边的人数是多少?这个方阵共有多少人?分析:根据四周人数与每边人数的关系可知:每边人数=四周人数÷4+1,可以求出这个方阵最外层每边的人数,那么这个方阵队列的总人数就可以求了。
解:(1)方阵最外层每边的人数:20÷4+1=5+1=6(人)(2)整个方阵共有学生人数:6×6=36(人)答:方阵最外层每边的人数是6人,这个方阵共有36人。
儿童节气球可爱gif 动图分割线贴纸例2.明明用围棋子摆成一个三层空心方阵,如果最外层每边有围棋子15个,明明摆这个方阵最里层一周共有多少棋子?摆这个三层空心方阵共用了多少个棋子?分析:(1)方阵每向里面一层,每边的个数就减少2个,知道最外面一层,每边放15个,可以求出最里层每边的个数,就可以求出最里层一周放棋子的总数。
(2)根据最外层每边放棋子的个数减去这个空心方阵的层数,再乘以层数,再乘以4,计算出这个空心方阵共用棋子多少个。
PC 第09讲方阵问题(下)教学目标:1、学会分析方阵中一些量之间的关系,提高学员分析问题的能力,培养学员转化的数学思想;2、学员自己总结出一些关于方阵问题的规律和特点,加深对于方阵问题的认识;3、进一步通过方阵问题的学习激发学员的求知欲。
教学重点:通过尝试用不同方法解决方阵问题,学会分析方阵中量与量之间的关系。
教学难点:掌握方阵问题中涉及的公式。
教学过程:【环节一:预习讨论,案例分析】【知识回顾——温故知新】----参考时间-2分钟1、士兵排队,横着排叫行,竖着排叫列,若行数和列数相等,正好排成一个正方形,这就是一个方阵。
方阵有实心和空心两种,像这样将人或物按一定条件排成正方形,再根据已知条件求人数或物数的问题叫做方阵问题。
2、解决方阵问题时,要搞清楚方阵中的一些量(如层数、最外层个数、最里层个数、总个数)之间的关系,解题时要开动脑筋。
3、方阵的基本特点:(1)对于实心方阵,无论哪一层,每边上的人(或物)的数量都相等,每向里一层,每边上的人数都少2;每层会少8;(2)每层人(或物)数=(每边人(或物)数-1)×4;(3)实心方阵的总人(或物)数=行的人(或物)数×列的人(或物)数。
【知识回顾——上期巩固】----参考时间-3分钟迷你猫参加学校组织的团体节目,她看了看队伍,是一个实心方阵,最外层有28人,迷你猫问:同学们,这个实心方阵最外层每边有多少人?这个方阵一共有多少人?解析部分:最外层每边的人数=最外层的人数÷4+1;实心方阵的总人数=最外层每边的人数×最外层每边的人数。
给予新学员的建议:引导学员先求出最外层每边有多少人;哈佛案例教学法:鼓励学生独立完成,课堂上分享解题方法。
参考答案:最外层每边的人数:28÷4+1=8(人)实心方阵的总人数:8×8=64(人)答:实心方阵最外层每边有8人,这个方阵一共有64人。
【预习题分析——本期预习】----参考时间-7分钟至慧学堂组织活动,108人排成一个空心方阵,如果这个方阵最外层每边有12人,那么这个方阵共有几层?解析部分:思路一:计算出每一层的人数,总人数减去从最外层依次向里的每一层的人数,如果结果是零,就意味着方阵那一层没有人,就可以计算出层数。
方阵问题教学目标:1、使学生认识方阵中的数学问题,培养学生从实际问题中探索规律,寻求解决问题的有效方法的能力。
2、通过学生动手操作、讨论交流等,引导学生经历探索过程,发现方阵排列的规律,体验解决问题策略的多样性。
3、让学生感受数学在日常生活中的广泛应用,培养学生的应用意识和解决实际问题的能力。
教学重点:探索方阵排列的规律,寻找解决问题的有效方法。
教学难点:应用规律灵活解决实际问题。
(一)情境引入,激活思维。
1、播放阅兵式录像,简介方阵。
2、出示其它方阵情境图片,感受其在生活中的广泛应用,揭示课题。
(二)动手操作,探究新知:1、例题准备。
想象:最外层每边站5人的方阵是什么样子?学生描述后出示方阵图片和问题:一个方阵的最外层每边站了5人,这个方阵一共有多少人?2、计算中实方阵总数。
师:你能解决这个问题吗?是怎么想的?(5×5=25人引导:也就是几个几?)3、计算中空方阵总数(1)出示改编后的准备题:一个方阵的最外层每边站了5人,这个方阵的最外层一共站了多少人?(2)比较问题:这个问题与上个问题有什么不同?(学生回答后出示中空方阵图片)这个问题怎么解决?请同学们动手试一试,看谁最有办法!(3)尝试解决。
出示学习要求,并明确:A 在学具纸上圈一圈,要求能让人一眼就看出你是怎么想的。
B 把你的想法用算式表示出来。
C 把你的想法和同桌交流交流,再想想还有没有不同的算法?学生自主解决问题,完成“学习表1”,师巡视指导。
(4)展示交流算法。
投影学生的图示和算式,根据学生的汇报作相应的板书,估计大致会有以下几( 观察和比较这些方法,你觉得哪种方法最简便?(6)寻找规律并应用。
A 出示问题:将“每边5人”改成“每边8人”,求最外层一圈一共有多少人?B 学生尝试解决,完成“学习表2”。
C 交流汇报,说算理,对比表1和表2,揭示规律。
D 应用:独立解决课本上例3中的问题。
三、拓展延伸,提炼方法。
1、课本P121“做一做”中的第2题。
方阵问题教案一、教学目标1. 了解方阵的概念和性质;2. 掌握方阵的基本运算法则;3. 熟练运用方阵解决实际问题。
二、教学重点1. 方阵的基本概念和性质;2. 方阵的基本运算法则。
三、教学难点1. 熟练运用方阵解决实际问题。
四、教学内容1. 方阵的概念和性质方阵是指行数和列数相等的矩阵,即 n 行 n 列的矩阵。
方阵的元素可以是实数、复数或其他数域中的元素。
方阵有以下性质:1. 对角线上的元素称为主对角线元素,其余元素称为副对角线元素;2. 方阵的转置是将其行和列互换得到的矩阵;3. 方阵的行列式是一个数值,用于判断方阵是否可逆;4. 方阵的逆矩阵是一个矩阵,满足原矩阵与其逆矩阵相乘等于单位矩阵。
2. 方阵的基本运算法则方阵的基本运算包括加法、减法和乘法。
方阵的加法和减法与普通矩阵的加法和减法相同,即对应元素相加或相减。
方阵的乘法有以下规则:1. 两个 n 行 n 列的方阵 A 和 B 相乘得到的矩阵 C 也是 n 行 n 列的方阵;2. C 的第 i 行第 j 列元素等于 A 的第 i 行元素与 B 的第 j 列元素对应相乘后的和,即 C ij =∑A ik n k=1B kj 。
3. 方阵解决实际问题方阵可以用于解决实际问题,例如:1.线性方程组的求解:将线性方程组的系数矩阵和常数矩阵组成增广矩阵,通过高斯消元法或矩阵求逆法求解;2.矩阵变换:将一个向量或点通过矩阵乘法进行变换,例如旋转、缩放、平移等;3.图像处理:将图像表示为矩阵,通过矩阵运算实现图像的变换、滤波、压缩等。
五、教学方法1.讲授法:通过讲解方阵的概念、性质和运算法则,让学生掌握方阵的基本知识;2.实例法:通过实际问题的解决,让学生了解方阵的应用;3.练习法:通过练习题的训练,让学生熟练掌握方阵的运算和应用。
六、教学过程1. 方阵的概念和性质1.讲解方阵的概念和性质,包括对角线元素、转置、行列式和逆矩阵;2.通过例题讲解方阵的性质和应用。
方阵问题知识点总结一、方阵的定义与基本概念1. 方阵的定义方阵是一个矩阵,其行数等于列数。
即如果一个矩阵的行数和列数相等,那么它就是一个方阵。
例如,一个3×3的矩阵就是一个3阶方阵。
2. 方阵的性质(1)对角线元素:方阵的主对角线上的元素称为主对角线元素。
(2)对角元素:方阵的非主对角线上的元素称为对角元素。
(3)上三角矩阵:方阵中主对角线以下的元素都是0的方阵称为上三角矩阵。
(4)下三角矩阵:方阵中主对角线以上的元素都是0的方阵称为下三角矩阵。
(5)对称矩阵:如果矩阵A的转置矩阵等于它本身,即A^T=A,那么矩阵A就是对称矩阵。
(6)单位矩阵:主对角线上的元素全为1,其余元素全为0的方阵称为单位矩阵,记为I。
3. 方阵的阶数一个n×n的方阵,我们称其为n阶方阵。
4. 方阵的转置对于一个m×n的矩阵A,转置矩阵记为A^T,即将矩阵A的行列互换得到的新矩阵。
5. 方阵的行列式方阵的行列式是一个重要的概念。
给定一个n阶方阵A,对其行列式记作|A|。
行列式是一个数学上的概念,其代表了一个矩阵的某种性质,具体来说,它代表了一个线性方程组的解的好坏程度。
6. 方阵的逆矩阵对于一个n×n的方阵A,如果存在一个n×n的矩阵B,使得AB=BA=I,那么我们称矩阵B 是矩阵A的逆矩阵,记作A^(-1)。
只有可逆的方阵才有逆矩阵,即行列式不为0的方阵才有逆矩阵。
7. 方阵的秩一个矩阵的秩即为矩阵的行最简形的非零行数。
对于一个n×n的方阵A,记其秩为r(A)。
8. 方阵的特征值和特征向量对于一个n×n的方阵A,如果存在一个实数λ和一个非零向量x,使得Ax=λx,那么我们称λ是矩阵A的特征值,x是矩阵A的对应于特征值λ的特征向量。
二、方阵问题的求解方法1. 方阵的加法和减法对于两个n×n的方阵A和B,它们的加法和减法均为将对应位置的元素相加和相减。
第9讲 方阵问题知识要点:学生排队,士兵列队,横着排叫做行,竖着排叫做列。
如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。
核心公式:1.方阵总人数=最外层每边人数的平方(方阵问题的核心) 2.方阵最外层每边人数=(方阵最外层总人数÷4)+1 3.方阵外一层总人数比内一层总人数多24.去掉一行、一列的总人数=去掉的每边人数×2-11. 学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人? 解: 方阵最外层每边人数:60÷4+1=16(人) 整个方阵共有学生人数:16×16=256(人)。
2. 某校五年级学生排成一个方阵,最外一层的人数为60人.问方阵外层每边有多少人?这个方阵共有五年级学生多少人? 解:方阵最外层每边人数:60÷4+1=16(人)整个方阵共有学生人数:16×16=256(人)答:方阵最外层每边有16人,此方阵中共有256人。
3. 晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子14个.晶晶摆这个方阵共用围棋子多少个?解析:方阵每向里面一层,每边的个数就减少2个.知道最外面一层每边放14个,就可以求第二层及第三层每边个数.知道各层每边的个数,就可以求出各层总数。
解法1:最外边一层棋子个数:(14-1)×4=52(个)第二层棋子个数:(14-2-1)×4=44(个)第三层棋子个数:(14-2×2-1)×4=36(个). 摆这个方阵共用棋子:52+44+36=132(个)解法2:还可以这样想:中空方阵总个数=(每边个数一层数)×层数×4进行计算。
(14-3)×3×4=132(个)答:摆这个方阵共需132个围棋子。
4. 一个正方形的队列横竖各减少一排共27人,求这个正方形队列原来有多少人? 解析:依据:去掉一行、一列的总人数=去掉的每边人数×2-1可知每边的人数是:142)127(=÷+(人)原人数是:1961414=⨯(人) 5. 小红用棋子摆成一个正方形实心方阵用棋子100枚,最外边的一层共多少枚棋子?解析:这要用到方阵的公式逆运算,100必然是一个数的平方数因为1001010=⨯(人),并且是实心的方阵,所以最外层有10人。
6. 参加中学生运动会团体操比赛的运动员排成了一个正方形队列。
如果要使这个正方形队列减少一行和一列,则要减少33人。
问参加团体操表演的运动员有多少人?解析:如下图表示的是一个五行五列的正方形队列。
从图中可以看出正方形的每行、每列人数相等;最外层每边人数是5,去一行、一列则一共要去9人, 因而我们可以得到如下公式:去掉一行、一列的总人数=去掉的每边人数×2-1 解 :方阵问题的核心是求最外层每边人数。
原题中去掉一行、一列的人数是33, 则去掉的一行(或一列) 人数=172)133(=÷+ 人 方阵的总人数为最外层每边人数的平方, 所以总人数为2891717=⨯(人)7. 参加军训的学生进行队列表演,他们排成了一个七行七列的正方形队列,如果去掉一行一列,请问:要去掉多少名学生?还剩下多少名学生? 解析:如上图表示的是一个4行4列的实心正方形队列,从图中可看出正方形队列的特点:(1)正方形队列每行、每列的人数相等,因此总人数=每行人数×每列人数。
(2)去掉横竖各一排时,有且只有1人是同时属于被减去的一行和一列的,如图中点A 所示。
因此去掉的总人数=原每行人数×2-1,或去掉的总人数=减少后每行人数×2+1。
本题中所求,即去掉的人数=7×2-1=13(人) 或去掉的人数=(7-1)×2+1=13(人) 还剩的人数=(7-1)×(7-1)=36(人) 或还剩的人数=7×7-13=49-13=36(人)8. 解放军战士排成一个每边12人的中空方阵,共四层,求总人数?解法1:这样想:把中空方阵的总人数,看作中实方阵总人数减去空心方阵人数。
(1)中实方阵总人数:12×12=144(人)(2)第四层每边人数:12-2×(4-1)=6(人) (3)空心方阵人数:(6-2)×(6-2)=16(人) (4)中空方阵人数:144-16=128(人)小结:中空方阵总人数=外边人数×外边人数-(内边人数-2)×(内边人数-2) 解法2:这样想:把中空方阵分成四个相等的长方形。
(1)每个长方形的长=外边人数-层数12-4=8(人) (2)每个长方形的宽是层数:4人 (3)总人数:8×4×4=128(人)小结:中空方阵总人数=(每边人数-层数)×层数×49. 学校开展联欢会,要在正方形操场四周插彩旗。
四个角上都插一面,每边插7面。
一共要准备多少面旗子?解析:依据求外层个数的公式:(边数-1)×4 244)17(=⨯-(面)10. 一个街心花园如右图所示.它由四个大小相等的等边三角形组成.已知从每个小三角形的顶点开始,到下一个顶点均匀栽有9棵花.问大三角形边上栽有多少棵花?整个花园中共栽多少棵花?· · · · · · · · · ·· · · · · · · · · · · · · · ·解析:①从已知条件中可以知道大三角形的边长是小三角形边长的2倍.又知道每个小三角形的边上均匀栽9株,则大三角形边上栽的棵 数为:17129=-⨯(棵)。
②又知道这个大三角形三个顶点上栽的一棵花是相邻的两条边公有的, 所以大三角形三条边上共栽花:483)117(=⨯-(棵)。
③.再看图中画斜线的小三角形三个顶点正好在大三角形的边上.再计算 大三角形栽花棵数时已经计算过一次,所以小三角形每条边上 栽花棵数为:729=-(棵)解:大三角形三条边上共栽花:483)1129(=⨯--⨯(棵) 中间画斜线小三角形三条边上栽花:213)29(=⨯-(棵) 整个花坛共栽花:692148=+(棵)11. 同学们做早操,排成一个正方形的方阵,从前、后、左、右数,小明都是第5个,这个方阵共有多少人?解析:如图,实心圆表示小明的位置,可以知道, 这个队列每行都是9人。
解:每行每列数:9125=-⨯(人) 共有:8199=⨯(人)12. 小明用围棋子摆了一个五层中空方阵,一共用了200枚棋子,请问:最外边一层每边有多少枚棋子?解析1:利用“相邻两层之间,每层的总数相差8”的特点, 可知最外层共有棋子数:(200+8+8×2+8×3+8×4)÷5=56(个) 最外层每边的棋子数:56÷4+1=15(个)解析2:如练习中的图,把棋子分成相等的四部分。
每一部分的棋子数:200÷4=50(个) 每一部分每排的棋子数:50÷5=10(个) 最外层每边的棋子数:10+5=15(个) 综合列式为:200÷4÷5+5=15(个)13. 游行队伍中,手持鲜花的少先队员在一辆彩车的四周围成每边三层的方阵,最外边一层每边12人,请问:彩车周围的少先队员共有多少人?解析1:请同学们自己画一个图,下图是一个三层中空方阵的示意图,不难发现, 有如下特点:(1)外层每边点的个数都比相邻内层的每边点的个数多2;(2)每相邻两层之间,点的总数相差8个。
最外层队员的总数:444412=-⨯(人)三层共有队员的总数:)2844()844(44⨯-+-+=283644++=108(人)解析2:如下图可分成相等的四部分,每一部分的人数:(12-3)×3=9×3=27(人) 三层共有队员数:27×4=108(人) 答:彩车周围的少先队员共有108人。
14. 若干名同学排成中实方阵则多12人,若要将这个方阵改摆成纵横两个方向各增加1人的方阵则还差9人排满,请问:原有学生多少人?解析:由于纵横两个方向各增加1人,因此不但将剩余12人摆上,而且还差9人,说明一横行与一竖行的人数总和是12+9=21人。
又由于纵横两个方向各增加1人,因此只有1人同属于横行与纵行,在数每边上的人数时,总被多数一次,因此可以用21人先加上被重复数过的1人,再除以2,也就得到每边人数。
列式为(21+1)÷2=11人。
求出每边人数,就可求出假设排满后的人数,列式为11×11=121人,用121人减去差的9人就是原来人数,列式为121-9=112人。
也可以根据原来的方阵再加上12,请你试一试。
答:原有学生112人。
15. 有一队士兵排成一个中实方阵,最外一层有100人,请问:方阵中一共有士兵多少人?解析:要想求出方阵中一共有多少士兵,就应先求出方阵的最外层每边有多少人。
已知方阵最外一层有100人,用100÷4=25人,每边是不是25人呢?不是的,因为平均分成4份后,还需要再加上1,才正好是每边上的人数,列式应该为100÷4+1=26人。
因此方阵中一共有26×26=676人。
答:一共有676人。
16. 小刚用若干枚棋子摆成一个中实方阵,最外层每边摆6枚,请问:要摆成这样一个中实方阵至少需要多少枚棋子?最外一层的棋子总数是多少? 解析:如图,最外一层每边摆6枚,根据方阵每行每列个数相等特点,因此一共有6×6=36枚棋子。
最外一层每边有6枚,如果用6×4=24枚,就认为是最外一层棋子数的答案的话,那就错了。
因为正方形每个顶点上的棋子分属于一行一列,这样棋子在计算总数时就被多数了一次,这样的顶点一共有4个,需要把多数的减去,才能得到正确的结果。
列式是6×4-4=20枚。
说明:这道题还可以这样想:数每边棋子时,可以按上图先划分成4个相等的块,这样每边就有5枚了,因此用5×4=20枚,也可以得到正确答案。
按照划分块的方法不同,至少还有两种方法,请同学们试一试。
17. 一队学生站成20行20列方阵,如果去掉4行4列,那么要减少多少人? 解析1:把去掉4行4列转化为一行一列的去掉,就可用例6的结论:去掉一行一列的总人数=原每行人数×2-1反复利用4次这个公式,只要注意“原每行人数”的变化,即可列式为: 去掉4行4列的总人数=20×2-1+(20-1)×2-1+(20-2)×2-1+(20-3)×2-1 =40-1=38-1+36-1+34-1=144(人)解析2:我们还可以这样想:原来是一个7行7列的方阵,若去掉4行4列后,仍剩下一个小正方形方阵,因此去掉4行4列的总人数=原正方形方阵每边人数-4,即去掉的总人数=20×20-(20-4)×(20-4)=400-256=144(人)答:去掉4行4列,要减少144人。