2018年反比例函数综合训练题
- 格式:doc
- 大小:881.46 KB
- 文档页数:37
2021年内蒙古中考数学重点题型专项训练:反比例函数综合题反比例函数综合题类型一反比例函数与一次函数结合★1.如图,在平面直角坐标系xOy中,函数y=4(x>0)x的图象与一次函数y=kx-k 图象的交点为A(m,2),一次函数与x 轴交于点C.(1)求一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,假设P是x轴上一点,且满足△PAB 的面积是4,求出点P 的坐标.第1 题图解:(1)将A(m,2)代入y=4x(x>0)得,m=2,则A(2,2),第 2 页第 3 页将 A (2,2)代入 y =kx -k 得,2k -k =2, 解得 k =2,那么一次函数的解析式为 y =2x -2;(2)∵一次函数 y =2x -2 与 x 轴的交点为 C (1,0),与 y 轴的交点为 B (0,-2),S △ABP =S △ACP +S △BPC ,∴12×2CP +12×2CP =4,解得 CP =2,那么 P 点坐标为(3,0)或(-1,0).★2.如图,一次函数 y =12x +b 的图象与反比例函数 ky = x (x <0)的图象交于点 A (-1,2)和点 B ,点 C 在 y 轴上.(1)当△ABC 的周长最小时,求点 C 的坐标;(2)当 1x +b < k时,请直接写出 x 的取值范围. 2 x ....第 2 题图第 4 页解:(1)把点 A (-1,2)分别代入 y =12x +b 与 y = k x中,解得 b =52,k =-2,∴两函数的解析式分别为:y =12x +52,y =- 2x ,y =12x +52联立y =-2x , x =-1 x =-4解得 或 y =1 , y =22 ∴点 B (-4,1),2如解图,作点 A (-1,2)关于 y轴的对称点 D ,此时点 D 的坐标为(1,2),连接 BD 交 y 轴于点 C ,连接 AC ,此时△ABC 的周长最小.设直线 BD 的解析式为 y =k 1x +b 1,将点 D (1,2)和点 B (-4,12)分别代入,得k1+b1=2k1=3101,解得17,-4k1+b1=2b1=10∴直线BD 的解析式为:y=103x+1710,当x=0时,y=17 10,∴点C(0,17 10);(2)当12x+b<kx,即12x+52<-2x时,x的取值范围为:x<-4或-1<x<0.★3.如图,在平面直角坐标系xOy中,函数y=kx(x>0)的图象与直线y=x-2交于点A(3,m).(1)求k,m的值;(2)点P(n,n)(n>0),过点P作平行于x轴的直线,交直第 5 页第 6 页线 y =x -2 于点 M ,过点 P 作平行于 y 轴的直线,交函数 y =k x (x >0)的图象于点 N .①当 n =1 时,判断线段 PM 与 PN 的数量关系,并说明理由; ②假设 PN ≥PM ,结合函数图象,直接写出 n 的取值范围.第 3 题图解:(1)将 A (3,m )代入 y =x -2,得m =1, ∴A (3,1), 将 A (3,1)代入 y =k x ,得 k =3;(2)①PM =PN .理由如下:∵n =1,∴P(1,1),把y=1代入y=x-2,得x=3,∴M(3,1),∴PM=2,3把x=1代入y=x,得y=3,∴N(1,3),∴PN=2,∴PM= PN;②n 的取值范围为0<n≤1或n≥3.【解法提示】∵P(n,n),把y=n 代入y=x-2,得n=x-2,解得x=n+2,∴M(n+2,n),∴PM=2,33把x=n 代入y=,得y=,x n∴N(n,3),n第 7 页3∴PN=|n-n |,又∵PN≥PM,n>0,3∴当0<n≤ 3 时, n -n>0,有3n -n≥2,∴n2+2n-3=(n+3)(n-1)≤0,∴0<n≤1,3∴当n> 3 时,n- n >0,3有n-n≥2,∴n2-2n-3=(n-3)(n+1)≥0,∴n≥3.综上所述,n的取值范围为0<n≤1 或n≥3.★4.如下图,直线AB与x轴交于点A,与y轴交于点C(0,2),且与反比例函数y=-8x的图象在第二象限内相交于点B,过点B 作BD⊥x 轴于点D ,OD=2.第 8 页第 9 页(1)求直线 AB 的解析式;(2)假设点 P 是线段 BD 上一点,且△PBC 的面积等于 3,求点 P 的坐标.第 4 题图解:(1)设直线 AB 的解析式为:y =kx +b (k ≠0), 把 x =-2 代入 y =-8x 得 y =4,∴点 B (-2,4),把点 B (-2,4),C (0,2)分别代入 y =kx +b 中, -2k +b =4得b =2 ,k =-1解得b =2 ,第 10 页 ∴直线 AB 的解析式为:y =-x +2;(2)设 P 点坐标为(-2,m ),那么由得 S =12BP ·DO =12(4 -m )·2=3,解得 m =1,∴点 P (-2,1).★5.如图,一次函数 y =ax +b (a ≠0)的图象与反比例函数 y =k x (k ≠0)的图象交于 A (-3,2),B (2,n ).(1)求反比例函数 y =k x 的解析式;(2)求一次函数 y =ax +b 的解析式;(3)观察图象,直接写出不等式 ax +b <k x 的解集.第 5 题图解:(1)把点A(-3,2)代入y=kx中,得k=-6,∴反比例函数的解析式为y=-6 x;(2)把点B(2,n)代入y=-6x中,得n=-3,∴点B(2,-3),把点A(-3,2)和B(2,-3)分别代入y=ax+b 中,得-3a+b=2a=-1解得b=-1,∴一次函数的解析式为y=-x-1;(3)-3<x<0 或x>2.【解法提示】由题图可知,当-3<x<0 或x>2 时,一次函数y=ax+b 的图象在反比例函数y=kx的图象下方,∴不等式ax+b<kx的解集为-3<x<0或x>2.类型二反比例函数与几何图形结合★1.如图,在矩形OABC中,OA=3,OC=2,F是AB 上的一个动点(F不与A,B重合). 过点F的反比例函数y=kx(k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?第1 题图解:(1)∵在矩形OABC中,F是AB的中点,OA=3,OC=2,∴点F(3,1),把点F(3,1)代入y=kx中,得1=k3,解得k=3,∴反比例函数的解析式为:y =3x ;(2)∵点 E 、F 在反比例函数的图象上,∵点 E 的纵坐标为 2,点 F 的横坐标为 3,∴AF =k 3,CE =k 2,∴BE =3-k 2,∴S △EFA =12AF ·BE =12×k 3×(3-k 2), 即 S △EFA =-121k 2+12k =-121(k -3)2+34,∵-121<0,k >0, ∴当 k =3 时,△EFA 的面积最大,最大面积为34. ★2.如图,在平面直角坐标系中,一次函数的图象与反 比例函数的图象交于第二、四象限内的 A ,B 两点,与 x 轴 交于点 C ,与 y 轴交于点 D ,点 B 的坐标是(m ,-4),连接AO ,AO =5,sin ∠AOC =35.(1)求反比例函数的解析式;(2)连接 OB ,求△AOB 的面积. 第 2 题图解:(1)如解图,过点 A 作 AE ⊥x 轴于点 E ,∵OA =5,sin ∠AOC =35,∴AE =OA ·sin ∠AOC =5×35=3,∴OE =OA 2-AE 2=4,∴点 A (-4,3),设反比例函数的解析式为 y =k x (k ≠0),把点 A (-4,3)代入解析式,解得 k =-12, ∴反比例函数的解析式为 y =-12x ;(2)把点 B (m ,-4)代入 y =-12x 中,解得 m =3, ∴点 B (3,-4).设直线 AB 的解析式为:y =kx +b ,把点 A (-4,3)和 B (3,-4)分别代入得,-4k +b =3 k =-13k +b =-4,解得b =-1,∴直线 AB 的解析式为:y =-x -1,那么 AB 与 y 轴的交点 D (0,-1),∴S △AOB =S △AOD +S △BOD =12×1×4+12×1×3=3.5.第 2 题解图★3.如图,在平面直角坐标系中,菱形 ABCD 的顶点 C 与原点 O 重合,点 B 在 y 轴的正半轴上,点 A 在函数 y =k x (k >0,x >0)的图象上,点 D 的坐标为(4,3).(1)求 k 的值;(2)假设将菱形 ABCD 沿 x 轴正方向平移,当菱形的顶点 D 落在函数 y =k x (k >0,x >0)的图象上时,求菱形 ABCD 沿 x 轴正方向平移的距离.第 3 题图解:(1)如解图,过点 D 作 x轴的垂线,垂足为点 F ,易知点 A在直线 FD 上,∵点 D 的坐标为(4,3),∴OF =4,DF =3, 第 3 题解图∴OD =5,∵四边形ABCD 为菱形,∴AD=OD=5,∴点A 的坐标为(4,8),∴k=xy=4×8=32;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数y=32x(x>0)的图象D′点处,如解图,过点D′作x 轴的垂线,垂足为F′.∵DF=3,∴D′F′=3,∴点D′的纵坐标为3.∵点D′在y=32x的图象上,∴32x=3,解得x=323,即OF′=32 3,∴FF′=OF′-OF=323-4=203,∴菱形ABCD 平移的距离为20 3.★4.如图,函数 y =k x 的图象过点 A (1,2).(1)求该函数的解析式;(2)过点 A 分别向 x 轴和 y 轴作垂线,垂足为 B 和 C ,求四边形 ABOC 的面积;(3)求证:过此函数图象上任一点分别向 x 轴和 y 轴作垂线,这两条垂线与两坐标轴所围成矩形的面积为定值.第 4 题图(1)解:把点 A (1,2)代入 y =k x 中,解得 k =2, ∴该函数的解析式为 y =2x ;(2)解:∵AC ⊥y 轴,AB ⊥x 轴,∠BOC =90°, ∴四边形 ABOC 是矩形,又∵A (1,2),∴OB =1,AB =2,∴S 四边形 ABOC =OB ·AB =1×2=2;第 4 题解图(3)证明:设点 M (a ,b )是反比例函数图象上的一点,如解图,过点 M 作 MN ⊥x 轴于点 N ,作 MP ⊥y 轴于点 P ,则 MN =|b |,MP =|a |,(6 分)∴S 矩形 OPMN =ON ·OP =|a |·|b |=|ab |,∵点M (a ,b )在反比例函数的图象上,那么有 b =2a ,即 ab =2,∴S =|ab |=2,∴结论得证.★5.如图,在平面直角坐标系中,OA ⊥OB ,AB ⊥x 轴于点 C ,点 A (3,1)在反比例函数 y =k x 的图象上. (1)求反比例函数 y =k x 的表达式;(2)在 x 轴的负半轴上存在一点 P ,使得 S △AOP =12S △AOB ,求点 P 的坐标;(3) 假设将 △BOA 绕点 B 按逆时针方向旋转 60° 得到△BDE ,点 E 与点 A 对应,直接写出点 E 的坐标,并判断点E 是否在该反比例函数的图象上,说明理由.第 5 题图解:(1)∵点 A (3,1)在反比例函数 y =k x 的图象上,∴k =3×1=3,∴反比例函数的表达式为 y = x 3;第 21 页 (2)∵A (3,1), ∴OC =3,AC =1, 易证△AOC ∽△OBC ,可得 OC 2 =AC ·BC ,即( 3 )2 = 1×BC ,∴BC =3,∴B (3,-3),∴S △AOB =12OC ·AB =12×3×4=23, ∵S △AOP =12S △AOB =3,设 P (m ,0),∴12×|m |×1=3, ∴|m |=23,∵P 是 x 轴的负半轴上一点,∴m =-23, ∴P 点坐标为(-23,0);(3)E (-3,-1),点 E 在反比例函数 y = x 3上,理由如下:∵(-3)×(-1)=3,∴点 E 在反比例函数图象上.。
第三部分函数及其图象3.10 反比例函数综合题【一】知识点清单反比例函数综合题【二】分类试题汇编及参考答案与解析一、选择题1.(2018年重庆市A卷-第11题-4分)如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数kyx(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为452,则k的值为()A.54B.154C.4 D.5【知识考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;菱形的性质.【思路分析】根据题意,利用面积法求出AE,设出点B坐标,表示点A的坐标.应用反比例函数上点的横纵坐标乘积为k构造方程求k.【解答过程】解:设AC与BD、x轴分别交于点E、F由已知,A、B横坐标分别为1,4∴BE=3∵四边形ABCD为菱形,AC、BD为对角线∴S菱形ABCD=4×AE•BE=∴AE=设点B的坐标为(4,y),则A点坐标为(1,y+)∵点A、B同在y=图象上∴4y=1•(y+)∴y=∴B点坐标为(4,)∴k=5故选:D.【总结归纳】本题考查了菱形的性质、应用面积法构造方程,以及反比例函数图象上点的坐标与k 之间的关系.2.(2018年重庆市B卷-第11题-4分)如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数kyx(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A.52B.3 C.154D.5【知识考点】反比例函数的性质;反比例函数图象上点的坐标特征;菱形的性质.【思路分析】由已知,可得菱形边长为5,设出点D坐标,即可用勾股定理构造方程,进而求出k 值.【解答过程】解:过点D做DF⊥BC于F,由已知,BC=5∵四边形ABCD是菱形∴DC=5∵BE=3DE∴设DE=x,则BE=3x∴DF=3x,BF=x,FC=5﹣x在Rt△DFC中,DF2+FC2=DC2∴(3x)2+(5﹣x)2=52∴解得x=1∴DE=1,FD=3设OB=a则点D坐标为(1,a+3),点C坐标为(5,a)∵点D、C在双曲线上∴1×(a+3)=5a∴a=∴点C坐标为(5,)∴k=故选:C.【总结归纳】本题是代数几何综合题,考查了数形结合思想和反比例函数k值性质.解题关键是通过勾股定理构造方程.3.(2018年江西省-第6题-3分)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作x轴的垂线l1和l2,探究直线l1,直线l2与双曲线3yx的关系,下列结论错误的是()A.两直线中总有一条与双曲线相交B.当m=1时,两直线与双曲线的交点到原点的距离相等C.当﹣2<m<0时,两直线与双曲线的交点在y轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2【知识考点】反比例函数与一次函数的交点问题.【思路分析】A、由m、m+2不同时为零,可得出:两直线中总有一条与双曲线相交;B、找出当m=1时两直线与双曲线的交点坐标,利用两点间的距离公式可得出:当m=1时,两直线与双曲线的交点到原点的距离相等;C、当﹣2<m<0时,0<m+2<2,可得出:当﹣2<m<0时,两直线与双曲线的交点在y轴两侧;D、由y与x之间一一对应结合两交点横坐标之差为2,可得出:当两直线与双曲线都有交点时,这两交点的距离大于2.此题得解.【解答过程】解:A、∵m、m+2不同时为零,∴两直线中总有一条与双曲线相交;。
备考2018年中考数学一轮基础复习:专题十三反比例函数一、单选题(共15题;共30分)1.下列函数:①y= ;②y= ;③y=﹣;④y=2x﹣1中,是反比例函数的有()A.1个B.2个C.3个D.4个2.用电器的输出功率P与通过的电流I、用电器的电阻R之间的关系是P=I2R,下面说法正确的是()A. P为定值,I与R成反比例B. P为定值,I2与R成反比例C. P为定值,I与R成正比例D. P为定值,I2与R成正比例3.(2017•天津)若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是()A. y1<y2<y3B. y2<y3<y1C. y3<y2<y1D. y2<y1<y34.(2017•自贡)一次函数y1=k1x+b和反比例函数y2= (k1•k2≠0)的图象如图所示,若y1>y2,则x的取值范围是()A. ﹣2<x<0或x>1B. ﹣2<x<1C. x<﹣2或x>1D. x<﹣2或0<x<15.已知直线y=kx(k>0)与双曲线y= 交于点A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为()A. ﹣6B. ﹣9C. 0D. 96.如图,⊙O的半径为5,弦AB长为8,过AB的中点E有一动弦CD(点C只在弦AB所对的劣弧上运动,且不与A、B重合),设CE=x,ED=y,下列图象中能够表示y与x之间函数关系的是()A. B.C. D.7.(2017•锦州)如图,矩形OABC中,A(1,0),C(0,2),双曲线y= (0<k<2)的图象分别交AB,CB于点E,F,连接OE,OF,EF,S△OEF=2S△BEF,则k值为()A. B. 1 C. D.8.(2017•长春)如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数y= (k>0,x>0)的图象经过点C,则k的值为()A. B. C. D.9.(2017•营口)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y= 的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A. y=﹣B. y=﹣C. y=﹣D. y=10.(2017•潍坊)一次函数y=ax+b与反比例函数y= ,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A. B. C. D.11.(2017•岳阳)已知点A在函数y1=﹣(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A. 有1对或2对B. 只有1对C. 只有2对D. 有2对或3对12.(2017•怀化)如图,A,B两点在反比例函数y= 的图象上,C,D两点在反比例函数y= 的图象上,AC⊥y轴于点E,BD⊥y轴于点F,AC=2,BD=1,EF=3,则k1﹣k2的值是()A. 6B. 4C. 3D. 213.(2017•乐山)如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数y= 的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE 处,点B'恰好落在正比例函数y=kx图象上,则k的值是()A. B. C. D.14.(2017•桂林)一次函数y=﹣x+1(0≤x≤10)与反比例函数y= (﹣10≤x<0)在同一平面直角坐标系中的图象如图所示,点(x1,y1),(x2,y2)是图象上两个不同的点,若y1=y2,则x1+x2的取值范围是()A. ﹣≤x≤1B. ﹣≤x≤C. ﹣≤x≤D. 1≤x≤15.(2017•咸宁)在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A. (,0)B. (2,0)C. (,0)D. (3,0)二、填空题(共6题;共6分)16.反比例函数y= 的图象经过点(1,6)和(m+1,﹣3),则m=________.17.(2017•上海)如果反比例函数y= (k是常数,k≠0)的图象经过点(2,3),那么在这个函数图象所在的每个象限内,y的值随x的值增大而________.(填“增大”或“减小”)18.(2017•云南)已知点A(a,b)在双曲线y= 上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为________.19.如图,▱ABCD的顶点A、B的坐标分别是A(﹣1,0),B(0,﹣2),顶点C、D在双曲线y= 上,边AD 交y轴于点E,且四边形BCDE的面积是△ABE面积的5倍,则k=________.20.(2017•荆州)如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数y= (x<0)的图象交AB于点N,S矩形OABC=32,tan∠DOE= ,则BN 的长为________.21.(2017•湖州)如图,在平面直角坐标系中,已知直线()分别交反比例函数和在第一象限的图象于点,,过点作轴于点,交的图象于点,连结.若是等腰三角形,则的值是________.三、综合题(共4题;共44分)22.为适应日益激烈的市场竞争要求,某工厂从2016年1月且开始限产,并对生产线进行为期5个月的升降改造,改造期间的月利润与时间成反比例;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元.设2016年1月为第1个月,第x个月的利润为y万元,其图象如图所示,试解决下列问题:(1)分别求该工厂对生产线进行升级改造前后,y与x之间的函数关系式;(2)到第几个月时,该工厂月利润才能再次达到100万元?(3)当月利润少于50万元时,为该工厂的资金紧张期,问该工厂资金紧张期共有几个月?23.(2017•镇江)如图1,一次函数y=﹣x+b与反比例函数y= (k≠0)的图象交于点A(1,3),B(m,1),与x轴交于点D,直线OA与反比例函数y= (k≠0)的图象的另一支交于点C,过点B作直线l垂直于x轴,点E是点D关于直线l的对称点.(1)k=________;(2)判断点B,E,C是否在同一条直线上,并说明理由;(3)如图2,已知点F在x轴正半轴上,OF= ,点P是反比例函数y= (k≠0)的图象位于第一象限部分上的点(点P在点A的上方),∠ABP=∠EBF,则点P的坐标为(________,________).24.(2017•济宁)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y= (x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.25.(2017•德州)有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数y= x与y= (k≠0)的图象性质.小明根据学习函数的经验,对函数y= x与y= ,当k>0时的图象性质进行了探究.下面是小明的探究过程:(1)如图所示,设函数y= x与y= 图象的交点为A,B,已知A点的坐标为(﹣k,﹣1),则B点的坐标为________;(2)若点P为第一象限内双曲线上不同于点B的任意一点.①设直线PA交x轴于点M,直线PB交x轴于点N.求证:PM=PN.证明过程如下,设P(m,),直线PA的解析式为y=ax+b(a≠0).则,解得a=()b=()∴直线PA的解析式为请你把上面的解答过程补充完整,并完成剩余的证明.②当P点坐标为(1,k)(k≠1)时,判断△PAB的形状,并用k表示出△PAB的面积.答案解析部分一、单选题1.【答案】C2.【答案】B3.【答案】B4.【答案】D5.【答案】A6.【答案】C7.【答案】A8.【答案】D9.【答案】A10.【答案】C11.【答案】A12.【答案】D13.【答案】B14.【答案】B15.【答案】C二、填空题16.【答案】﹣317.【答案】减小18.【答案】y=﹣5x+5或y=﹣x+119.【答案】1220.【答案】321.【答案】或三、综合题22.【答案】(1)解:由题意得,设前5个月中y与x的还是关系式为y= ,把x=1,y=3代入得,k=100,∴y与x之间的函数关系式为y= ,把x=5代入得y= =20,由题意设5月份以后y与x的函数关系式为y=10x+b,把x=5,y=20代入得,20=10×5+b,∴b=﹣30,∴y与x之间的函数关系式为y=10x﹣30(2)解:由题意得,把y=100代入y=10x﹣30得100=10x﹣30,解得:x=13,∴到第13个月时,该工厂月利润才能再次达到100万元(3)解:对于y= ,y=50时,x=2,∵k=100>0,y随x的增大而减小,∴x<2时,y<50,对于y=10x﹣30,当y=50时,x=8,∵k=10>0,y随x的增大而增大,∴x<8时,y<50,∴2<x<8时,月利润少于50万元,∴该工厂资金紧张期共有5个月23.【答案】(1)3(2)解:点B、E、C在同一条直线上.理由如下:∵直线OA与反比例函数y= (k≠0)的图象的另一支交于点C,∴点A与点C关于原点对称,∴C(﹣1,﹣3),∵B(m,1)在反比例函数y= 的图象上,∴1×m=3,解得m=3,即B(3,1),把A(1,3)代入y=﹣x+b得﹣1+b=3,解得b=4,∴直线AB的解析式为y=﹣x+4,当y=0时,﹣x+4=0,解得x=4,则D(4,0),∵点E与点D关于直线x=3对称,∴E(2,0),设直线BC的解析式为y=px+q,把B(3,1),C(﹣1,﹣3)代入得,解得,∴直线BC的解析式为y=x﹣2,当x=2时,y=x﹣2=0,∴点E在直线BC上,即点B、E、C在同一条直线上;(3);24.【答案】(1)解:∵∠ONP=∠M,∠NOP=∠MON,∴△NOP∽△MON,∴点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD= ,∴∠AON=60°,∵当点M的坐标是(,3),点N的坐标是(,0),∴∠MNO=90°,∵△NOP∽△MON,∴∠NPO=∠MNO=90°,在Rt△OPN中,OP=ONcos60°= ,∴OD=OPcos60°= × = ,PD=OP•sin60°= × = ,∴P(,);(2)解:作ME⊥x轴于H,如图3所示:∵点M的坐标是(3,),点N的坐标是(2,0),∴OM= =2 ,直线OM的解析式为y= x,ON=2,∠MOH=30°,分两种情况:①如图3所示:∵P是△MON的相似点,∴△PON∽△NOM,作PQ⊥x轴于Q,∴PO=PN,OQ= ON=1,∵P的横坐标为1,∴y= ×1= ,∴P(1,);②如图4所示:由勾股定理得:MN= =2,∵P是△MON的相似点,∴△PNM∽△NOM,∴,即,解得:PN= ,即P的纵坐标为,代入y= 得:= x,解得:x=2,∴P(2,);综上所述:△MON的自相似点的坐标为(1,)或(2,);(3)解:存在点M和点N,使△MON无自相似点,M(,3),N(2 ,0);理由如下:∵M(,3),N(2 ,0),∴OM=2 =ON,∠MON=60°,∴△MON是等边三角形,∵点P在△ABC的内部,∴∠PBC≠∠A,∠PCB≠∠ABC,∴存在点M和点N,使△MON无自相似点.25.【答案】(1)(k,1)(2)②解:由①可知,在△PMN中,PM=PN,∴△PMN为等腰三角形,且MH=HN=k.当P点坐标为(1,k)时,PH=k,∴MH=HN=PH,∴∠PMH=∠MPH=45°,∠PNH=∠NPH=45°,∴∠MPN=90°,即∠APB=90°,∴△PAB为直角三角形.当k>1时,如图1,S△PAB=S△PMN﹣S△OBN+S△OAM,= MN•PH﹣ON•y B+ OM•|y A|,= ×2k×k﹣(k+1)×1+ (k﹣1)×1,=k2﹣1;当0<k<1时,如图2,S△PAB=S△OBN﹣S△PMN+S△OAM,= ON•y B﹣k2+ OM•|y A|,= (k+1)×1﹣k2+ (1﹣k)×1,=1﹣k211。
2018-2019学年度反比例函数和三角函数综合考试试卷说明:1.全卷共4页,考试用时100分钟,满分为120分;2.答案必须用黑色字迹钢笔或签字笔作答,且必须写在答题卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效;一.选择题(本大题10小题,每小题3分,共30分) 1.下列函数中,y 是x 的反比例函数的是( )A .x(y -1)=1B .y =1x +1C .y =1x 2D .y =3x2.在Rt △ABC 中,∠C =90°,AB =5,BC =3,则tanA 的值是( )A.34B.43C.35D.453.在Rt △ABC 中,∠C =90°,sinA =45,AC =6,则BC 的长度为( )A .6B .7C .8D .94.已知点(3,-2)在反比例函数y =k x 的图象上,则下列点也在该反比例函数y =kx 的图象的是( )A .(3,-3) B .(-2,3) C .(1,6) D .(-2,-3)5.计算6tan45°-2cos60°的结果是( )A .4 3B .4C .5 3D .56.若点A(-2,y 1),B(3,y 2),C(6,y 3)在反比例函数y =kx 的图象上,则y 1,y 2,y 3的大小关系是( ) A .y 1<y 2<y 3 B .y 2<y 3<y 1 C .y 3<y 2<y 1 D .不能判断大小7. 一次函数y =ax +b 与反比例函数y =a -bx ,其中ab<0,a ,b 为常数,它们在同一坐标系中的图象可以是( )8. 如图,一艘海轮位于灯塔P 的南偏东45°方向,距离灯塔60海里的A 处,它沿正北方向航行一段时间后,到达位于灯塔P 的北偏东30°方向上的B 处,这时,B 处与灯塔P 的距离为( )海里 . A .60 3 B .60 2 C .30 3 D .30 29. 如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(-3,4),顶点C 在x 轴的负半轴上,函数y =kx (x<0)的图象经过顶点B ,则k 的值为( ) A .-12 B .-27 C .-32 D .-3610.在△ABC 中,AB =122,AC =13,cos ∠B =22,则BC 边的长为( ) A .7 B .8 C .8或17 D .7或17 二、填空题(每小题4分,共24分)11.如图,在△ABC 中,∠A =30°,∠B =45°,AC =23,则AB 的长为______.12. 如图,在矩形ABCD 中,BE ⊥AC 于点E ,AB =3,BC =4,∠CBE =∠α,sin ∠α的值为____.13.已知正比例函数y =-2x 与反比例函数y =kx 的图象的一个交点坐标为(-1,2),则另一个交点的坐标为______.14. 如图,反比例函数y =2x 的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC的面积为______.15. 如图,点A(3,n)在双曲线y =3x 上,过点A 作AC ⊥x 轴,垂足为C ,线段OA的垂直平分线交OC 于点M ,则△AMC 的周长是 .16.在△ABC 中,AB =AC ,AB 的垂直平分线DE 与AC 所在的直线相交于点E ,垂足为D ,连接BE.已知AE =5,tan ∠AED =34,则BE +CE =___________.三、解答题(每小题6分,共18分)17.计算:(3﹣π)0﹣tan60°+(﹣)﹣1+|4|18.如图,一辆汽车从甲地到乙地的行驶时间t(h)与行驶速度v(km/h)的函数关系如图所示,根据图象提供的信息,求:(1)t 与v 之间的函数关系式;(2)若要在3 h 内到达乙地,则汽车的速度应不低于多少?19.如图,一次函数y =2x -4的图象与反比例函数y =kx 的图象交于A ,B 两点,且点A 的横坐标为3.(1)求反比例函数的表达式; (2)求点B 的坐标.四、解答题(每小题7分,共21分)20.如图所示,一条自西向东的观光大道l 上有A 、B 两个景点,A 、B 相距2km ,在A 处测得另一景点C 位于点A 的北偏东60°方向,在B 处测得景点C 位于景点B 的北偏东45°方向,求景点C 到观光大道l 的距离.(结果精确到0.1km ,参考数据:2≈1.41,3≈1.73)21.如图,在平面直角坐标系中,一次函数y =kx +b(k ≠0)的图象与反比例函数y =mx (m ≠0)的图象交于A 、B 两点,与x 轴交于C 点,点A 的坐标为(n ,6),点C 的坐标为(-2,0),且tan ∠ACO =2.(1)求该反比例函数和一次函数的解析式;(2)求点B 的坐标.22. 如图,一次函数y =kx +b 的图象与坐标轴分别交于A ,B 两点,与反比例函数y =nx 的图象在第一象限的交点为C ,CD ⊥x 轴,垂足为D ,若OB =3,OD =6,△AOB 的面积为3.(1)求一次函数与反比例函数的表达式;(2)直接写出当x>0时,kx +b -nx <0的解集.五、解答题(每小题9分,共27分)23.如图,在大楼AB 正前方有一斜坡CD ,坡角∠DCE =30°,楼高AB =60米,在斜坡上的点C处测得楼顶B 的仰角为60°,在斜坡上的点D 处测得楼顶B 的仰角为45°,其中点A ,C ,E 在同一直线上.24.保护生态环境,建设绿色社会已经从理念变为人们的行动,保洁化工厂2018年1月的利润为200万元.设2018年1月为第1个月,第x 个月的利润为y 万元.由于排污超标,保洁化工厂决定从2018年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y 与x 成反比例,到5月底,保洁化工厂治污改造工程顺利完工,从这时起,每月的利润比前一个月增加20万元(如图).(1)分别求保洁化工厂治污期间及治污改造工程完工后,y 与x 之间的函数关系式; (2)治污改造工程顺利完工后经过几个月,保洁化工厂月利润才能达到200万元?(3)当月利润少于100万元时,为保洁化工厂资金紧张期,问保洁化工厂资金紧张期共有几个月?25.如图,一次函数y =kx +b 的图象与反比例函数y =mx (x >0)的图象交于点P(n ,2),与x 轴交于点A(-4,0),与y 轴交于点C ,PB ⊥x 轴于点B ,点A 与点B 关于y 轴对称.(1)求一次函数,反比例函数的表达式; (2)求证:点C 为线段AP 的中点;(3)反比例函数图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,说明理由并求出点D 的坐标;如果不存在,说明理由.数学答题卡tan60) 请不要在此区域做任何标记!以下为非选择题答题区,必须用黑色字迹的钢笔或签字笔在指定的区域内作答,否则答案无效。
反比例函数参考答案与试题解析一.选择题(共23小题)1.(2018•凉山州)若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C. D.【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b >0两方面分类讨论得出答案.【解答】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.2.(2018•)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n【分析】根据反比例函数的性质,可得答案.【解答】解:y=的k=﹣2<0,图象位于二四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故D正确;故选:D.3.(2018•)若点A(﹣2,3)在反比例函数y=的图象上,则k的值是()A.﹣6 B.﹣2 C.2 D.6【分析】根据待定系数法,可得答案.【解答】解:将A(﹣2,3)代入反比例函数y=,得k=﹣2×3=﹣6,故选:A.4.(2018•)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x1【分析】根据反比例函数的性质,可得答案.【解答】解:由题意,得k=﹣3,图象位于第二象限,或第四象限,在每一象限,y随x的增大而增大,∵3<6,∴x1<x2<0,故选:A.5.(2018•)从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(m,n)在函数y=图象的概率是()A.B.C.D.【分析】根据反比例函数图象上点的坐标特征可得出mn=6,列表找出所有mn的值,根据表格中mn=6所占比例即可得出结论.【解答】解:∵点(m,n)在函数y=的图象上,∴mn=6.列表如下:m﹣1﹣1﹣1222333﹣6﹣6﹣6n23﹣6﹣13﹣6﹣12﹣6﹣123mn﹣2﹣36﹣26﹣12﹣36﹣186﹣12﹣18mn的值为6的概率是=.故选:B.6.(2018•株洲)已知二次函数的图象如图,则下列哪个选项表示的点有可能在反比例函数y=的图象上()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(2,﹣3)【分析】根据抛物线的开口方向可得出a>0,再利用反比例函数图象上点的坐标特征,即可找出点(2,3)可能在反比例函数y=的图象上,此题得解.【解答】解:∵抛物线开口向上,∴a>0,∴点(2,3)可能在反比例函数y=的图象上.故选:C.7.(2018•)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A.1 B.2 C.3 D.4【分析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据△AOB的面积为1,即可求得k的值.【解答】解:设点A的坐标为(a,0),∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,∴点C(﹣a,),∴点B的坐标为(0,),∴=1,解得,k=4,故选:D.8.(2018•)在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1 B.m C.m2D.【分析】三个点的纵坐标相同,由图象可知y=x2图象上点横坐标互为相反数,则x1+x2+x3=x3,再由反比例函数性质可求x3.【解答】解:设点A、B在二次函数y=x2图象上,点C在反比例函数y=(x>0)的图象上.因为AB两点纵坐标相同,则A、B关于y轴对称,则x1+x2=0,因为点C(x3,m)在反比例函数图象上,则x3=∴ω=x1+x2+x3=x3=故选:D.9.(2018•聊城)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室空气中的含药量最高达到10mg/m3B.室空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室【分析】利用图息一一判断即可;【解答】解:A、正确.不符合题意.B、由题意x=4时,y=8,∴室空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,x=2.5或24,24﹣2.5=21.5<35,故本选项错误,符合题意;D、正确.不符合题意,故选:C.10.(2018•威海)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y 2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】直接利用反比例函数的性质分析得出答案.【解答】解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限,y随x的增大而增大,∴y3<y1<y2.故选:D.11.(2018•)对于反比例函数y=﹣,下列说法不正确的是()A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【解答】解:A、k=﹣2<0,∴它的图象在第二、四象限,故本选项正确;B、k=﹣2<0,当x>0时,y随x的增大而增大,故本选项正确;C、∵﹣=﹣2,∴点(1,﹣2)在它的图象上,故本选项正确;D、点A(x1,y1)、B(x2、y2)都在反比例函数y=﹣的图象上,若x1<x2<0,则y1<y2,故本选项错误.故选:D.12.(2018•)如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数y=(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为,则k的值为()A.B.C.4 D.5【分析】根据题意,利用面积法求出AE,设出点B坐标,表示点A的坐标.应用反比例函数上点的横纵坐标乘积为k构造方程求k.【解答】解:设AC与BD、x轴分别交于点E、F由已知,A、B横坐标分别为1,4∴BE=3∵四边形ABCD为菱形,AC、BD为对角线=4×AE•BE=∴S菱形ABCD∴AE=设点B的坐标为(4,y),则A点坐标为(1,y+)∵点A、B同在y=图象上∴4y=1•(y+)∴y=∴B点坐标为(4,)∴k=5故选:D.13.(2018•永州)在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx (a≠0)的图象大致是()A .B .C .D .【分析】直接利用二次函数图象经过的象限得出a ,b 的值取值围,进而利用反比例函数的性质得出答案.【解答】解:A 、抛物线y=ax 2+bx 开口方向向上,则a >0,对称轴位于y 轴的右侧,则a 、b 异号,即b <0.所以反比例函数y=的图象位于第二、四象限,故本选项错误;B 、抛物线y=ax 2+bx 开口方向向上,则a >0,对称轴位于y 轴的左侧,则a 、b 同号,即b >0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;C 、抛物线y=ax 2+bx 开口方向向下,则a <0,对称轴位于y 轴的右侧,则a 、b 异号,即b >0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;D 、抛物线y=ax 2+bx 开口方向向下,则a <0,对称轴位于y 轴的右侧,则a 、b 异号,即b >0.所以反比例函数y=的图象位于第一、三象限,故本选项正确; 故选:D .14.(2018•)已知一次函数y 1=x ﹣3和反比例函数y 2=的图象在平面直角坐标系于A 、B 两点,当y 1>y 2时,x 的取值围是( )A .x <﹣1或x >4B .﹣1<x <0或x >4C .﹣1<x <0或0<x <4D .x <﹣1或0<x <4【分析】先求出两个函数的交点坐标,再根据函数的图象和性质得出即可. 【解答】解:解方程组得:,,即A (4,1),B (﹣1,﹣4),所以当y 1>y 2时,x 的取值围是﹣1<x <0或x >4, 故选:B .15.(2018•)如图,菱形ABCD 的两个顶点B 、D 在反比例函数y=的图象上,对角线AC 与BD 的交点恰好是坐标原点O ,已知点A (1,1),∠ABC=60°,则k 的值是( )A.﹣5 B.﹣4 C.﹣3 D.﹣2【分析】根据题意可以求得点B的坐标,从而可以求得k的值.【解答】解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(1,1),∴OA=,∴BO=,∵直线AC的解析式为y=x,∴直线BD的解析式为y=﹣x,∵OB=,∴点B的坐标为(,),∵点B在反比例函数y=的图象上,∴,解得,k=﹣3,故选:C.16.(2018•)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【分析】直接利用二次函数图象经过的象限得出a,b,c的值取值围,进而利用一次函数与反比例函数的性质得出答案.【解答】解:∵二次函数y=ax2+bx+c的图象开口向上,∴a>0,∵该抛物线对称轴位于y轴的右侧,∴a、b异号,即b<0.∵当x=1时,y<0,∴a+b+c<0.∴一次函数y=bx+a的图象经过第一、二、四象限,反比例函数y=的图象分布在第二、四象限,故选:B.17.(2018•)如图,正比例函y1=k1x与反比例函数y2=的图象相交于A、B两点,其中点A的横坐标为1.当y1<y2时,x的取值围是()A.x<﹣1或x>1 B.﹣1<x<0或x>1C.﹣1<x<0或0<x<1 D.x<﹣1或0<x<l【分析】直接利用正比例函数的性质得出B点横坐标,再利用函数图象得出x的取值围.【解答】解:∵正比例函y1=k1x与反比例函数y2=的图象相交于A、B两点,其中点A的横坐标为1.∴B点的横坐标为:﹣1,故当y1<y2时,x的取值围是:x<﹣1或0<x<l.故选:D.18.(2018•)如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y 轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A.B.3 C.D.5【分析】由已知,可得菱形边长为5,设出点D坐标,即可用勾股定理构造方程,进而求出k 值.【解答】解:过点D做DF⊥BC于F由已知,BC=5∵四边形ABCD是菱形∴DC=5∵BE=3DE∴设DE=x,则BE=3x∴DF=3x,BF=x,FC=5﹣x在Rt△DFC中,DF2+FC2=DC2∴(3x)2+(5﹣x)2=52∴解得x=1∴DE=3,FD=3设OB=a则点D坐标为(1,a+3),点C坐标为(5,a)∵点D、C在双曲线上∴1×(a+3)=5a∴a=∴点C坐标为(5,)∴k=故选:C.19.(2018•)如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8 B.﹣8 C.4 D.﹣4【分析】设A(a,h),B(b,h),根据反比例函数图象上点的坐标特征得出ah=k1,bh=k2.根据三角形的面积公式得到S△ABC =AB•yA=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,求出k1﹣k2=8.【解答】解:∵AB∥x轴,∴A,B两点纵坐标相同.设A(a,h),B(b,h),则ah=k1,bh=k2.∵S△ABC =AB•yA=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,∴k1﹣k2=8.故选:A.20.(2018•天津)若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x1【分析】根据反比例函数图象上点的坐标特征,将A、B、C三点的坐标代入反比例函数的解析式y=,分别求得x1,x2,x3的值,然后再来比较它们的大小.【解答】解:∵点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,∴x1=﹣2,x2=﹣6,x3=6;又∵﹣6<﹣2<6,∴x2<x1<x3;故选:B.21.(2018•)一次函数y=ax+b和反比例函数y=在同一直角坐标系中的大致图象是()A.B.C.D.【分析】先由一次函数的图象确定a、b的正负,再根据a﹣b判断双曲线所在的象限.能统一的是正确的,矛盾的是错误的.【解答】解:当y=ax+b经过第一、二、三象限时,a>0、b>0,由直线和x轴的交点知:﹣>﹣1,即b<a,∴a﹣b>0,所以双曲线在第一、三象限.故选项B不成立,选项A正确.当y=ax+b经过第二、一、四象限时,a<0,b>0,此时a﹣b<0,双曲线位于第二、四象限,故选项C、D均不成立;故选:A.22.(2018•)给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③B.③④C.②④D.②③【分析】分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.【解答】解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项错误;②y=,当x>1时,函数值y随自变量x增大而减小,故此选项错误;③y=2x2,当x>1时,函数值y随自变量x增大而减小,故此选项正确;④y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项正确;故选:B.23.(2018•)二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b 在同一坐标系的大致图象是()A.B.C.D.【分析】首先利用二次函数图象得出a,b的值,进而结合反比例函数以及一次函数的性质得出答案.【解答】解:由二次函数开口向上可得:a>0,对称轴在y轴左侧,故a,b同号,则b>0,故反比例函数y=图象分布在第一、三象限,一次函数y=ax+b经过第一、二、三象限.故选:C.。
2018年反比例函数综合训练题•选择题(共13小题)函数y=:在第一象限内的图象与厶ABC有交点,贝U k的取值范围是( )3. 如图,在平面直角坐标系中,反比例函数y=「(x>0)的图象与边长是6的正方形OABC的两边AB, BC分别相交于M , N两点.△ OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是( )A. 6 ~B. 10C. 2竝D. 2 _i4. 如图,在直角坐标系中,点A在函数y= (x>0)的图象上,AB丄x轴于点B,dAB的垂直平分线与y轴交于点C,与函数y= (x>0)的图象交于点D,连结AC, CB, BD, DA,则四边形ACBD的面积等于( )A. K k<4B. 2< k< 81 .在同一平面直角坐标系中,函数y=mx+m (m H0)与y= (m H0)的图象可2•如图,△ ABC的三个顶点分别为A (1, 2), B (4, 2), C (4, 4).若反比例能是( )O5.如图,P (m , m )是反比例函数y="在第一象限内的图象上一点,以 P 为顶x 点作等边厶PAB 使AB 落在x 轴上,则△ POB 的面积为( )A .B. 3 二C. :: - D . ' 亠'2426. 如图,矩形OABC 中,A (1 , 0), C (0, 2),双曲线y 幺(O v k v 2)的图象x 分别交 AB, CB 于点 E , F ,连接 OE, OF, EF, S SEF =2S BEF ,则 k 值为( )A. ::B. 1C. —D.匚3 3 7.如图,双曲线y=- (x v 0)经过?ABCO 的对角线交点D ,已知边OC 在y轴上,且AC 丄OC 于点C ,则?OABC 的面积是()*1B\*_-------- >ACXA .二 B.C. 3 D . 6248. 如图,P 为反比例函数(k >0)在第一象限内图象上的一点,过点 P 分别作x 轴,y 轴的垂线交一次函数y=- x -4的图象于点A 、B.若/ AOB=135, 则k 的值是()A . 2 B. 4 C. 6 D . 8A . 2 B. 2_、C.9. ------------------------------------------------------------------------------------------------ 若点A (- 6, y1), B (- 2, y2), C (3, y3)在反比例函数y -------------------------------- (a 为常数)的图象上,贝U y i, y2, y3大小关系为()A. y i>y2>yB. y>y iC. w y iD. y3>y i>目210. 如图,点A是反比例函数y= (x>0)上的一个动点,连接OA,过点O作xOB丄OA,并且使OB=2OA连接AB,当点A在反比例函数图象上移动时,点B11. 如图,在菱形ABOC中,/ A=60°,它的一个顶点C在反比例函数y=:的图x象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,贝阪比例函数解析式为()A. y=-B. y=-JC. y=-D. y=X X X K12. 如图,正方形ABCD的边长为5,点A的坐标为(-4, 0),点B在y轴上,若反比例函数y= (20)的图象过点C,贝够反比例函数的表达式为()A. y=;B. y=C. y=‘D. y=K K K X13. 如图,直线y= :x- 6分别交x轴,y轴于A, B, M是反比例函数y—(x>0)的图象上位于直线上方的一点,MC// x轴交AB于C, MD丄MC交AB于D, AC?BD=4匚,贝U k的值为()17. 如图,正方形ABCD 的边长为2, AD 边在x 轴负半轴上,反比例函数y= (xv 0)的图象经过点B 和CD 边中点E,贝U k 的值为18. 如图所示是一块含30° 60° 90°勺直角二角板,直角顶点O 位于坐标原点, 斜边AB 垂直于x 轴,顶点A 在函数y1=— (x >0)的图象上,顶点B 在函数 籽——M , PN 丄y 轴于点N ,反14•如图,已知点P (6, 3),过点P 作PM 丄x 轴于点比例函数y=的图象交PM 于点A ,交PN 于点B .若四边形OAPB 的面积为12, 则k=15•如图,菱形ABCD 的面积为 反比例函数y=的图象经过顶点6,边AD 在x 轴上,边BC 的中点E 在y 轴上, B ,则k 的值为16 •如图,在平面直角坐标系中, 正方形 ABOC 和正方形DOFE 的顶点B , F 在x 反比例函数y=(x >0)的图象经过点•填空题(共5小题)轴上,顶点C , D 在y 轴上,且S ADF =4, E,(x>0)的图象上,/ ABO=30,则一=冬腿:三•解答题(共8小题)19. 如图,直线y=kx (k为常数,k M0)与双曲线y= (m为常数,m>0) 交点为A B,AC丄x轴于点C,Z AOC=30,OA=2.(1)求m的值;(2)点P在y轴上,如果S\ABF=3k,求P点的坐标.20. 如图,在平面直角坐标系xOy中,双曲线y=±经过?ABCD的顶点B,D.xD的坐标为(2,1),点A在y轴上,且AD// x轴,S?ABC[=5.(1)填空:点A的坐标为_______ ;(2)求双曲线和AB所在直线的解析式.21. 如图,/ AOB=90,反比例函数y=-二(x v 0)的图象过点A (- 1, a).占八比例函数y二匚(k>0, x>0)的图象过点B,且AB// x轴.x(1)求a和k的值;(2)过点B作MN // OA,交x轴于点M,交y轴于点N,交双曲线y点。
2018中考数学:反比例函数一.选择题(共21小题)1.(2018•玉林)等腰三角形底角与顶角之间的函数关系是()A.正比例函数 B.一次函数C.反比例函数D.二次函数【分析】根据一次函数的定义,可得答案.【解答】解:设等腰三角形的底角为y,顶角为x,由题意,得y=﹣x+90°,故选:B.2.(2018•怀化)函数y=kx﹣3与y=(k≠0)在同一坐标系内的图象可能是()A.B.C.D.【分析】根据当k>0、当k<0时,y=kx﹣3和y=(k≠0)经过的象限,二者一致的即为正确答案.【解答】解:∵当k>0时,y=kx﹣3过一、三、四象限,反比例函数y=过一、三象限,当k<0时,y=kx﹣3过二、三、四象限,反比例函数y=过二、四象限,∴B正确;故选:B.3.(2018•永州)在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A.B.C.D.【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【解答】解:A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a、b异号,即b<0.所以反比例函数y=的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a、b同号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项正确;故选:D.4.(2018•菏泽)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【分析】直接利用二次函数图象经过的象限得出a,b,c的取值范围,进而利用一次函数与反比例函数的性质得出答案.【解答】解:∵二次函数y=ax2+bx+c的图象开口向上,∴a>0,∵该抛物线对称轴位于y轴的右侧,∴a、b异号,即b<0.∵当x=1时,y<0,∴a+b+c<0.∴一次函数y=bx+a的图象经过第一、二、四象限,反比例函数y=的图象分布在第二、四象限,故选:B.5.(2018•大庆)在同一直角坐标系中,函数y=和y=kx﹣3的图象大致是()A.B.C.D.【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【解答】解:分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限.故选:B.6.(2018•香坊区)对于反比例函数y=,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小【分析】根据反比例函数的性质用排除法解答.【解答】解:A、把点(﹣2,﹣1)代入反比例函数y=得﹣1=﹣1,故A选项正确;B、∵k=2>0,∴图象在第一、三象限,故B选项正确;C、当x>0时,y随x的增大而减小,故C选项错误;D、当x<0时,y随x的增大而减小,故D选项正确.故选:C.7.(2018•衡阳)对于反比例函数y=﹣,下列说法不正确的是()A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【解答】解:A、k=﹣2<0,∴它的图象在第二、四象限,故本选项正确;B、k=﹣2<0,当x>0时,y随x的增大而增大,故本选项正确;C、∵﹣=﹣2,∴点(1,﹣2)在它的图象上,故本选项正确;D、点A(x1,y1)、B(x2、y2)都在反比例函数y=﹣的图象上,若x1<x2<0,则y1<y2,故本选项错误.故选:D.8.(2018•柳州)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2B.a≠﹣2 C.a≠±2D.a=±2【分析】根据反比例函数解析式中k是常数,不能等于0解答即可.【解答】解:由题意可得:|a|﹣2≠0,解得:a≠±2,故选:C.9.(2018•德州)给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③B.③④C.②④D.②③【分析】分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.【解答】解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项错误;②y=,当x>1时,函数值y随自变量x增大而减小,故此选项错误;③y=2x2,当x>1时,函数值y随自变量x增大而减小,故此选项正确;④y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项正确;故选:B.10.(2018•嘉兴)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A.1 B.2 C.3 D.4【分析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据△AOB的面积为1,即可求得k的值.【解答】解:设点A的坐标为(a,0),∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,∴点C(﹣a,),∴点B(0,),∴=1,解得,k=4,故选:D.11.(2018•温州)如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为()A.4 B.3 C.2 D.【分析】先求出点A,B的坐标,再根据AC∥BD∥y轴,确定点C,点D的坐标,求出AC,BD,最后根据,△OAC与△ABD的面积之和为,即可解答.【解答】解:∵点A,B在反比例函数y=(x>0)图象上,点A,B的横坐标分别为1,2,∴点A的坐标为(1,1),点B的坐标为(2,),∵AC∥BD∥y轴,∴点C,D的横坐标分别为1,2,∵点C,D在反比例函数y=(k>0)的图象上,∴点C的坐标为(1,k),点D的坐标为(2,),∴AC=k﹣1,BD=,∴S△OAC=(k﹣1)×1=,S△ABD=•×(2﹣1)=,∵△OAC与△ABD的面积之和为,∴,解得:k=3.故选:B.12.(2018•宁波)如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8 B.﹣8 C.4 D.﹣4【分析】设A(a,h),B(b,h),根据反比例函数图象上点的坐标特征得出ah=k1,bh=k2.根据三角形的面积公式得到S△ABC=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,求出k1﹣k2=8.【解答】解:∵AB∥x轴,∴A,B两点纵坐标相同.设A(a,h),B(b,h),则ah=k1,bh=k2.∵S△ABC=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,∴k1﹣k2=8.故选:A.13.(2018•郴州)如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.1【分析】先根据反比例函数图象上点的坐标特征及A,B两点的横坐标,求出A(2,2),B(4,1).再过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,根据反比例函数系数k的几何意义得出S△AOC=S△BOD=×4=2.根据S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面积公式求出S梯形ABDC=(BD+AC)•CD=(1+2)×2=3,从而得出S△AOB=3.【解答】解:∵A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,∴当x=2时,y=2,即A(2,2),当x=4时,y=1,即B(4,1).如图,过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,则S△AOC=S△BOD=×4=2.∵S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,∴S△AOB=S梯形ABDC,∵S梯形ABDC=(BD+AC)•CD=(1+2)×2=3,∴S△AOB=3.故选:B.14.(2018•无锡)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n【分析】根据反比例函数的性质,可得答案.【解答】解:y=的k=﹣2<0,图象位于二四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故D正确;故选:D.15.(2018•淮安)若点A(﹣2,3)在反比例函数y=的图象上,则k的值是()A.﹣6 B.﹣2 C.2 D.6【分析】根据待定系数法,可得答案.【解答】解:将A(﹣2,3)代入反比例函数y=,得k=﹣2×3=﹣6,故选:A.16.(2018•岳阳)在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1 B.m C.m2D.【分析】三个点的纵坐标相同,由图象可知y=x2图象上点横坐标互为相反数,则x1+x2+x3=x3,再由反比例函数性质可求x3.【解答】解:设点A、B在二次函数y=x2图象上,点C在反比例函数y=(x>0)的图象上.因为AB两点纵坐标相同,则A、B关于y轴对称,则x1+x2=0,因为点C(x3,m)在反比例函数图象上,则x3=,∴ω=x1+x2+x3=x3=, 故选:D.17.(2018•遵义)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x >0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=【分析】直接利用相似三角形的判定与性质得出=,进而得出S△AOD=2,即可得出答案.【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∴=tan30°=,∴=,∵×AD×DO=xy=3,∴S△BCO=×BC×CO=S△AOD=1,∴S△AOD=2,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣.故选:C.18.(2018•湖州)如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是()A.(﹣1,﹣2)B.(﹣1,2) C.(1,﹣2) D.(﹣2,﹣1)【分析】直接利用正比例函数的性质得出M,N两点关于原点对称,进而得出答案.【解答】解:∵直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点,∴M,N两点关于原点对称,∵点M的坐标是(1,2),∴点N的坐标是(﹣1,﹣2).故选:A.19.(2018•江西)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作x轴的垂线l1和l2,探究直线l1,直线l2与双曲线y=的关系,下列结论错误的是()A.两直线中总有一条与双曲线相交B.当m=1时,两直线与双曲线的交点到原点的距离相等C.当﹣2<m<0时,两直线与双曲线的交点在y轴两侧D.当两直线与双曲线都有交点时,这两交点的最短距离是2【分析】A、由m、m+2不同时为零,可得出:两直线中总有一条与双曲线相交;B、找出当m=1时两直线与双曲线的交点坐标,利用两点间的距离公式可得出:当m=1时,两直线与双曲线的交点到原点的距离相等;C、当﹣2<m<0时,0<m+2<2,可得出:当﹣2<m<0时,两直线与双曲线的交点在y轴两侧;D、由y与x之间一一对应结合两交点横坐标之差为2,可得出:当两直线与双曲线都有交点时,这两交点的距离大于2.此题得解.【解答】解:A、∵m、m+2不同时为零,∴两直线中总有一条与双曲线相交;B、当m=1时,点A的坐标为(1,0),点B的坐标为(3,0),当x=1时,y==3,∴直线l1与双曲线的交点坐标为(1,3);当x=3时,y==1,∴直线l2与双曲线的交点坐标为(3,1).∵=,∴当m=1时,两直线与双曲线交点到原点的距离相等;C、当﹣2<m<0时,0<m+2<2,∴当﹣2<m<0时,两直线与双曲线的交点在y轴两侧;D、∵m+2﹣m=2,且y与x之间一一对应,∴当两直线与双曲线都有交点时,这两交点的距离大于2.故选:D.20.(2018•铜仁市)如图,已知一次函数y=ax+b和反比例函数y=的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为()A.x<﹣2或0<x<1;B.x<﹣2 C.0<x<1 D.﹣2<x<0或x>1【分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【解答】解:观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,∴不等式ax+b<的解集是﹣2<x<0或x>1.故选:D.21.(2018•聊城)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x (min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内【分析】利用图中信息一一判断即可;【解答】解:A、正确.不符合题意.B、由题意x=4时,y=8,∴室内空气中含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,x=2.5或24,24﹣2.5=21.5<35,故本选项错误,符合题意;D、正确.不符合题意,故选:C.二.填空题(共9小题)22.(2018•上海)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是k<1.【分析】由于在反比例函数y=的图象有一支在第二象限,故k﹣1<0,求出k的取值范围即可.【解答】解:∵反比例函数y=的图象有一支在第二象限,∴k﹣1<0,解得k<1.故答案为:k<1.23.(2018•齐齐哈尔)已知反比例函数y=的图象在第一、三象限内,则k的值可以是1.(写出满足条件的一个k的值即可)【分析】根据反比例函数的性质:反比例函数y=的图象在第一、三象限内,则可知2﹣k>0,解得k 的取值范围,写出一个符合题意的k即可.【解答】解:由题意得,反比例函数y=的图象在第一、三象限内,则2﹣k>0,故k<2,满足条件的k可以为1,故答案为:1.24.(2018•连云港)已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,则y1与y2的大小关系为y1<y2.【分析】根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小,从而可以解答本题.【解答】解:∵反比例函数y=﹣,﹣4<0,∴在每个象限内,y随x的增大而增大,∵A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,﹣4<﹣1,∴y1<y2,故答案为:y1<y2.25.(2018•南京)已知反比例函数y=的图象经过点(﹣3,﹣1),则k=3.【分析】根据反比例函数y=的图象经过点(﹣3,﹣1),可以求得k的值.【解答】解:∵反比例函数y=的图象经过点(﹣3,﹣1),∴﹣1=,解得,k=3,故答案为:3.26.(2018•陕西)若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为.【分析】设反比例函数的表达式为y=,依据反比例函数的图象经过点A(m,m)和B(2m,﹣1),即可得到k的值,进而得出反比例函数的表达式为.【解答】解:设反比例函数的表达式为y=,∵反比例函数的图象经过点A(m,m)和B(2m,﹣1),∴k=m2=﹣2m,解得m1=﹣2,m2=0(舍去),∴k=4,∴反比例函数的表达式为.故答案为:.27.(2018•东营)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为y=.【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.【解答】解:设A坐标为(x,y),∵B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0﹣3,解得:x=﹣2,y=﹣3,即A(﹣2,﹣3),设过点A的反比例解析式为y=,把A(﹣2,﹣3)代入得:k=6,则过点A的反比例解析式为y=,故答案为:y=28.(2018•成都)设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.【分析】以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,联立直线AB及双曲线解析式成方程组,通过解方程组可求出点A、B的坐标,由PQ的长度可得出点P的坐标(点P在直线y=﹣x上找出点P的坐标),由图形的对称性结合点A、B和P的坐标可得出点P′的坐标,再利用反比例函数图象上点的坐标特征即可得出关于k的一元一次方程,解之即可得出结论.【解答】解:以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示.联立直线AB及双曲线解析式成方程组,,解得:,,∴点A的坐标为(﹣,﹣),点B的坐标为(,).∵PQ=6,∴OP=3,点P的坐标为(﹣,).根据图形的对称性可知:AB=OO′=PP′,∴点P′的坐标为(﹣+2,+2).又∵点P′在双曲线y=上,∴(﹣+2)•(+2)=k,解得:k=.故答案为:.29.(2018•安顺)如图,已知直线y=k1x+b与x轴、y轴相交于P、Q两点,与y=的图象相交于A(﹣2,m)、B(1,n)两点,连接OA、OB,给出下列结论:①k1k2<0;②m+n=0;③S△AOP=S△BOQ;④不等式k1x+b的解集是x<﹣2或0<x<1,其中正确的结论的序号是②③④.【分析】根据一次函数和反比例函数的性质得到k1k2>0,故①错误;把A(﹣2,m)、B(1,n)代入y=中得到﹣2m=n故②正确;把A(﹣2,m)、B(1,n)代入y=k1x+b得到y=﹣mx﹣m,求得P(﹣1,0),Q(0,﹣m),根据三角形的面积公式即可得到S△AOP=S△BOQ;故③正确;根据图象得到不等式k1x+b的解集是x<﹣2或0<x<1,故④正确.【解答】解:由图象知,k1<0,k2<0,∴k1k2>0,故①错误;把A(﹣2,m)、B(1,n)代入y=中得﹣2m=n,∴m+n=0,故②正确;把A(﹣2,m)、B(1,n)代入y=k1x+b得,∴,∵﹣2m=n,∴y=﹣mx﹣m,∵已知直线y=k1x+b与x轴、y轴相交于P、Q两点,∴P(﹣1,0),Q(0,﹣m),∴OP=1,OQ=m,∴S△AOP=m,S△BOQ=m,∴S△AOP=S△BOQ;故③正确;由图象知不等式k1x+b的解集是x<﹣2或0<x<1,故④正确;故答案为:②③④.30.(2018•安徽)如图,正比例函数y =kx 与反比例函数y =的图象有一个交点A (2,m ),AB ⊥x 轴于点B .平移直线y =kx ,使其经过点B ,得到直线l ,则直线l 对应的函数表达式是 y =x ﹣3 .【分析】首先利用图象上点的坐标特征得出A 点坐标,进而得出正比例函数解析式,再利用平移的性质得出答案.【解答】解:∵正比例函数y =kx 与反比例函数y =的图象有一个交点A (2,m ),∴2m =6,解得:m =3,故A (2,3),则3=2k ,解得:k =,故正比例函数解析式为:y =x ,∵AB ⊥x 轴于点B ,平移直线y =kx ,使其经过点B ,∴B (2,0),∴设平移后的解析式为:y =x +b ,则0=3+b ,解得:b =﹣3,故直线l 对应的函数表达式是:y =x ﹣3.故答案为:y =x ﹣3.三.解答题(共20小题)31.(2018•贵港)如图,已知反比例函数y =(x >0)的图象与一次函数y =﹣x +4的图象交于A 和B(6,n )两点.(1)求k 和n 的值;(2)若点C (x ,y )也在反比例函数y =(x >0)的图象上,求当2≤x ≤6时,函数值y 的取值范围.【分析】(1)利用一次函数图象上点的坐标特征可求出n 值,进而可得出点B 的坐标,再利用反比例函数图象上点的坐标特征即可求出k 值;(2)由k =6>0结合反比例函数的性质,即可求出:当2≤x ≤6时,1≤y ≤3.【解答】解:(1)当x=6时,n=﹣×6+4=1,∴点B的坐标为(6,1).∵反比例函数y=过点B(6,1),∴k=6×1=6.(2)∵k=6>0,∴当x>0时,y随x值增大而减小,∴当2≤x≤6时,1≤y≤3.32.(2018•泰安)如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=的图象经过点E,与AB交于点F.(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF﹣AE=2,求反比例函数的表达式.【分析】(1)根据矩形的性质,可得A,E点坐标,根据待定系数法,可得答案;(2)根据勾股定理,可得AE的长,根据线段的和差,可得FB,可得F点坐标,根据待定系数法,可得m的值,可得答案.【解答】解:(1)点B坐标为(﹣6,0),AD=3,AB=8,E为CD的中点,∴点A(﹣6,8),E(﹣3,4),函数图象经过E点,∴m=﹣3×4=﹣12,设AE的解析式为y=kx+b,,解得,一次函数的解析是为y=﹣x;(2)AD=3,DE=4,∴AE==5,∵AF﹣AE=2,∴AF=7,BF=1,设E点坐标为(a,4),则F点坐标为(a﹣3,1),∵E,F两点在函数y=图象上,∴4a=a﹣3,解得a=﹣1,∴E(﹣1,4),∴m=﹣1×4=﹣4,∴y=﹣.33.(2018•岳阳)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,A C.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.【分析】(1)把A的坐标代入反比例函数的解析式即可求得;(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b方程求得b的值,进而求得a的值,根据待定系数法,可得答案.【解答】解:(1)由题意得,k=xy=2×3=6∴反比例函数的解析式为y=.(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b)∵反比例函数y=的图象经过点B(a,b),∴b=,∴AD=3﹣.∴S△ABC=BC•AD=a(3﹣)=6,解得a=6,∴b==, ∴B(6,1).设AB的解析式为y=kx+b,将A(2,3),B(6,1)代入函数解析式,得,解得,直线AB的解析式为y=﹣x+4.34.(2018•柳州)如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A(3,1),B(﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.【分析】(1)根据反比例函数y=的图象经过A(3,1),即可得到反比例函数的解析式为y=;(2)把B(﹣,n)代入反比例函数解析式,可得n=﹣6,把A(3,1),B(﹣,﹣6)代入一次函数y=mx+b,可得一次函数的解析式为y=2x﹣5.【解答】解:(1)∵反比例函数y=的图象经过A(3,1),∴k=3×1=3,∴反比例函数的解析式为y=;(2)把B(﹣,n)代入反比例函数解析式,可得﹣n=3,解得n=﹣6,∴B(﹣,﹣6),把A(3,1),B(﹣,﹣6)代入一次函数y=mx+b,可得,解得,∴一次函数的解析式为y=2x﹣5.35.(2018•白银)如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标.【分析】(1)利用点A在y=﹣x+4上求a,进而代入反比例函数y=求k.(2)联立方程求出交点,设出点P坐标表示三角形面积,求出P点坐标.【解答】解:(1)把点A(﹣1,a)代入y=x+4,得a=3,∴A(﹣1,3),把A(﹣1,3)代入反比例函数y=,∴k=﹣3,∴反比例函数的表达式为y=﹣(2)联立两个函数的表达式得,解得或,∴点B的坐标为B(﹣3,1)当y=x+4=0时,得x=﹣4,∴点C(﹣4,0),设点P的坐标为(x,0)∵S△ACP=S△BOC,∴解得x1=﹣6,x2=﹣2,∴点P(﹣6,0)或(﹣2,0)36.(2018•菏泽)如图,已知点D在反比例函数y=的图象上,过点D作DB⊥y轴,垂足为B(0,3),直线y=kx+b经过点A(5,0),与y轴交于点C,且BD=OC,OC:OA=2:5.(1)求反比例函数y=和一次函数y=kx+b的表达式;(2)直接写出关于x的不等式>kx+b的解集.【分析】(1)由OC、OA、BD之间的关系结合点A、B的坐标可得出点C、D的坐标,由点D的坐标利用反比例函数图象上点的坐标特征可求出a值,进而可得出反比例函数的表达式,再由点A、C的坐标利用待定系数法,即可求出一次函数的表达式;(2)将一次函数表达式代入反比例函数表达式中,利用根的判别式△<0可得出两函数图象无交点,再观察图形,利用两函数图象的上下位置关系即可找出不等式>kx+b的解集.【解答】解:(1)∵BD=OC,OC:OA=2:5,点A(5,0),点B(0,3),∴OA=5,OC=BD=2,OB=3,又∵点C在y轴负半轴,点D在第二象限,∴点C的坐标为(0,﹣2),点D的坐标为(﹣2,3).∵点D(﹣2,3)在反比例函数y=的图象上,∴a=﹣2×3=﹣6,∴反比例函数的表达式为y=﹣.将A(5,0)、B(0,﹣2)代入y=kx+b,,解得:,∴一次函数的表达式为y=x﹣2.(2)将y=x﹣2代入y=﹣,整理得:x2﹣2x+6=0,∵△=(﹣2)2﹣4××6=﹣<0,∴一次函数图象与反比例函数图象无交点.观察图形,可知:当x<0时,反比例函数图象在一次函数图象上方,∴不等式>kx+b的解集为x<0.37.(2018•湘西州)反比例函数y=(k为常数,且k≠0)图象过点A(1,3)、B(3,m).(1)求反比例函数的解析式及B点的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【分析】(1)先把A点坐标代入y=求出k得到反比例函数解析式;然后把B(3,m)代入反比例函数解析式求出m得到B点坐标;(2)作A点关于x轴的对称点A′,连接BA′交x轴于P点,则A′(1,﹣3),利用两点之间线段最短可判断此时此时PA+PB的值最小,再利用待定系数法求出直线BA′的解析式,然后求出直线与x轴的交点坐标即可得到P点坐标.【解答】解:(1)把A(1,3)代入y=得k=1×3=3,∴反比例函数解析式为y=;把B(3,m)代入y=得3m=3,解得m=1,∴B点坐标为(3,1);(2)作A点关于x轴的对称点A′,连接BA′交x轴于P点,则A′(1,﹣3),∵PA+PB=PA′+PB=BA′,∴此时此时PA+PB的值最小,设直线BA′的解析式为y=mx+n,把A′(1,﹣3),B(3,1)代入得,解得,∴直线BA′的解析式为y=2x﹣5,当y=0时,2x﹣5=0,解得x=,∴P点坐标为(,0).38.(2018•大庆)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标;(3)求△OAP的面积.【分析】(1)将点A的坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=5,由AB∥x轴即可得点B的坐标;(3)先根据点B坐标得出OB所在直线解析式,求得直线与双曲线交点P的坐标,再利用割补法求解可得.【解答】解:(1)将点A(4,3)代入y=,得:k=12,则反比例函数解析式为y=;(2)如图,过点A作AC⊥x轴于点C,则OC=4、AC=3,∴OA==5,∵AB∥x轴,且AB=OA=5,∴点B的坐标为(9,3);(3)∵点B坐标为(9,3),∴OB所在直线解析式为y=x,由可得点P坐标为(6,2),过点P作PD⊥x轴,延长DP交AB于点E,则点E坐标为(6,3),∴AE=2、PE=1、PD=2,则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=5.39.(2018•枣庄)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.【分析】(1)根据三角形相似,可求出点C坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【解答】解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴,∴OB∥CD,∴△ABO∽△ACD,∴,∴,∴CD=20∴点C坐标为(﹣4,20),∴n=xy=﹣80,∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8,∴点E坐标为(10,﹣8),∴S△CDE=S△CDA+S△EDA=(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象∴由图象得,x≥10,或﹣4≤x<040.(2018•杭州)设一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(﹣1,﹣1)两点.(1)求该一次函数的表达式;(2)若点(2a+2,a2)在该一次函数图象上,求a的值.(3)已知点C(x1,y1)和点D(x2,y2)在该一次函数图象上,设m=(x1﹣x2)(y1﹣y2),判断反比例函数y=的图象所在的象限,说明理由.【分析】(1)根据一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(﹣1,﹣1)两点,可以求得该函数的表达式;(2)根据(1)中的解析式可以求得a的值;(3)根据题意可以判断m的正负,从而可以解答本题.【解答】解:(1)∵一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(﹣1,﹣1)两点,∴,得,即该一次函数的表达式是y=2x+1;(2)点(2a+2,a2)在该一次函数y=2x+1的图象上,∴a2=2(2a+2)+1,解得,a=﹣1或a=5,即a的值是﹣1或5;(3)反比例函数y=的图象在第一、三象限,理由:∵点C(x1,y1)和点D(x2,y2)在该一次函数y=2x+1的图象上,m=(x1﹣x2)(y1﹣y2),假设x1<x2,则y1<y1,此时m=(x1﹣x2)(y1﹣y2)>0,假设x1>x2,则y1>y1,此时m=(x1﹣x2)(y1﹣y2)>0,由上可得,m>0,∴m+1>0,∴反比例函数y=的图象在第一、三象限.41.(2018•杭州)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时).(1)求v关于t的函数表达式.(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?【分析】(1)直接利用vt=100进而得出答案;(2)直接利用要求不超过5小时卸完船上的这批货物,进而得出答案.【解答】解:(1)由题意可得:100=vt,则v=;(2)∵不超过5小时卸完船上的这批货物,∴t≤5,则v≥=20,答:平均每小时至少要卸货20吨.42.(2018•河北)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t (秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.【分析】(1)用待定系数法解题即可;(2)根据题意,分别用t表示x、y,再用代入消元法得出y与x之间的关系式;(3)求出甲距x轴1.8米时的横坐标,根据题意求出乙位于甲右侧超过4.5米的v乙.【解答】解:(1)由题意,点A(1,18)带入y=,得:18=,∴k=18设h=at2,把t=1,h=5代入∴a=5,∴h=5t2(2)∵v=5,AB=1,∴x=5t+1,∵h=5t2,OB=18,∴y=﹣5t2+18。
2018年中考数学真题专题汇编—一次函数、反比例函数综合题24.(2018山东滨州)如图,在平面直角坐标系中,点O 为坐标原点,菱形OABC 的顶点A 在x 轴的正半轴上,顶点C的坐标为(. (1)求图象过点B 的反比例函数的解析式, (2)求图象过点A B 、的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x 的取值范围.24(2018湖南株洲)如图已知函数(0,0)ky k x x=>>的图象与一次函数5(0)y mx m =+<的图象相交不同的点A 、B ,过点A 作AD ⊥x 轴于点D,连接AO ,其中点A 的横坐标为0x ,△AOD 的面积为2。
(1)求k 的值及0x =4时m 的值;(2)记[]x 表示为不超过x 的最大整数,例如:[]1.41=,[]22=,设.t ODDC =,若3524m -<<-,求2m t ⎡⎤⎣⎦值20.(2018山东青岛)已知反比例函数的图象经过三个点()()()124,3,2,,6,A B m y C m y --,其中0m >.(1)当124y y -=时,求m 的值;(2)如图,过点B C 、分别作x 轴、y 轴的垂线,两垂线相交于点D ,点P 在x 轴上,若三角形PBD 的面积是8,请写出点P 坐标(不需要写解答过程).25.(2018甘肃武威)如图,一次函数4y x =+的图象与反比例函数ky x=(k 为常数且0k ≠)的图象交于(1,)A a -,B 两点,与x 轴交于点C .(1)求此反比例函数的表达式; (2)若点P 在x 轴上,且32ACP BOC S S ∆∆=,求点P 的坐标. 23.(2018四川达州)矩形AOBC 中,3,4==OA OB .分别以OA OB ,所在直线为x 轴,y 轴,建立如图1所示的平面直角坐标系.F 是BC 边上一个动点(不与C B ,重合),过点F 的反比例函数xky =(0>k )的图象与边AC 交于点E .(1)当点F 运动到边BC 的中点时,求点E 的坐标; (2)连接EF ,求EFC ∠的正切值;(3)如图2,将CEF ∆沿EF 折叠,点C 恰好落在边OB 上的点G 处,求此时反比例函数的解析式.23.(2018浙江金华)如图,四边形ABCD 的四个顶点分别在反比例函数y=与y=(x >0,0<m <n )的图象上,对角线BD ∥y 轴,且BD ⊥AC 于点P .已知点B 的横坐标为4. (1)当m=4,n=20时.①若点P 的纵坐标为2,求直线AB 的函数表达式.②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由.(2)四边形ABCD 能否成为正方形?若能,求此时m ,n 之间的数量关系;若不能,试说明理由.17.(2018江西省)如图,反比例函数(0)ky k x=≠的图象与正比例函数2y x =的图象相交于(1,)A a ,B 两点,点C 在第四象限,//CA y 轴,90ABC ∠=.(1)求k 的值及点B 的坐标; (2)求tan C 的值.22.(2018重庆B 卷)如图,在平面直角坐标系中直线11:2l y x =与直线2l 交点A 的横坐标为2.将直线1l ,沿y 轴向下平移4个单位长度得到直线3l ,直线3l 与y 轴交于点B ,与直线2l 交于点C .点C 的纵坐标为-2直线2l 与y 轴交于点D . (1)求直线2l 的解析式; (2)求△BDC 的面积20.(2018四川南充)已知关于x 的一元二次方程22(22)(2)0x m x m m --+-=. (1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为1x ,2x ,且221210x x +=,求m 的值. 21.如图,直线(0)y kx b k =+≠与双曲线(0)m y m x =≠交于点1(,2)2A -,(,1)B n -.(1)求直线与双曲线的解析式;(2)点P 在x 轴上,如果3ABP S ∆=,求点P 的坐标.22.(2018四川绵阳)如图,一次函数1522y x =-+的图象与反比例函数ky x=(0k >)的图象交于A ,B 两点,过A 点作x 轴的垂线,垂足为M ,AOM ∆面积为1. (1)求反比例函数的解析式;(2)在y 轴上求一点P ,使PA PB +的最小值,并求出其最小值和P 点的坐标.21.(2018山东枣庄)如图,一次函数b kx y +=(b k ,为常数,0≠k )的图象与x 轴、y 轴分别交于B A ,两点,且与反比例函数xny =(n 为常数,且0≠n )的图象在第二象限交于点C ,⊥CD x 轴,垂足为D ,若1232===OD OA OB .(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E ,求CDE ∆的面积; (3)直接写出不等式xnb kx ≤+的解集.22(2018浙江金华)如图,四边形ABCD 的四个顶点分别在反比例函数y xm=与y xn=(x >0,0<m <n )的图象上,对角线BD ∥y 轴,且BD ⊥AC 于点P .已知点B 的横坐标为4. (1)当m =4,n =20时.①若点P 的纵坐标为2,求直线AB 的函数表达式.②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由. (2)四边形ABCD 能否成为正方形?若能, 求此时m,n 之间的数量关系;若不能,试说明理由20.(2018浙江台州)如图,函数y x =的图象与函数(0)ky x x=>的图象相交于点(2,)P m . ym n(1)求m ,k 的值;(2)直线4y =与函数y x =的图象相交于点A ,与函数(0)ky x x=>的图象相交于点B ,求线段AB 长.20.(2018湖南常德)如图7,已知一次函数111(0)y k x b k =+≠与反比例函数222(0)k y k x=≠的图像交于(4,1)A ,(,2)B n -两点.(1) 求一次函数与反比例函数的解析式; (2) 请根据图像直接写出12y y <时x 的取值范围.23.(2018四川达州)矩形AOBC 中,3,4==OA OB .分别以OA OB ,所在直线为x 轴,y 轴,建立如图1所示的平面直角坐标系.F 是BC 边上一个动点(不与C B ,重合),过点F 的反比例函数xky =(0>k )的图象与边AC 交于点E .(1)当点F 运动到边BC 的中点时,求点E 的坐标; (2)连接EF ,求EFC ∠的正切值;(3)如图2,将CEF ∆沿EF 折叠,点C 恰好落在边OB 上的点G 处,求此时反比例函数的解析式.24.(2018浙江衢州25.如图,一次函数4y x =+的图象与反比例函数ky x=(k 为常数且0k ≠)的图象交于(1,)A a -,B 两点,与x 轴交于点C .(1)求此反比例函数的表达式;(2)若点P在x轴上,且32ACP BOCS S∆∆=,求点P的坐标.23(2018甘肃白银)如图,Rt△OAB的直角边OA在x轴上,顶点B的坐标为(6,8),直线CD交AB于点D(6,3),交x轴于点C(12,0).(1)求直线CD的函数表达式;(2)动点P在x轴上从点(﹣10,0)出发,以每秒1个单位的速度向x轴正方向运动,过点P 作直线l垂直于x轴,设运动时间为t.①点P在运动过程中,是否存在某个位置,使得∠PDA=∠B?若存在,请求出点P的坐标;若不存在,请说明理由;②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,O,B,M,Q为顶点的四边形为菱形,并求出此时t的值.1125(2018湖南长沙)如图,在平面直角坐标系xOy 中,函数my x=(m 为常数,m ,x )的图象经过点P (m ,1)和Q (1,m ),直线PQ 与x 轴,y 轴分别交于C ,D 两点,点M (x ,y )是该函数图象上的一个动点,过点 M 分别作x 轴和y 轴的垂线,垂足分别为A ,B 。
2018年中考数学专题复习卷: 反比例函数一、选择题1.已知点P(1,-3)在反比例函数(k≠0)的图象上,则k的值是()A. 3B.C. -3D.2.如果点(3,-4)在反比例函数的图象上,那么下列各点中,在此图象上的是()A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)3.在双曲线y= 的任一支上,y都随x的增大而增大,则k的值可以是()A. 2B. 0C. ﹣2D. 14.如图,已知双曲线y= (k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A 的坐标为(-6,4),则△AOC的面积为( )A. 4B. 6C. 9D. 125.如图所示双曲线y= 与分别位于第三象限和第二象限,A是y轴上任意一点,B是上的点,C是y= 上的点,线段BC⊥x轴于D,且4BD=3CD,则下列说法:①双曲线y= 在每个象限内,y随x的增大而减小;②若点B的横坐标为-3,则C点的坐标为(-3, );③k=4;④△ABC的面积为定值7.正确的有()A. I个B. 2个C. 3个D. 4个6.如图,已知反比例函数y= 与正比例函数y=kx(k<0)的图象相交于A,B两点,AC垂直x轴于C,则△ABC的面积为()A. 3B. 2C. kD. k27.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I的函数解析式为()A. B. C. D.8.如图,在平面直角坐标系中,四边形是菱形,,反比例函数的图象经过点,若将菱形向下平移2个单位,点恰好落在反比例函数的图象上,则反比例函数的表达式为()A. B. C. D.9.如图,在平面直角坐标系中,过点0的直线AB交反比例函数y= 的图象于点A,B,点c在反比例函数y=(x>0)的图象上,连结CA,CB,当CA=CB且Cos∠CAB= 时,k1,k2应满足的数量关系是()A. k2=2k lB. k2=-2k1C. k2=4k1D. k2=-4k110.已知如图,菱形ABCD四个顶点都在坐标轴上,对角线AC、BD交于原点O,DF垂直AB交AC于点G,反比例函数,经过线段DC的中点E,若BD=4,则AG的长为()A. B. +2 C. 2 +1 D. +1二、填空题11.反比例函数的图像经过点(2,3),则的值等于________.12.若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为________13.若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y= (k为常数)的图象上,则y1、y2、y3的大小关系为________.14.如图,点为矩形的边的中点,反比例函数的图象经过点,交边于点.若的面积为1,则________。
反比例函数一.选择题1.(2018•玉林)等腰三角形底角与顶角之间的函数关系是()A.正比例函数B.一次函数 C.反比例函数D.二次函数2.(2018•怀化)函数y=kx﹣3与y=(k≠0)在同一坐标系内的图象可能是()A. B. C. D.3.(2018•永州)在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx (a≠0)的图象大致是()A.B.C.D.4.(2018•菏泽)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.5.(2018•大庆)在同一直角坐标系中,函数y=和y=kx﹣3的图象大致是()A.B.C.D.6.(2018•香坊区)对于反比例函数y=,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上 B.它的图象在第一、三象限C.当x>0时,y随x的增大而增大 D.当x<0时,y随x的增大而减小7.(2018•衡阳)对于反比例函数y=﹣,下列说法不正确的是()A.图象分布在第二、四象限 B.当x>0时,y随x的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y28.(2018•柳州)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2 B.a≠﹣2 C.a≠±2 D.a=±29.(2018•德州)给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③ B.③④ C.②④ D.②③10.(2018•嘉兴)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A.1 B.2 C.3 D.411.(2018•温州)如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为()A.4 B.3 C.2 D.12.(2018•宁波)如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8 B.﹣8 C.4 D.﹣413.(2018•郴州)如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.114.(2018•无锡)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n二.填空题(共9小题)22.(2018•上海)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是.23.(2018•齐齐哈尔)已知反比例函数y=的图象在第一、三象限内,则k的值可以是.(写出满足条件的一个k的值即可)24.(2018•连云港)已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,则y1与y2的大小关系为.25.(2018•南京)已知反比例函数y=的图象经过点(﹣3,﹣1),则k= .26.(2018•陕西)若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为.27.(2018•东营)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为.28.(2018•成都)设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.29.(2018•安顺)如图,已知直线y=k1x+b与x轴、y轴相交于P、Q两点,与y=的图象相交于A(﹣2,m)、B(1,n)两点,连接OA、OB,给出下列结论:①k1k2<0;②m+n=0;③S△AOP=S△BOQ;④不等式k1x+b的解集是x<﹣2或0<x<1,其中正确的结论的序号是.三.解答题31.(2018•贵港)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.(1)求k和n的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y 的取值范围.32.(2018•泰安)如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=的图象经过点E,与AB交于点F.(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF﹣AE=2,求反比例函数的表达式.33.(2018•岳阳)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A 的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.34.(2018•柳州)如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A(3,1),B(﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.35.(2018•白银)如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标.36.(2018•菏泽)如图,已知点D在反比例函数y=的图象上,过点D作DB⊥y轴,垂足为B(0,3),直线y=kx+b经过点A(5,0),与y轴交于点C,且BD=OC,OC:OA=2:5.(1)求反比例函数y=和一次函数y=kx+b的表达式;(2)直接写出关于x的不等式>kx+b的解集.37.(2018•湘西州)反比例函数y=(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).(1)求反比例函数的解析式及B点的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.38.(2018•大庆)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标;(3)求△OAP的面积.39.(2018•枣庄)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD ⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.。
2018-2019学年秋学期九年级数学《反比例函数 》综合测试题一、选择题(本大题共8小题,每小题4分,共32分) 1.下列函数表达式中,y 不是x 的反比例函数的是( ) A .y =3x B . y =x 3 C .y =12x D .xy =122.已知反比例函数y =kx 的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是( )A .(3,-2)B .(-2,-3)C .(1,-6)D .(-6,1)3.若双曲线y =2k -1x 经过第二、四象限,则k 的取值范围是( )A .k >12B .k <12C .k =12 D .不存在4.对于函数y =-6x ,下列说法错误的是 ( )A. 它的图象分布在第二、四象限B. 它的图象既是轴对称图形又是中心对称图形C. 当x >0时,y 的值随x 的增大而减小D. 当x <0时,y 的值随x 的增大而增大图-15.如图-1,市煤气公司计划在地下修建一个容积为104 m 3的圆柱形煤气储存室,则储存室的底面积S (单位:m 2)与其深度d (单位:m)的函数图象大致是( )图-26.已知(x 1,y 1),(x 2,y 2),(x 3,y 3)是反比例函数y =-4x 的图象上的三个点,且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是( )A .y 3<y 1<y 2B .y 2<y 1<y 3C .y 1<y 2<y 3D .y 3<y 2<y 17.已知k 1<0<k 2,则函数y =k 1x和y =k 2x -1的图象大致是( )图-3图-48.在大棚中栽培新品种的蘑菇,这种蘑菇在18 ℃的条件下生长最快,因此用装有恒温系统的大棚栽培,如图-4是某天恒温系统从开启到关闭过程中大棚内温度y (℃)随时间x (时)变化的函数图象,其中BC 段是函数y =kx (k >0)图象的一部分.若这种蘑菇适宜生长的温度不低于12 ℃,则这天这种蘑菇适宜生长的时间为( )A .18小时B .17.5小时C .12小时D .10小时 二、填空题(本大题共6小题,每小题4分,共24分)9.已知反比例函数y =kx 的图象经过点P (1,-2),则k =________.10.若反比例函数y =(2k -1)x-|k -1|的图象经过第二、四象限,则k =________.11.如图-5,P 是反比例函数y =kx 的图象上的一点,过点P 分别作x 轴、y 轴的垂线,得图中阴影部分的面积为6,则这个反比例函数的表达式是________.12.已知一个正比例函数的图象与一个反比例函数图象的一个交点的坐标为(1,3),则另一个交点的坐标为________.图-5 图-713.如图-6,直线y =mx 与双曲线y =kx 交于A ,B 两点,过点A 作AM ⊥x 轴,垂足为M ,连接BM .若S △ABM =2,则k 的值是________.14.为预防“手足口病”,某学校对教室进行“药熏消毒”.消毒期间,室内每立方米空气中的含药量y (mg)与时间x (min)的函数关系如图-7所示.已知,药物燃烧阶段,y 与x 成正比例,燃烧完后,y 与x 成反比例.现测得药物10 min 燃烧完,此时教室内每立方米空气的含药量为8 mg.当每立方米空气中的含药量低于1.6 mg 时,才能对人体无毒害作用.那么,从消毒开始,________min 后教室内的空气才能达到安全要求.三、解答题(本大题共4小题,共44分)15.(10分)如图-8,已知反比例函数y =kx 的图象经过点A (-3,-2).(1)求反比例函数的表达式;(2)若点B (1,m ),C (3,n )在该函数的图象上,试比较m 与n 的大小.图-816.(10分)已知反比例函数y =m -5x(m 为常数,且m ≠5).(1)若在其图象的每个分支上,y 随x 的增大而增大,求m 的取值范围;(2)若其图象与一次函数y =-x +1图象的一个交点的纵坐标是3,求m 的值.17.(12分)如图-9,直线y =2x +3与y 轴交于点A ,与反比例函数y =kx (k >0)的图象交于点B ,过点B 作BC ⊥x 轴于点C ,且点C 的坐标为(1,0).(1)求反比例函数的表达式.(2)点D (a ,1)是反比例函数y =kx (k >0)图象上的点,在x 轴上是否存在点P ,使得PB +PD 最小?若存在,求出点P 的坐标;若不存在,请说明理由.图-918.(12分)如图-10所示,制作一种产品的同时,需要将原材料加热,设该材料的温度为y (℃),从加热开始计算的时间为x (分).据了解,该材料在加热过程中温度y (℃)与时间x (分)成一次函数关系.已知该材料在加热前的温度为15 ℃,加热5分钟使材料温度达到60 ℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y (℃)与时间x (分)成反比例函数关系.(1)分别求出该材料在加热和停止加热过程中,y 与x 之间的函数表达式(要求写出x 的取值范围);(2)根据工艺要求,在材料温度不低于30 ℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理可用的时间为多少分钟?图-10参考答案1.B 选项B 中y =x3是正比例函数.2.B 把点(2,3)的坐标代入函数表达式y =k x ,得k =6,∴反比例函数的表达式为y =6x ,经验证,可知点(-2,-3)在这个函数图象上.故选B.3.B 4.C5.A 由储存室的体积公式知:104=Sd ,故储存室的底面积S (m 2)与其深度d (m)之间的函数表达式为S =104d(d >0),为反比例函数.故选A.6.A 反比例函数y =-4x 中,k =-4<0,故其图象分布在第二、四象限内,所以在每一个象限内,y 随x 的增大而增大.又x 1<x 2<0,x 3>0,所以0<y 1<y 2,y 3<0,故有y 3<y 1<y 2.选A.7.C ∵k 1<0<k 2,b =-1<0,∴直线过第一、三、四象限,双曲线位于第二、四象限.故选C.8.B 把B (12,18)的坐标代入y =kx ,得k =12×18=216.设线段AD 所在直线的函数表达式为y =mx +n , 把(0,10),(2,18)代入y =mx +n ,得⎩⎪⎨⎪⎧n =10,2m +n =18,解得⎩⎪⎨⎪⎧m =4,n =10, ∴线段AD 所在直线的函数表达式为y =4x +10. 当y =12时,12=4x +10,解得x =0.5, 12=216x,解得x =18,18-0.5=17.5.故选B.9.-2 把(1,-2)代入y =k x ,得k1=-2,解得k =-2.10.0 因为y =(2k -1)x -||k -1是反比例函数,所以-||k -1=-1,解得k =0或k =2.又图象经过第二、四象限,所以2k -1<0,所以k <12,故k =0.11.y =-6x 设P (m ,n ),则阴影部分面积=-mn =6,即mn =-6,所以反比例函数的表达式为y =-6x.12.(-1,-3)∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点与点(1,3)关于原点对称,∴该点的坐标为(-1,-3).13.214.50 设药物燃烧完后y 与x 之间的函数表达式为y =k x ,把(10,8)代入y =kx ,得8=k10,解得k =80,∴y 关于x 的函数表达式为y =80x .当y =1.6时,由1.6=80x,得x =50,∴从消毒开始,50 min 后教室内的空气才能达到安全要求.故答案为50. 15.解:(1)∵反比例函数y =kx 的图象经过点A (-3,-2),∴k =-3×(-2)=6,∴反比例函数的表达式为y =6x.(2)∵k =6>0,∴图象在第一、三象限,且在每一象限内,y 随x 的增大而减小.又∵0<1<3, ∴B (1,m ),C (3,n )两个点都在第一象限, ∴m >n .16.解:(1)∵在反比例函数y =m -5x 图象的每个分支上,y 随x 的增大而增大,∴m -5<0,解得m <5.(2)将y =3代入y =-x +1,得x =-2,∴反比例函数y =m -5x 的图象与一次函数y =-x +1图象的一个交点的坐标为(-2,3).将(-2,3)代入y =m -5x ,得3=m -5-2,解得m =-1.17.解:(1)∵BC ⊥x 轴,且点C 的坐标为(1,0),在y =2x +3中,当x =1时,y =5,∴点B 的坐标为(1,5).又∵点B (1,5)在反比例函数y =kx 的图象上,∴k =1×5=5,∴反比例函数的表达式为y =5x.(2)存在.将点D (a ,1)的坐标代入y =5x,得a =5,∴点D 的坐标为(5,1).设点D (5,1)关于x 轴的对称点为D ′,则点D ′的坐标为(5,-1). 设过点B (1,5),点D ′(5,-1)的直线的函数表达式为y =mx +b ,则⎩⎪⎨⎪⎧m +b =5,5m +b =-1,解得⎩⎨⎧m =-32,b =132,∴直线BD ′的函数表达式为y =-32x +132.根据题意,知直线BD ′与x 轴的交点即为所求点P . 当y =0时,-32x +132=0,解得x =133,故点P 的坐标为(133,0).18.解:(1)设加热过程中一次函数的表达式为y =kx +b (k ≠0). ∵该函数的图象经过点(0,15),(5,60),∴⎩⎪⎨⎪⎧b =15,5k +b =60,解得⎩⎪⎨⎪⎧k =9,b =15, ∴一次函数的表达式为y =9x +15(0≤x ≤5). 设停止加热后的反比例函数的表达式为y =ax (a ≠0).∵该函数的图象经过点(5,60),∴a5=60,解得a =300,∴反比例函数的表达式为y =300x(x >5). (2)由y =9x +15=30,得x =53;由y =300x =30,得x =10.而10-53=253.∴对该材料进行特殊处理可用的时间为253分钟.。
2017-2018学年八年级数学下册《第6章反比例函数》测试卷一、填空题1.已知反比例函数的解析式为,则m的取值范围是.2.在反比例函数y=﹣中,自变量x的取值范围是.3.如果y与y1成正比例,y1与x成反比例,且y关于x的函数图象经过点(,﹣1),那么y关于x的函数解析式是.二、选择题4.如果x=3,y=4适合解析式,那么下列也适合的一组数据是()A.x=2,y=6 B.x=﹣2,y=6 C.x=4,y=﹣3 D.x=3,y=﹣45.用电器的输出功率P与通过的电流I、用电器的电阻R之间的关系是P=I2R,下面说法正确的是()A.P为定值,I与R成反比例B.P为定值,I2与R成反比例C.P为定值,I与R成正比例D.P为定值,I2与R成正比例6.对于反比例函数,当自变量x的值从3增加到6时,函数值减少了1,则函数的解析式为()A.B.C.D.三、解答题7.已知y是关于x的反比例函数,当x=1时,y=3;当x=m时,y=﹣2.(1)求该反比例函数的解析式;(2)若一次函数y=3x+b过点(m,﹣2),求一次函数的解析式.8.已知点A(2,﹣3),P(3,),Q(﹣5,b)都在反比例函数的图象上.(1)求此反比例函数的解析式;(2)求的值.9.已知y=y1+y2,y1与x成正比例,y2与x﹣2成反比例,且当x=1时,y=﹣1;当x=3时,y=5.求y与x的函数关系式.10.学校课外生物小组的同学们准备自己动手,用旧围栏建一个面积固定的矩形饲养场,小强提出矩形两条邻边的长分别为6m和8m,小伟认为这样太浪费围栏,可能有更节省材料的方案.设矩形的一边长为x(m),与它相邻的一边长为y(m).(1)求y关于x的函数表达式,并指出比例系数的实际意义;(2)你能帮小伟找到一种比小强更节省材料的方案吗(要求两邻边不相等)?(3)如果矩形两邻边相等,那么需要多长的旧围栏?(4)如果矩形的一条边长x变大,那么另一条边的长会有什么变化?11.一家名牌上衣专卖店4月份的经营目标是盈利6 000元.(1)写出专卖店4月份每件上衣的利润y(元)关于所需售出的上衣件数x(件)的函数解析式;(2)如果每件上衣的利润是50元,要完成经营目标,该商店4月份至少要卖出多少件上衣?(3)若经理只要求达到5 000元利润,每售出一件上衣,售货员要提成2元,在每件上衣50元利润不变的前提下,营业员至少需要卖出多少件上衣才能完成任务?12.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y (千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?第1天第2天第3天第4天第5天第6天第7天第8天售价x(元/千克)400250240200150125120销售量y(千克)30404860809610013.将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3…如此继续下去,求y2014的值.《第6章反比例函数》参考答案与试题解析一、填空题1.已知反比例函数的解析式为,则m的取值范围是m≠.【考点】反比例函数的定义.【分析】根据y=,(k是常数,k≠0)是反比例函数,可得答案.【解答】解:比例函数的解析式为,2m﹣1≠0m≠,故答案为:m.【点评】本题考查了反比例函数,y=,(k是常数,k≠0)是反比例函数.2.在反比例函数y=﹣中,自变量x的取值范围是x≠0.【考点】反比例函数的定义.【分析】根据反比例函数的意义,可得分母不能为0,可得答案.【解答】解:反比例函数y=﹣中,自变量x的取值范围是x≠0,故答案为:x≠0.【点评】本题考查了分式的定义,分母不能为0.3.如果y与y1成正比例,y1与x成反比例,且y关于x的函数图象经过点(,﹣1),那么y关于x的函数解析式是y=﹣.【考点】待定系数法求反比例函数解析式.【分析】根据题意设y=ay1(a≠0),y1=(b≠0).由此易得y=,然后把点(,﹣1)代入函数关系式,可以求得ab的值.【解答】解:根据题意设y=ay1(a≠0),y1=(b≠0).则y=.∵y关于x的函数图象经过点(,﹣1),∴﹣1=,解得,ab=﹣,∴y关于x的函数解析式是:y=﹣.故答案是:y=﹣.【点评】本题考查了待定系数法求反比例函数解析式.注意y与x的函数关系式中的ab作为整体来解答的.二、选择题4.如果x=3,y=4适合解析式,那么下列也适合的一组数据是()A.x=2,y=6 B.x=﹣2,y=6 C.x=4,y=﹣3 D.x=3,y=﹣4【考点】反比例函数图象上点的坐标特征.【分析】先把x=3,y=4代入反比例函数y=求出m2﹣1的值,再对各选项进行逐一判断即可.【解答】解:∵x=3,y=4适合解析式,∴m2﹣1=3×4=12,A、∵2×6=12,∴此点在反比例函数y=的图象上,故本选项正确;B、∵(﹣2)×6=﹣12≠12,∴此点不在反比例函数y=的图象上,故本选项错误;C、∵(﹣3)×4=﹣12≠12,∴此点不在反比例函数y=的图象上,故本选项错误;D、∵3×(﹣4)=﹣12≠12,∴此点不在反比例函数y=的图象上,故本选项错误.故选A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.用电器的输出功率P与通过的电流I、用电器的电阻R之间的关系是P=I2R,下面说法正确的是()A.P为定值,I与R成反比例B.P为定值,I2与R成反比例C.P为定值,I与R成正比例D.P为定值,I2与R成正比例【考点】反比例函数的定义.【专题】跨学科.【分析】在本题中,P=I2R,即I2和R的乘积为定值,所以根据反比例的概念应该是I2和R成反比例,而并非I与R成反比例.【解答】解:根据P=I2R可以得到:当P为定值时,I2与R的乘积是定值,所以I2与R 成反比例.故选:B.【点评】本题渗透初中物理中“电流”有关的知识,当P为定值时,I2与R成反比例.把I2看作一个整体时,I2与R成反比例,而不是I与R成反比例,这是易忽略的地方,应引起注意.6.对于反比例函数,当自变量x的值从3增加到6时,函数值减少了1,则函数的解析式为()A.B.C.D.【考点】待定系数法求反比例函数解析式.【分析】分别计算出自变量为3和6的函数值,利用它们的差为1得到﹣=1,然后解此方程求出k即可得到反比例函数解析式.【解答】解:当x=3时,y==;当x=6时,y==,而函数值减少了1,∴﹣=1,解得k=6,所以反比例函数解析式为y=.故选A.【点评】本题考查了用待定系数法求反比例函数解析式:(1)设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.三、解答题7.已知y是关于x的反比例函数,当x=1时,y=3;当x=m时,y=﹣2.(1)求该反比例函数的解析式;(2)若一次函数y=3x+b过点(m,﹣2),求一次函数的解析式.【考点】待定系数法求反比例函数解析式;待定系数法求一次函数解析式.【专题】计算题.【分析】(1)设反比例解析式为y=,将x=1,y=3代入求出k的值,即可确定出反比例解析式;(2)将x=m,y=﹣2代入反比例解析式求出m的值,确定出(m,﹣2),代入一次函数求出b的值,即可确定出一次函数解析式.【解答】解:(1)设反比例解析式为y=,将x=1,y=3代入得:k=3,则反比例解析式为y=;(2)将x=m,y=﹣2代入反比例解析式得:﹣2m=3,即m=﹣,将(﹣,﹣2)代入一次函数解析式得:﹣2=﹣+b,即b=,则一次函数解析式为y=3x+.【点评】此题考查了待定系数法求反比例与一次函数解析式,熟练掌握待定系数法是解本题的关键.8.已知点A(2,﹣3),P(3,),Q(﹣5,b)都在反比例函数的图象上.(1)求此反比例函数的解析式;(2)求的值.【考点】待定系数法求反比例函数解析式.【专题】计算题.【分析】(1)设反比例函数解析式y=,然后把A点坐标代入求出k即可;(2)分别把P点和Q点坐标代入(1)中的解析式,求出a和b的值,然后代入中计算即可.【解答】解:(1)设反比例函数解析式y=,把A(2,﹣3)代入得k=2×(﹣3)=﹣6,所以反比例函数解析式为y=﹣;(2)把P(3,)代入y=﹣得3×=﹣6,解得a=﹣4,把Q(﹣5,b)代入y=﹣得﹣5b=﹣6,解得b=,所以=﹣4+×=﹣3.【点评】本题考查了用待定系数法求反比例函数解析式:(1)设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.9.已知y=y1+y2,y1与x成正比例,y2与x﹣2成反比例,且当x=1时,y=﹣1;当x=3时,y=5.求y与x的函数关系式.【考点】待定系数法求反比例函数解析式;二元一次方程的解.【专题】待定系数法.【分析】根据正比例和反比例函数的定义设表达式,再根据给出自变量和函数的对应值求出待定的系数则可.【解答】解:设y1=k1x(k1≠0),y2=∴y=k1x+∵当x=1时,y=﹣1;当x=3时,y=5,∴.所以.所以y=x+.【点评】本题考查了正比例和反比例函数的定义,并且考查了二元一次方程组的解法,难度稍大.10.学校课外生物小组的同学们准备自己动手,用旧围栏建一个面积固定的矩形饲养场,小强提出矩形两条邻边的长分别为6m和8m,小伟认为这样太浪费围栏,可能有更节省材料的方案.设矩形的一边长为x(m),与它相邻的一边长为y(m).(1)求y关于x的函数表达式,并指出比例系数的实际意义;(2)你能帮小伟找到一种比小强更节省材料的方案吗(要求两邻边不相等)?(3)如果矩形两邻边相等,那么需要多长的旧围栏?(4)如果矩形的一条边长x变大,那么另一条边的长会有什么变化?【考点】反比例函数的应用.【分析】(1)利用矩形面积固定进而得出y与x的关系式;(2)利用边长越接近相等,面积不变时,周长越小,进而得出答案;(3)利用一元二次方程的解法得出答案;(4)利用反比例函数增减性得出答案.【解答】解:(1)∵矩形两条邻边的长分别为6m和8m,∴矩形的面积为:6×8=48(cm2),∵设矩形的一边长为x(m),与它相邻的一边长为y(m),∴y=,比例系数即为矩形的面积;(2)当x=7时,y=,∵2(7+)=27<2(6+8),∴这是一种比小强更节省材料的方案;(3)当矩形两邻边相等,则x=,解得:x=±4(负数不合题意舍去),∴需要旧围栏的长为:4×4=16(m);(4)∵y=,48>0,∴矩形的一条边长x变大,那么另一条边的长会变小.【点评】此题主要考查了反比例函数的应用以及反比例函数增减性和一元二次方程的解法等知识,得出y与x的函数关系式是解题关键.11.一家名牌上衣专卖店4月份的经营目标是盈利6 000元.(1)写出专卖店4月份每件上衣的利润y(元)关于所需售出的上衣件数x(件)的函数解析式;(2)如果每件上衣的利润是50元,要完成经营目标,该商店4月份至少要卖出多少件上衣?(3)若经理只要求达到5 000元利润,每售出一件上衣,售货员要提成2元,在每件上衣50元利润不变的前提下,营业员至少需要卖出多少件上衣才能完成任务?【考点】反比例函数的应用.【专题】应用题.【分析】(1)根据盈利=单件利润×售量,可得y与x的函数关系式;(2)将y=50,代入可得x的值;(3)卖出一件上衣的净利润为48元,再由总利润为5000元,可求出需要卖出的数量.【解答】解:(1)由题意得,xy=6000,∴y=.(2)当y=50时,x=120.(3)设卖a件,能完成任务,则(50﹣2)a=5000,解得:a≈104.2.答:营业员至少需要卖出105件上衣才能完成任务.【点评】本题考查了反比例函数的应用,解答本题的关键是根据盈利=单件利润×售量,得出函数关系式.12.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y (千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?第1天第2天第3天第4天第5天第6天第7天第8天售价x(元/千克)400250240200150125120销售量y(千克)304048608096100【考点】反比例函数的应用.【专题】阅读型;图表型.【分析】首先根据题意,可以用反比例函数刻画这种海产品的每天销售量y与销售价格x之间的关系,且根据图表可得数据,将数据代入用待定系数法可得反比例函数的关系式;进一步求解可得答案.【解答】解:(1)函数解析式为;填表如下:第1天第2天第3天第4天第5天第6天第7天第8天售价x(元/千克)400300250240200150125120销售量y(千克)30404850608096100(2)2104﹣(30+40+48+50+60+80+96+100)=1600,即8天试销后,余下的海产品还有1600千克,当x=150时,=80.1600÷80=20,所以余下的这些海产品预计再用20天可以全部售出.【点评】本题考查反比例函数的定义、性质与运用,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式,进一步根据题意求解答案.13.将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3…如此继续下去,求y2014的值.【考点】反比例函数的定义.【专题】规律型.【分析】根据将x=代入反比例函数y=﹣中,可得y1,再根据又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,可得规律,根据规律,可得答案.【解答】解:y1=﹣,y2=2,y3=﹣,y4=﹣…每三个出现相同的一次,2014÷3=671 (1).【点评】本题考查了反比例函数的定义,计算得出规律是解题关键.。
反比例函数参考答案与试题解析一.选择题(共23小题)1.(2018•凉山州)若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b >0两方面分类讨论得出答案.【解答】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.2.(2018•无锡)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n【分析】根据反比例函数的性质,可得答案.【解答】解:y=的k=﹣2<0,图象位于二四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故D正确;故选:D.3.(2018•淮安)若点A(﹣2,3)在反比例函数y=的图象上,则k的值是()A.﹣6 B.﹣2 C.2 D.6【分析】根据待定系数法,可得答案.【解答】解:将A(﹣2,3)代入反比例函数y=,得k=﹣2×3=﹣6,故选:A.4.(2018•扬州)已知点A(x1,3),B(x2,6)都在反比例函数y=﹣的图象上,则下列关系式一定正确的是()A.x1<x2<0 B.x1<0<x2C.x2<x1<0 D.x2<0<x1【分析】根据反比例函数的性质,可得答案.【解答】解:由题意,得k=﹣3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,∵3<6,∴x1<x2<0,故选:A.5.(2018•自贡)从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(m,n)在函数y=图象的概率是()A.B.C.D.【分析】根据反比例函数图象上点的坐标特征可得出mn=6,列表找出所有mn的值,根据表格中mn=6所占比例即可得出结论.【解答】解:∵点(m,n)在函数y=的图象上,∴mn=6.列表如下:m﹣1﹣1﹣1222333﹣6﹣6﹣6n23﹣6﹣13﹣6﹣12﹣6﹣123mn﹣2﹣36﹣26﹣12﹣36﹣186﹣12﹣18mn的值为6的概率是=.故选:B.6.(2018•株洲)已知二次函数的图象如图,则下列哪个选项表示的点有可能在反比例函数y=的图象上()A.(﹣1,2)B.(1,﹣2)C.(2,3) D.(2,﹣3)【分析】根据抛物线的开口方向可得出a>0,再利用反比例函数图象上点的坐标特征,即可找出点(2,3)可能在反比例函数y=的图象上,此题得解.【解答】解:∵抛物线开口向上,∴a>0,∴点(2,3)可能在反比例函数y=的图象上.故选:C.7.(2018•嘉兴)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y 轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A.1 B.2 C.3 D.4【分析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据△AOB的面积为1,即可求得k的值.【解答】解:设点A的坐标为(a,0),∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,∴点C(﹣a,),∴点B的坐标为(0,),∴=1,解得,k=4,故选:D.8.(2018•岳阳)在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1 B.m C.m2D.【分析】三个点的纵坐标相同,由图象可知y=x2图象上点横坐标互为相反数,则x1+x2+x3=x3,再由反比例函数性质可求x3.【解答】解:设点A、B在二次函数y=x2图象上,点C在反比例函数y=(x>0)的图象上.因为AB两点纵坐标相同,则A、B关于y轴对称,则x1+x2=0,因为点C(x3,m)在反比例函数图象上,则x3=∴ω=x1+x2+x3=x3=故选:D.9.(2018•聊城)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y (mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内【分析】利用图中信息一一判断即可;【解答】解:A、正确.不符合题意.B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,x=2.5或24,24﹣2.5=21.5<35,故本选项错误,符合题意;D、正确.不符合题意,故选:C.10.(2018•威海)若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】直接利用反比例函数的性质分析得出答案.【解答】解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.11.(2018•衡阳)对于反比例函数y=﹣,下列说法不正确的是()A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【解答】解:A、k=﹣2<0,∴它的图象在第二、四象限,故本选项正确;B、k=﹣2<0,当x>0时,y随x的增大而增大,故本选项正确;C、∵﹣=﹣2,∴点(1,﹣2)在它的图象上,故本选项正确;D、点A(x1,y1)、B(x2、y2)都在反比例函数y=﹣的图象上,若x1<x2<0,则y1<y2,故本选项错误.故选:D.12.(2018•重庆)如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数y=(k >0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为,则k的值为()A.B.C.4 D.5【分析】根据题意,利用面积法求出AE,设出点B坐标,表示点A的坐标.应用反比例函数上点的横纵坐标乘积为k构造方程求k.【解答】解:设AC与BD、x轴分别交于点E、F由已知,A、B横坐标分别为1,4∴BE=3∵四边形ABCD为菱形,AC、BD为对角线=4×AE•BE=∴S菱形ABCD∴AE=设点B的坐标为(4,y),则A点坐标为(1,y+)∵点A、B同在y=图象上∴4y=1•(y+)∴y=∴B点坐标为(4,)∴k=5故选:D.13.(2018•永州)在同一平面直角坐标系中,反比例函数y=(b≠0)与二次函数y=ax2+bx (a≠0)的图象大致是()A.B.C.D.【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【解答】解:A、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的右侧,则a、b 异号,即b<0.所以反比例函数y=的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>0,对称轴位于y轴的左侧,则a、b同号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<0,对称轴位于y轴的右侧,则a、b异号,即b>0.所以反比例函数y=的图象位于第一、三象限,故本选项正确;故选:D.14.(2018•黄石)已知一次函数y1=x﹣3和反比例函数y2=的图象在平面直角坐标系中交于A、B两点,当y1>y2时,x的取值范围是()A.x<﹣1或x>4 B.﹣1<x<0或x>4C.﹣1<x<0或0<x<4 D.x<﹣1或0<x<4【分析】先求出两个函数的交点坐标,再根据函数的图象和性质得出即可.【解答】解:解方程组得:,,即A(4,1),B(﹣1,﹣4),所以当y1>y2时,x的取值范围是﹣1<x<0或x>4,故选:B.15.(2018•连云港)如图,菱形ABCD的两个顶点B、D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是()A.﹣5 B.﹣4 C.﹣3 D.﹣2【分析】根据题意可以求得点B的坐标,从而可以求得k的值.【解答】解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(1,1),∴OA=,∴BO=,∵直线AC的解析式为y=x,∴直线BD的解析式为y=﹣x,∵OB=,∴点B的坐标为(,),∵点B在反比例函数y=的图象上,∴,解得,k=﹣3,故选:C.16.(2018•菏泽)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【分析】直接利用二次函数图象经过的象限得出a,b,c的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【解答】解:∵二次函数y=ax2+bx+c的图象开口向上,∴a>0,∵该抛物线对称轴位于y轴的右侧,∴a、b异号,即b<0.∵当x=1时,y<0,∴a+b+c<0.∴一次函数y=bx+a的图象经过第一、二、四象限,反比例函数y=的图象分布在第二、四象限,故选:B.17.(2018•临沂)如图,正比例函y1=k1x与反比例函数y2=的图象相交于A、B两点,其中点A的横坐标为1.当y1<y2时,x的取值范围是()A.x<﹣1或x>1 B.﹣1<x<0或x>1C.﹣1<x<0或0<x<1 D.x<﹣1或0<x<l【分析】直接利用正比例函数的性质得出B点横坐标,再利用函数图象得出x的取值范围.【解答】解:∵正比例函y1=k1x与反比例函数y2=的图象相交于A、B两点,其中点A的横坐标为1.∴B点的横坐标为:﹣1,故当y1<y2时,x的取值范围是:x<﹣1或0<x<l.故选:D.18.(2018•重庆)如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B 在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A.B.3 C.D.5【分析】由已知,可得菱形边长为5,设出点D坐标,即可用勾股定理构造方程,进而求出k 值.【解答】解:过点D做DF⊥BC于F由已知,BC=5∵四边形ABCD是菱形∴DC=5∵BE=3DE∴设DE=x,则BE=3x∴DF=3x,BF=x,FC=5﹣x在Rt△DFC中,DF2+FC2=DC2∴(3x)2+(5﹣x)2=52∴解得x=1∴DE=3,FD=3设OB=a则点D坐标为(1,a+3),点C坐标为(5,a)∵点D、C在双曲线上∴1×(a+3)=5a∴a=∴点C坐标为(5,)∴k=故选:C.19.(2018•宁波)如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8 B.﹣8 C.4 D.﹣4【分析】设A(a,h),B(b,h),根据反比例函数图象上点的坐标特征得出ah=k1,bh=k2.根据三角形的面积公式得到S=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,求出k1△ABC﹣k2=8.【解答】解:∵AB∥x轴,∴A,B两点纵坐标相同.设A(a,h),B(b,h),则ah=k1,bh=k2.∵S=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,△ABC∴k1﹣k2=8.故选:A.20.(2018•天津)若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x1【分析】根据反比例函数图象上点的坐标特征,将A、B、C三点的坐标代入反比例函数的解析式y=,分别求得x1,x2,x3的值,然后再来比较它们的大小.【解答】解:∵点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,∴x1=﹣2,x2=﹣6,x3=6;又∵﹣6<﹣2<6,∴x2<x1<x3;故选:B.21.(2018•广州)一次函数y=ax+b和反比例函数y=在同一直角坐标系中的大致图象是()A.B.C.D.【分析】先由一次函数的图象确定a、b的正负,再根据a﹣b判断双曲线所在的象限.能统一的是正确的,矛盾的是错误的.【解答】解:当y=ax+b经过第一、二、三象限时,a>0、b>0,由直线和x轴的交点知:﹣>﹣1,即b<a,∴a﹣b>0,所以双曲线在第一、三象限.故选项B不成立,选项A正确.当y=ax+b经过第二、一、四象限时,a<0,b>0,此时a﹣b<0,双曲线位于第二、四象限,故选项C、D均不成立;故选:A.22.(2018•德州)给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③B.③④C.②④D.②③【分析】分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.【解答】解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项错误;②y=,当x>1时,函数值y随自变量x增大而减小,故此选项错误;③y=2x2,当x>1时,函数值y随自变量x增大而减小,故此选项正确;④y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项正确;故选:B.23.(2018•泰安)二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b 在同一坐标系内的大致图象是()A.B.C.D.【分析】首先利用二次函数图象得出a,b的值,进而结合反比例函数以及一次函数的性质得出答案.【解答】解:由二次函数开口向上可得:a>0,对称轴在y轴左侧,故a,b同号,则b>0,故反比例函数y=图象分布在第一、三象限,一次函数y=ax+b经过第一、二、三象限.故选:C.。
中考专题-----反比例函数测试题。
一基础过关。
1.如图,点A 为反比例函数y =-4x图象上的一点,过A 作AB ⊥x 轴于点B ,连接OA ,则△ABO 的面积为( )A .-4B .4C .-2D .22.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是( )A .y =3xB .y =3xC .y =-1xD .y =x 23.(“科学用眼,保护视力”是青少年珍爱生命的具体表现.科学证实:近视眼镜的度数y(度)与镜片焦距x(m)成反比例.如果500度近视眼镜片的焦距为0.2 m ,则表示y 与x 的函数关系的图象大致是( )4.已知A(x 1,y 1),B(x 2,y 2)是反比例函数y =kx (k ≠0)图象上的两个点,当x 1<x 2<0时,y 1>y 2,那么一次函数y=kx -k 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.在反比例函数y =1-3mx 图象上有两点A(x 1,y 1)、B(x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( )A .m >13B .m <13C .m ≥13D .m ≤136.已知点P(3,-2)在反比例函数y =kx(k ≠0)的图象上,则k =( ).7.我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数y =-3x 的图象上有一些整点,请写出其中一个整点的坐标( ).8.如图所示,反比例函数y =kx (k ≠0,x >0)的图象经过矩形OABC 的对角线AC 的中点D ,若矩形OAB C 的面积为8,则k 的值为( ).9.已知反比例函数的图象经过点P(2,-3).(1)求该函数的解析式;(2)若将点P沿x轴负方向平移3个单位,再沿y轴方向平移n(n>0)个单位得到点P′,使得点P′恰好在该函数的图象上,求n的值和点P沿y轴平移的方向.10.某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:(1)观察表中数据,x,y(2)若商场计划每天的销售利润为3 000元,则其单价应定为多少元?11.如图,直线AB与坐标轴分别交于A(-2,0),B(0,1)两点,与反比例函数的图象在第一象限交于点C(4,n),求一次函数和反比例函数的解析式.12.如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=mx(m为常数,且m≠0)的图象交于点A(-2,1)、B(1,n).(1)求反比例函数和一次函数的解析式;(2)连接OA、OB,求△AOB的面积;(3)直接写出当y1<y2<0时,自变量x的取值范围.二经典题型13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数y=kx(k≠0,x>0)的图象过点B,E.若AB=4,则k的值为().14.如图,点A在函数y=4x(x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为().15.如图,在函数y =8x (x>0)的图象上有点P 1,P 2,P 3,…,P n ,P n +1,点P 1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P 1,P 2,P 3,…,P n ,P n +1分别作x 轴,y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S 1,S 2,S 3,…,S n ,则S 1=4,S n =( ).(用含n 的代数式表示)16.如图,若双曲线y =kx 与边长为5的等边△AOB 的边OA ,AB 分别相交于C ,D 两点,且OC =3BD ,则实数k的值为( )三易错易混题17.如图,直线y =mx 与双曲线y =k x 相交于A ,B 两点,A 点的坐标为(1,2),根据图象直接写出当mx >kx 时,x的取值范围是( )参考答案1.如图,点A 为反比例函数y =-4x图象上的一点,过A 作AB ⊥x 轴于点B ,连接OA ,则△ABO 的面积为( D )A .-4B .4C .-2D .22.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是( B )A .y =3xB .y =3xC .y =-1xD .y =x 23.(“科学用眼,保护视力”是青少年珍爱生命的具体表现.科学证实:近视眼镜的度数y(度)与镜片焦距x(m)成反比例.如果500度近视眼镜片的焦距为0.2 m ,则表示y 与x 的函数关系的图象大致是( B )4.已知A(x 1,y 1),B(x 2,y 2)是反比例函数y =kx (k ≠0)图象上的两个点,当x 1<x 2<0时,y 1>y 2,那么一次函数y=kx -k 的图象不经过( B )A .第一象限B .第二象限C .第三象限D .第四象限5.在反比例函数y =1-3mx 图象上有两点A(x 1,y 1)、B(x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( B )A .m >13B .m <13C .m ≥13D .m ≤136.已知点P(3,-2)在反比例函数y =kx(k ≠0)的图象上,则k =-6.7.我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数y =-3x 的图象上有一些整点,请写出其中一个整点的坐标答案不唯一,如:(-3,1).8.如图所示,反比例函数y =kx (k ≠0,x >0)的图象经过矩形OABC 的对角线AC 的中点D ,若矩形OAB C 的面积为8,则k 的值为2.9.已知反比例函数的图象经过点P(2,-3).(1)求该函数的解析式;(2)若将点P 沿x 轴负方向平移3个单位,再沿y 轴方向平移n(n>0)个单位得到点P′,使得点P′恰好在该函数的图象解:(1)设反比例函数的解析式为y =kx .将点P 的坐标代入解析式,得k =2×(-3)=-6.∴该函数的解析式为y =-6x .(2)由题意,点P′的横坐标为-1. ∵点P′恰好在该函数的图象上, ∴y P ′=-6-1=6. 故n =6-(-3)=9,且点P 沿y 轴平移的方向是向上.10.某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:(1)观察表中数据,x ,y (2)若商场计划每天的销售利润为3 000元,则其单价应定为多少元? 解:(1)由表中数据得xy =6 000,∴y =6 000x. ∴y 是x 的反比例函数,且函数关系式为y =6 000x. (2)由题意,得(x -120)y =3 000, 将y =6 000x 代入,得(x -120)·6 000x=3 000. 解得x =240.经检验,x =240是原方程的根.答:若商场计划每天的销售利润为3 000元,则其单价应定为240元.11.如图,直线AB 与坐标轴分别交于A(-2,0),B(0,1)两点,与反比例函数的图象在第一象限交于点C(4,n),求一次函数和反比例函数的解析式.解:设一次函数的解析式为y =kx +b.把A(-2,0),B(0,1)代入一次函数解析式,得⎩⎪⎨⎪⎧-2k +b =0,b =1.解得⎩⎪⎨⎪⎧k =12,b =1.∴一次函数的解析式为y =12x +1.把C(4,n)代入一次函数解析式,得n =3, ∴C(4,3).m∴反比例函数的解析式为y =12x. 12.如图,在平面直角坐标系xOy 中,一次函数y 1=ax +b(a ,b 为常数,且a ≠0)与反比例函数y 2=mx (m 为常数,且m ≠0)的图象交于点A(-2,1)、B(1,n). (1)求反比例函数和一次函数的解析式; (2)连接OA 、OB ,求△AOB 的面积;(3)直接写出当y 1<y 2<0时,自变量x 的取值范围.解:(1)由题意,点A(-2,1)在反比例函数图象上, ∴1=m-2,m =-2.∴反比例函数解析式为y 2=-2x .又∵点B(1,n)也在反比例函数图象上, ∴n =-21=-2.∴B(1,-2).∵点A ,B 在一次函数y 1=ax +b 的图象上,∴⎩⎪⎨⎪⎧1=-2a +b ,-2=a +b.解得⎩⎪⎨⎪⎧a =-1,b =-1. ∴一次函数解析式为y 1=-x -1.(2)设线段AB 交y 轴于C ,∴OC =1.分别过点A ,B 作AE ,BF 垂直于y 轴. ∴S △AOB =S △AOC +S △BOC =12OC·AE +12OC·BF =12×1×2+12×1×1 =32. (3)当y 1<y 2<0时,x >1.13.如图,在平面直角坐标系xOy 中,四边形ODEF 和四边形ABCD 都是正方形,点F 在x 轴的正半轴上,点C在边DE 上,反比例函数y =kx(k ≠0,x >0)的图象过点B ,E.若AB =4,则k 的值为14.如图,点A 在函数y =4x(x >0)的图象上,且OA =4,过点A 作AB ⊥x 轴于点B ,则△ABO 的周长为15.如图,在函数y =8x (x>0)的图象上有点P 1,P 2,P 3,…,P n ,P n +1,点P 1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P 1,P 2,P 3,…,P n ,P n +1分别作x 轴,y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S 1,S 2,S 3,…,S n ,则S 1=4,S n =8n (n +1).(用含n 的代数式表示)16.如图,若双曲线y =kx 与边长为5的等边△AOB 的边OA ,AB 分别相交于C ,D 两点,且OC =3BD ,则实数k的值为 4解:17.如图,直线y =mx 与双曲线y =k x 相交于A ,B 两点,A 点的坐标为(1,2),根据图象直接写出当mx >kx 时,x的取值范围是-1<x <0或x >1.解:。
2018级中考数学专题复习—反比例函数与一次函数的综合1.在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.2.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.3.如图,直线y=x+2与双曲线相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.4.如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?5.如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.6.如图,已知反比例函数y1=的图象与一次函数y2=kx+b的图象交于两点A(﹣2,1)、B(a,﹣2).(1)求反比例函数和一次函数的解析式;(2)若一次函数y2=kx+b的图象交y轴于点C,求△AOC的面积(O为坐标原点);(3)求使y1>y2时x的取值范围.7.已知:如图,反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.8.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及三角形AOB的面积.9.如图,已知点A(﹣4,2)、B( n,﹣4)是一次函数y=kx+b的图象与反比例函数图象的两个交点:(1)求点B的坐标和一次函数的解析式;(2)求△AOB的面积;(3)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.10.如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A、B两点,与x轴交于点C,与y轴交于点D.已知OA=,tan∠AOC=,点B的坐标为(,m).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.11.如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.12.已知:如图所示,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x交于点C,与y轴交于点D,OC=1,BC=5,.(1)求该反比例函数和一次函数的解析式;(2)连接BO,AO,求△AOB的面积.(3)观察图象,直接写出不等式的解集.13.如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣2.(1)求一次函数的解析式;(3)观察图象,直接写出y1>y2时x的取值范围.14.如图,一次函数y=kx+b与反比例函数的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式.(2)根据所给条件,请直接写出不等式kx+b>的解集.(3)连接OA、OB,求S△ABO.15.如图,已知一次函数y=ax+b的图象与反比例函数y=的图象相交于点A(﹣2,m)和点B(4,﹣2),与x轴交于点C(1)求一次函数与反比例函数的解析式;16.如图,一次函数y=mx+n(m≠0)与反比例函数y=(k≠0)的图象相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积.17.如图,一次函数y1=ax+b(a≠0)的图象与反比例函数y2=(k≠0)的图象交于A、B两点,与x轴、y轴分别交于C、D两点.已知:OA=,tanAOC=,点B的坐标为(,m)(1)求该反比例函数的解析式和点D的坐标;(2)点M在射线CA上,且MA=2AC,求△MOB的面积.18.已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP=:(1)求反比例函数和直线的函数表达式;(2)求△OPQ的面积.19.如图,已知一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与x轴、y轴交于点C、D两点,点B的横坐标为1,OC=OD,点P在反比例函数图象上且到x轴、y轴距离相等.(1)求一次函数的解析式;(2)求△APB的面积.20.如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于B、A两点,与反比例函数的图象交于点C,连接CO,过C作CD⊥x轴于D,已知tan∠ABO=,OB=4,OD=2.(1)求直线AB和反比例函数的解析式;(2)在x轴上有一点E,使△CDE与△COB的面积相等,求点E的坐标.21.如图,在平面直角坐标系中,点A是反比例函数y=(k≠0)图象上一点,AB⊥x轴于B点,一次函数y=ax+b(a≠0)的图象交y轴于D(0,﹣2),交x轴于C点,并与反比例函数的图象交于A,E两点,连接OA,若△AOD的面积为4,且点C为OB中点.(1)分别求双曲线及直线AE的解析式;(2)若点Q在双曲线上,且S△QAB=4S△BAC,求点Q的坐标.22.如图,已知一次函数y=k1x+b的图象分别x轴,y轴交于A、B两点,且与反比例函数y=交于C、E 两点,点C在第二象限,过点C作CD⊥x轴于点D,OD=1,OE=,cos∠AOE=(1)求反比例函数与一次函数的解析式;(2)求△OCE的面积.23.如图,一次函数y=x+2的图象与x轴交于点B,与反比例函数y=(k≠0)的图象的一个交点为A(2,m).(1)求反比例函数的表达式;(2)过点A作AC⊥x轴,垂足为点C,设点D在反比例函数图象上,且△DBC的面积等于6,请求出点D的坐标;(3)请直接写出不等式x+2<成立的x取值范围.24.如图,已知反比例函数y1=的图象与一次函数y2=k2x+b的图象交于A、B两点,A(2,n),B(﹣1,﹣4).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式y1>y2的解集.25.如图,已知反比例函数y=(k<0)的图象经过点A(﹣2,m),过点A作AB⊥x轴于点B,且△AOB的面积为2.(1)求k和m的值;(2)若一次函数y=ax+1的图象经过点A,并且与x轴的交点为点C,试求出△ABC的面积.26.如图,已知一次函数y=k1x+b的图象分别与x轴、y轴的正半轴交于A、B两点,且与反比例函数y=交于C、E两点,点C在第二象限,过点C作CD⊥x轴于点D,OA=OB=2,OD=1.(1)求反比例函数与一次函数的解析式;(2)求△OCE的面积.27.如图,已知直线y=mx+b(m≠0)与双曲线y=(k≠0)交于A(﹣3,﹣1)与B(n,6)两点,连接OA、OB.(1)求直线与双曲线的表达式;(2)求△AOB的面积.28.如图,直线y=﹣2和双曲线y=相交于A(b,1),点P在直线y=x﹣2上,且P点的纵坐标为﹣1,过P作PQ∥y轴交双曲线于点Q.(1)求Q点的坐标;(2)求△APQ的面积.29.如图,在一次函数y=ax+b的图象与反比例函数y=的图象相交于A(﹣4,﹣2),B(m,4),与y轴相交于点C.(1)求反比例函数与一次函数的表达式;(2)求△AOB的面积.30.已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数y=交于一象限内的P(,n),Q (4,m)两点,且tan∠BOP=.(1)求双曲线和直线AB的函数表达式;(2)求△OPQ的面积;(3)当kx+b>时,请根据图象直接写出x的取值范围.2018级中考数学专题复习-反比例函数与一次函数的交点参考答案与试题解析一.解答题(共30小题)1.(2016•重庆)在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.【分析】(1)根据正切函数,可得AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案;(2)根据待定系数法,可得函数解析式.【解答】解:(1)由OH=3,tan∠AOH=,得AH=4.即A(﹣4,3).由勾股定理,得AO==5,△AHO的周长=AO+AH+OH=3+4+5=12;(2)将A点坐标代入y=(k≠0),得k=﹣4×3=﹣12,反比例函数的解析式为y=;当y=﹣2时,﹣2=,解得x=6,即B(6,﹣2).将A、B点坐标代入y=ax+b,得,解得,一次函数的解析式为y=﹣x+1.【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法是解题关键.2.(2016•重庆)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.【分析】(1)过点A作AE⊥x轴于点E,设反比例函数解析式为y=.通过解直角三角形求出线段AE、OE的长度,即求出点A的坐标,再由点A的坐标利用待定系数法求出反比例函数解析式即可;(2)由点B在反比例函数图象上可求出点B的坐标,设直线AB的解析式为y=ax+b,由点A、B的坐标利用待定系数法求出直线AB的解析式,令该解析式中y=0即可求出点C的坐标,再利用三角形的面积公式即可得出结论.【解答】解:(1)过点A作AE⊥x轴于点E,如图所示.设反比例函数解析式为y=.∵AE⊥x轴,∴∠AEO=90°.在Rt△AEO中,AO=5,sin∠AOC=,∠AEO=90°,∴AE=AO•sin∠AOC=3,OE==4,∴点A的坐标为(﹣4,3).∵点A(﹣4,3)在反比例函数y=的图象上,∴3=,解得:k=﹣12.∴反比例函数解析式为y=﹣.(2)∵点B(m,﹣4)在反比例函数y=﹣的图象上,∴﹣4=﹣,解得:m=3,∴点B的坐标为(3,﹣4).设直线AB的解析式为y=ax+b,将点A(﹣4,3)、点B(3,﹣4)代入y=ax+b中得:,解得:,∴一次函数解析式为y=﹣x﹣1.令一次函数y=﹣x﹣1中y=0,则0=﹣x﹣1,解得:x=﹣1,即点C的坐标为(﹣1,0).S△AOB=OC•(y A﹣y B)=×1×[3﹣(﹣4)]=.【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及三角形的面积公式,解题的关键是:(1)求出点A的坐标;(2)求出直线AB的解析式.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.3.(2016•南充)如图,直线y=x+2与双曲线相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.【分析】(1)把A坐标代入直线解析式求出m的值,确定出A坐标,即可确定出双曲线解析式;(2)设P(x,0),表示出PC的长,高为A纵坐标,根据三角形ACP面积求出x的值,确定出P坐标即可.【解答】解:(1)把A(m,3)代入直线解析式得:3=m+2,即m=2,∴A(2,3),把A坐标代入y=,得k=6,则双曲线解析式为y=;(2)对于直线y=x+2,令y=0,得到x=﹣4,即C(﹣4,0),设P(x,0),可得PC=|x+4|,∵△ACP面积为3,∴|x+4|•3=3,即|x+4|=2,解得:x=﹣2或x=﹣6,则P坐标为(﹣2,0)或(﹣6,0).【点评】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:待定系数法确定函数解析式,坐标与图形性质,以及三角形面积求法,熟练掌握待定系数法是解本题的关键.4.(2014•资阳)如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?【分析】(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.【解答】解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法是求函数解析式的关键.5.(2010•成都)如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.【分析】(1)把A(1,﹣k+4)代入解析式y=,即可求出k的值;把求出的A点坐标代入一次函数y=x+b的解析式,即可求出b的值;从而求出这两个函数的表达式;(2)将两个函数的解析式组成方程组,其解即为另一点的坐标.当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围.【解答】解:(1)∵已知反比例函数经过点A(1,﹣k+4),∴,即﹣k+4=k,∴k=2,∴A(1,2),∵一次函数y=x+b的图象经过点A(1,2),∴2=1+b,∴b=1,∴反比例函数的表达式为.一次函数的表达式为y=x+1.(2)由,消去y,得x2+x﹣2=0.即(x+2)(x﹣1)=0,∴x=﹣2或x=1.∴y=﹣1或y=2.∴或.∵点B在第三象限,∴点B的坐标为(﹣2,﹣1),由图象可知,当反比例函数的值大于一次函数的值时,x的取值范围是x<﹣2或0<x<1.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.6.(2010•泸州)如图,已知反比例函数y1=的图象与一次函数y2=kx+b的图象交于两点A(﹣2,1)、B(a,﹣2).(1)求反比例函数和一次函数的解析式;(2)若一次函数y2=kx+b的图象交y轴于点C,求△AOC的面积(O为坐标原点);(3)求使y1>y2时x的取值范围.【分析】(1)先根据点A的坐标求出反比例函数的解析式为y1=﹣,再求出B的坐标是(1,﹣2),利用待定系数法求一次函数的解析式;(2)在一次函数的解析式中,令x=0,得出对应的y2的值,即得出直线y2=﹣x﹣1与y轴交点C的坐标,从而求出△AOC的面积;(3)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围﹣2<x<0或x>1.【解答】解:(1)∵函数y1=的图象过点A(﹣2,1),即1=;∴m=﹣2,即y1=﹣,又∵点B(a,﹣2)在y1=﹣上,∴a=1,∴B(1,﹣2).又∵一次函数y2=kx+b过A、B两点,即.解之得.∴y2=﹣x﹣1.(2)∵x=0,∴y2=﹣x﹣1=﹣1,即y2=﹣x﹣1与y轴交点C(0,﹣1).设点A的横坐标为x A,∴△AOC的面积S△OAC==×1×2=1.(3)要使y1>y2,即函数y1的图象总在函数y2的图象上方.∴﹣2<x<0,或x>1.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式.这里体现了数形结合的思想.7.(2008•甘南州)已知:如图,反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.(1)求反比例函数与一次函数的解析式;(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.【分析】(1)反比例函数y=的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点,把A点坐标代入反比例函数解析式,即可求出k,得到反比例函数的解析式.将B(n,﹣1)代入反比例函数的解析式求得B点坐标,然后再把A、B点的坐标代入一次函数的解析式,利用待定系数法求出一次函数的解析式;(2)根据图象,分别在第一、三象限求出反比例函数的值大于一次函数的值时x的取值范围.【解答】解:(1)∵A(1,3)在y=的图象上,∴k=3,∴y=.又∵B(n,﹣1)在y=的图象上,∴n=﹣3,即B(﹣3,﹣1)∴解得:m=1,b=2,∴反比例函数的解析式为y=,一次函数的解析式为y=x+2.(2)从图象上可知,当x<﹣3或0<x<1时,反比例函数的值大于一次函数的值.【点评】本类题目的解决需把点的坐标代入函数解析式,灵活利用方程组求出所需字母的值,从而求出函数解析式,另外要学会利用图象,确定x的取值范围.8.(2008•南充)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及三角形AOB的面积.【分析】(1)把A(﹣4,n),B(2,﹣4)分别代入一次函数y=kx+b和反比例函数y=,运用待定系数法分别求其解析式;(2)把三角形AOB的面积看成是三角形AOC和三角形OCB的面积之和进行计算.【解答】解:(1)∵B(2,﹣4)在y=上,∴m=﹣8.∴反比例函数的解析式为y=﹣.∵点A(﹣4,n)在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx+b经过A(﹣4,2),B(2,﹣4),∴.解之得.∴一次函数的解析式为y=﹣x﹣2.(2)∵C是直线AB与x轴的交点,∴当y=0时,x=﹣2.∴点C(﹣2,0).∴OC=2.∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=6.【点评】本题考查了用待定系数法确定反比例函数的比例系数k,求出函数解析式;要能够熟练借助直线和y轴的交点运用分割法求得不规则图形的面积.9.(2007•资阳)如图,已知点A(﹣4,2)、B( n,﹣4)是一次函数y=kx+b的图象与反比例函数图象的两个交点:(1)求点B的坐标和一次函数的解析式;(2)求△AOB的面积;(3)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.【分析】(1)由A和B都在反比例函数图象上,故把两点坐标代入到反比例解析式中,列出关于m与n的方程组,求出方程组的解得到m与n的值,确定出A的坐标及反比例函数解析式,把确定出的A坐标及B的坐标代入到一次函数解析式中,得到关于k与b的方程组,求出方程组的解得到k与b的值,确定出一次函数解析式;(2)令一次函数解析式中x为0,求出此时y的值,即可得到一次函数与y轴交点C的坐标,得到OC的长,三角形AOB的面积分为三角形AOC及三角形BOC面积之和,且这两三角形底都为OC,高分别为A和B的横坐标的绝对值,利用三角形的面积公式即可求出三角形ABC的面积;(3)根据图象和交点坐标即可得出结果.【解答】解:(1)∵m=﹣8,∴n=2,则y=kx+b过A(﹣4,2),B(n,﹣4)两点,∴解得k=﹣1,b=﹣2.故B(2,﹣4),一次函数的解析式为y=﹣x﹣2;(2)由(1)得一次函数y=﹣x﹣2,令x=0,解得y=﹣2,∴一次函数与y轴交点为C(0,﹣2),∴OC=2,∴S△AOB=S△AOC+S△BOC=OC•|y点A横坐标|+OC•|y点B横坐标|=×2×4+×2×2=6.S△AOB=6;(3)一次函数的值小于反比例函数值的x的取值范围:﹣4<x<0或x>2.【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有利用待定系数法求函数解析式,两函数交点坐标的意义,一次函数与坐标轴交点的求法,以及三角形的面积公式,利用了数形结合的思想.第一问利用的方法为待定系数法,即根据题意把两交点坐标分别代入两函数解析式中,得到方程组,求出方程组的解确定出函数解析式中的字母常数,从而确定出函数解析式,第二问要求学生借助图形,找出点坐标与三角形边长及边上高的关系,进而把所求三角形分为两三角形来求面积.10.(2005•四川)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A、B两点,与x轴交于点C,与y轴交于点D.已知OA=,tan∠AOC=,点B的坐标为(,m).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.【分析】(1)根据tan∠AOC=,且OA=,结合勾股定理可以求得点A的坐标,进一步代入y=中,得到反比例函数的解析式;然后根据反比例函数的解析式得到点B的坐标,再根据待定系数法求一次函数解析式;(2)三角形AOB的面积可利用,求和的方法即等于S△AOC+S△COB来求.【解答】解:(1)过点A作AH⊥x于点H.在RT△AHO中,tan∠AOH==,所以OH=2AH.又AH2+HO2=OA2,且OA=,所以AH=1,OH=2,即点A(﹣2,1).代入y=得k=﹣2.∴反比例函数的解析式为y=﹣.又因为点B的坐标为(,m),代入解得m=﹣4.∴B(,﹣4).把A(﹣2,1)B(,﹣4)代入y=ax+b,得,∴a=﹣2,b=﹣3.∴一次函数的解析式为y=﹣2x﹣3.(2)在y=﹣2x﹣3中,当y=0时,x=﹣.即C(,0).∴S△AOB=S△AOC+S△COB=(1+4)×=.【点评】此题综合考查了解直角三角形、待定系数法、和函数的基本知识,难易程度适中.11.(2016•乐至县一模)如图,已知一次函数y=kx+b的图象与反比例函数的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围.【分析】(1)把点A(﹣2,4),B(4,﹣2)代入一次函数y=kx+b即可求出k及b的值;(2)先求出C点的坐标,根据S△AOB=S△AOC+S△BOC即可求解;(3)由图象即可得出答案;【解答】解:(1)由题意A(﹣2,4),B(4,﹣2),∵一次函数过A、B两点,∴,解得,∴一次函数的解析式为y=﹣x+2;(2)设直线AB与y轴交于C,则C(0,2),∵S△AOC=×OC×|A x|,S△BOC=×OC×|B x|∴S△AOB=S△AOC+S△BOC=•OC•|A x|+•OC•|B x|==6;(3)由图象可知:一次函数的函数值大于反比例函数的函数值时x的取值范围是x<﹣2或0<x<4.【点评】本题考查了反比例函数与一次函数的交点问题,属于基础题,关键是掌握用待定系数法求解函数解析式.12.(2016•重庆校级模拟)已知:如图所示,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x交于点C,与y轴交于点D,OC=1,BC=5,.(1)求该反比例函数和一次函数的解析式;(2)连接BO,AO,求△AOB的面积.(3)观察图象,直接写出不等式的解集.【分析】(1)先根据解直角三角形求得点D和点B的坐标,再利用C、D两点的坐标求得一次函数解析式,利用点B的坐标求得反比例函数解析式;(2)先根据解方程组求得两个函数图象的交点A的坐标,再将x轴作为分割线,求得△AOB的面积;(3)根据函数图象进行观察,写出一次函数图象在反比例函数图象下方时所有点的横坐标的集合即可.【解答】解:(1)∵∴直角三角形OCD中,=,即CD=OD又∵OC=1∴12+OD2=(OD)2解得OD=,即D(0,﹣)将C(1,0)和D(0,﹣)代入一次函数y=ax+b,可得,解得∴一次函数的解析式为y=x﹣过B作BE⊥x轴,垂足为E∵直角三角形BCE中,BC=5,∴BE=3,CE==4∴OE=4﹣1=3,即B(﹣3,﹣3)将B(﹣3,﹣3)代入反比例函数,可得k=9∴反比例函数的解析式为y=;(2)解方程组,可得,∴A(4,)∴S△AOB=S△AOC+S△COB=×1×+×1×3=+=;(3)根据图象可得,不等式的解集为:x<﹣3或0<x<4.【点评】本题主要考查了反比例函数与一次函数的交点问题,需要掌握待定系数法求函数解析式的方法,以及根据两个函数图象的交点坐标求有关不等式解集的方法.解答此类试题的依据是:①函数图象上点的坐标满足函数解析式;②不等式的解集就是其所对应的函数图象上满足条件的所有点的横坐标的集合.13.(2016•重庆校级一模)如图,已知一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B两点,与坐标轴交于M、N两点.且点A的横坐标和点B的纵坐标都是﹣2.(1)求一次函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出y1>y2时x的取值范围.【分析】(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;(2)将两条坐标轴作为△AOB的分割线,求得△AOB的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可.【解答】解:(1)设点A坐标为(﹣2,m),点B坐标为(n,﹣2)∵一次函数y1=kx+b(k≠0)的图象与反比例函数y2=﹣的图象交于A、B两点∴将A(﹣2,m)B(n,﹣2)代入反比例函数y2=﹣可得,m=4,n=4∴将A(﹣2,4)、B(4,﹣2)代入一次函数y1=kx+b,可得,解得∴一次函数的解析式为y1=﹣x+2;(2)在一次函数y1=﹣x+2中,当x=0时,y=2,即N(0,2);当y=0时,x=2,即M(2,0)∴S△AOB=S△AON+S△MON+S△MOB=×2×2+×2×2+×2×2=2+2+2=6;(3)根据图象可得,当y1>y2时,x的取值范围为:x<﹣2或0<x<4【点评】本题主要考查了反比例函数与一次函数的交点问题,解决问题的关键是掌握根据函数图象的交点坐标求一次函数解析式和有关不等式解集的方法.解答此类试题的依据是:①函数图象的交点坐标满足两个函数解析式;②不等式的解集就是其所对应的函数图象上满足条件的所有点的横坐标的集合.14.(2016•重庆校级模拟)如图,一次函数y=kx+b与反比例函数的图象相交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式.(2)根据所给条件,请直接写出不等式kx+b>的解集.(3)连接OA、OB,求S△ABO.【分析】(1)根据反比例函数图象上点的坐标特征求出m和n,利用待定系数法求出一次函数的解析式;(2)根据函数图象得到答案;(3)求出直线与x轴的交点坐标,根据三角形的面积公式计算即可.【解答】解:(1)∵反比例函数的图象经过A(2,3),∴m=2×3=6,∴反比例函数的解析式为:y=,∵反比例函数的图象经过于B(﹣3,n),∴n==﹣2,∴点B的坐标(﹣3,﹣2),由题意得,,解得,,∴一次函数的解析式为:y=x+1;(2)由图象可知,不等式kx+b>的解集为:﹣3<x<0或x>2;(3)直线y=x+1与x轴的交点C的坐标为(﹣1,0),则OC=1,则S△ABO=S△OBC+S△ACO=×1×2+×1×3=.【点评】本题考查的是反比例函数与一次函数的交点问题,掌握待定系数法求函数解析式的一般步骤是解题的关键,注意数形结合思想的运用.15.(2016•成华区模拟)如图,已知一次函数y=ax+b的图象与反比例函数y=的图象相交于点A(﹣2,m)和点B(4,﹣2),与x轴交于点C(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.【分析】(1)由B点的坐标根据待定系数法即可求得在反比例函数的解析式,代入A(﹣2,m)即可求得m,再由待定系数法求出一次函数解析式;(2)由直线解析式求得C点的坐标,从而求出△AOB的面积.【解答】解:(1)∵B(4,﹣2)在反比例函数y=的图象上,∴k=4×(﹣2)=﹣8,又∵A(﹣2,M)在反比例函数y=的图象上,∴﹣2m=﹣8,∴m=4,∴A(﹣2,4),又∵AB是一次函数y=ax+b的上的点,∴解得,a=﹣1,b=2,∴一次函数的解析式为y=﹣x+2,反比例函数的解析式y=﹣;(2)由直线y=﹣x+2可知C(2,0),所以△AOB的面积=×2×4+×2×2=6.【点评】本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.16.(2016•重庆校级一模)如图,一次函数y=mx+n(m≠0)与反比例函数y=(k≠0)的图象相交于A(﹣1,2),B(2,b)两点,与y轴相交于点C(1)求一次函数与反比例函数的解析式;(2)若点D与点C关于x轴对称,求△ABD的面积.【分析】(1)把A点坐标代入反比例函数解析式可求得k,再把B点坐标代入可求得b,再利用待定系数法可求得一次函数解析式;(2)可先求得D点坐标,再利用三角形的面积计算即可.【解答】解:(1)∵反比例函数y=(k≠0)的图象过A(﹣1,2),∴k=﹣1×2=﹣2,∴反比例函数解析式为y=﹣,当x=2时,y=﹣1,即B点坐标为(2,﹣1),∵一次函数y=mx+n(m≠0)过A、B两点,∴把A、B两点坐标代入可得,解得,∴一次函数解析式为y=﹣x+1;(2)在y=﹣x+1中,当x=0时,y=1,∴C点坐标为(0,1),∵点D与点C关于x轴对称,∴D点坐标为(0,﹣1),∴CD=2,∴S△ABD=S△ACD+S△BCD=×2×1+×2×2=3.【点评】本题主要考查一次函数和反比例函数的交点,掌握两函数图象的交点坐标满足每一个函数解析式是解题的关键.。
北京市海淀区普通中学2018年1月初三数学中考复习 反比例函数 专题训练题1.下列函数:①y =5x ;②y =-x ;③y =x -1;④y =2x +2,其中y 是x 的反比例函数的有( )A .0个B .1个C .2个D .3个2.下列关系中,两个量之间为反比例函数关系的是( ) A .正方形的面积S 与边长a 的关系 B .正方形的周长L 与边长a 的关系C .长方形的长为a ,宽为20,其面积S 与a 的关系D .长方形的面积为40,长为a ,宽为b ,a 与b 的关系3.一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v 千米/小时与时间t 小时的函数关系是( )A .v =320 tB .v =320tC .v =20tD .v =20t4.如果y 与z 成正比例,z 与x 成反比例,则y 是x 的( )A .正比例函数B .反比例函数C .一次函数D .不能确定 5. 如图,市煤气公司计划在地下修建一个容积为104 m 3的圆柱形煤气储存室,则储存室的底面积S(单位:m 2)与其深度d(单位:m)的函数图象大致是( )6.已知压强的计算公式是p =FS ,我们知道,刀具在使用一段时间后,就会变钝,如果刀刃磨薄,刀具就会变得锋利.下列说法中,能正确解释刀具变得锋利这一现象的是( )A .当受力面积一定时,压强随压力的增大而增大B .当受力面积一定时,压强随压力的增大而减小C .当压力一定时,压强随受力面积的减小而减小D .当压力一定时,压强随受力面积的减小而增大7.当温度不变时,某气球内的气压p(kPa)与气球体积V(m 3)的函数关系如图所示,已知当气球内的气压p >120 kPa 时,气球将爆炸,为了安全起见,气球的体积V 应( )A .不大于45 m 3B .大于45 m 3C .不小于45 m 3D .小于45 m 38.一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形的长和宽分别为x ,y ,剪去部分的面积为20,若2≤x≤10,则y 与x 的函数图象是( )9. 教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10 ℃,加热到100 ℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30 ℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30 ℃时,接通电源后,水温y(℃)和时间x(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50 ℃的水,则接通电源的时间可以是当天上午的()A .7:20B .7:30C .7:45D .7:50 10. 函数y =(m -1)xm 2-2是反比例函数,则m =________.11.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知500度的近视眼镜镜片的焦距是0.2 m ,则y 与x 之间的函数关系式是__________.12. 在直流电路中,电流I(A)、电阻R(Ω)、电压U(V)之间满足关系式U =IR ,U =220 V.(1)请写出电流I(A)与电阻R(Ω)之间的函数关系式; (2)利用写出的函数关系式完成下表;(3)当R 越来越大时,怎样变化?当R 越来越小呢?13.人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体时是动态的,车速增加,视野变窄.当车速为50 km/h 时,视野为80度.如果视野f(度)是车速v(km/h)的反比例函数,求f ,v 之间的关系式,并计算当车速为100 km/h 时视野的度数.14. 已知y =y 1+y 2,y 1与x 成正比例,y 2与x 2成反比例,并且当x =1与x =2时,y 都等于7,求当x =-1时y 的值.15. 将油箱注满k 升油后,轿车可行驶的总路程s(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系s =ka (k 是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1) 求该轿车可行驶的总路程s 与平均耗油量a 之间的函数关系式; (2) 当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?16. 已知当压力不变时,木板对地面的压强p(Pa)是木板面积S(m 2)的反比例函数,其图象如图所示.(1)请直接写出p与S之间的函数关系式和自变量S的取值范围;(2)当木板面积为2 m2时,压强是多少?17. 某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:(1)观察表中数据,x,y满足什么函数关系?请求出这个函数关系式;(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?18. 我市某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15 ℃~20 ℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y =kx的一部分,请根据图中信息解答下列问题:(1) 求k 的值;(2) 恒温系统在一天内保持大棚里温度在15 ℃及15 ℃以上的时间有多少个小时? 答案:1---9 BDBBA DCAA 10. -1 11. y =100x(x >0)12. (1) I =220R(2) 11,5.5,113,114,2.2(3) 当R 越来越大时,I 越来越小;当R 越来越小时,I 越来越大13. 设f ,v 之间的关系式为f =kv(k≠0),∵v =50 km/h 时,f =80度,∴80=k 50 ,解得k =4000,所以f =4000v ,当v =100 km/h 时,f =4000100 =40(度).答:当车速为100 km/h 时,视野为40度14. 设y 1=k 1x ,y 2=k 2x 2,∵y =y 1+y 2,∴y =k 1x +k 2x2,∵x =1与x =2时,y 都等于7,∴⎩⎪⎨⎪⎧k 1+k 2=7,2k 1+k 24=7,解得⎩⎪⎨⎪⎧k 1=3,k 2=4.∴y =3x +4x 2,∵x =-1,∴y =-3+4=1 15. (1) s =70a(2) 当a =0.08时,s =700.08=875.答:该轿车可以行驶875千米16. (1) p =600S(S >0)(2) 300 Pa17. (1) y =6000x(2) 由题意得:(x -120)y =3000,把y =6000x 代入得:(x -120)·6000x=3000,解得x =240.经检验x =240是原方程的根.答:若商场计划每天的销售利润为3000元,则其单价应定为240元 18. (1) k =240(2) 设AD 的表达式为y =mx +n 把(0,10),(2,20)代入y =mx +n 中得⎩⎪⎨⎪⎧n =10,2m +n =20, 解得⎩⎪⎨⎪⎧m =5,n =10.∴AD 的表达式为y =5x +10,当y =15时,15=5x +10,x =1,15=240x,解得x =16,∴16-1=15.答:恒温系统在一天内保持大棚里温度在15℃及15℃以上的时间有15个小时。
专项训练四 反比例函数一、选择题1.(2016·哈尔滨中考)点(2,-4)在反比例函数y =kx 的图象上,则下列各点在此函数图象上的是( )A .(2,4)B .(-1,-8)C .(-2,-4)D .(4,-2)2.对于双曲线y =1-mx ,当x >0时,y 随x 的增大而减小,则m 的取值范围为( )A .m >0B .m >1C .m <0D .m <13.(2016·新疆中考)已知A (x 1,y 1),B (x 2,y 2)是反比例函数y =kx (k ≠0)图象上的两个点,当x 1<x 2<0时,y 1>y 2,那么一次函数y =kx -k 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.(2016·聊城中考)二次函数y =ax 2+bx +c (a ,b ,c 为常数且a ≠0)的图象如图所示,则一次函数y =ax +b 与反比例函数y =cx的图象可能是( )5.在同一直角坐标系中,若正比例函数y =k 1x 的图象与反比例函数y =k 2x 的图象没有公共点,则( )A .k 1+k 2<0B .k 1+k 2>0C .k 1k 2<0D .k 1k 2>06.已知点P (a ,b )是反比例函数y =1x 图象上异于点(-1,-1)的一个动点,则11+a +11+b 的值为( )A .2B .1 C.32 D.127.如图,正比例函数y =x 与反比例函数y =1x 的图象相交于A 、B 两点,BC ⊥x 轴于点C ,则△ABC 的面积为( )A .1B .2 C.32 D.528.(昆明中考)如图,直线y =-x +3与y 轴交于点A ,与反比例函数y =kx (k ≠0)的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =3BO ,则反比例函数的解析式为( )A .y =4xB .y =-4xC .y =2xD .y =-2x二、填空题9.(2016·上海中考)已知反比例函数y =kx (k ≠0),如果在这个函数图象所在的每一个象限内,y 的值随着x 的值增大而减小,那么k 的取值范围是________.10.(2016·淮安中考)若点A (-2,3)、B (m ,-6)都在反比例函数y =kx (k ≠0)的图象上,则m 的值是________.11.(2016·潍坊中考)已知反比例函数y =kx (k ≠0)的图象经过点(3,-1),则当1<y <3时,自变量x 的取值范围是__________.12.某闭合电路中,电源的电压为定值,电流I (A)与电阻R (Ω)成反比例.如图表示的是该电路中电流I 与电阻R 之间函数关系的图象,当电阻R 为6Ω时,电流I 为________A.第12题图 第13题图 第14题图13.(2016·营口中考)如图,四边形ABCD 为正方形,点A 、B 在y 轴上,点C 的坐标为(-3,1),反比例函数y =kx的图象经过点D ,则k 的值为________. 14.★(2016·丽水中考)如图,一次函数y =-x +b 与反比例函数y =4x (x >0)的图象交于A ,B 两点,与x 轴、y轴分别交于C ,D 两点,连接OA ,OB ,过A 作AE ⊥x 轴于点E ,交OB 于点F ,设点A 的横坐标为m .(1)b =________(用含m 的代数式表示);(2)若S △OAF +S 四边形EFBC =4,则m 的值是________. 三、解答题15.(2016·西宁中考)如图,一次函数y =x +m 的图象与反比例函数y =kx 的图象交于A ,B 两点,且与x 轴交于点C ,点A 的坐标为(2,1).(1)求m 及k 的值;(2)求点C 的坐标,并结合图象写出不等式组0<x +m ≤kx的解集.163p (Pa) … 1 2 3 4 5 … V (cm 3)…6321.51.2…(1)猜想p 与V 之间的关系,并求出函数关系式; (2)当气体的体积是12cm 3时,压强是多少?17.(2016·贵阳中考)如图,在平面直角坐标系中,菱形OBCD 的边OB 在x 轴上,反比例函数y =kx (x >0)的图象经过菱形对角线的交点A ,且与边BC 交于点F ,点A 的坐标为(4,2).(1)求反比例函数的表达式; (2)求点F 的坐标.18.★如图,已知直线y =x +k 和双曲线y =k +1x(k 为正整数)交于A ,B 两点.(1)当k =1时,求A ,B 两点的坐标; (2)当k =2时,求△AOB 的面积;(3)当k =1时,△OAB 的面积记为S 1,当k =2时,△OAB 的面积记为S 2…依此类推,当k =n 时,△OAB 的面积记为S n ,若S 1+S 2+…+S n =1332,求n 的值.参考答案与解析1.D 2.D 3.B 4.C 5.C6.B 解析:∵点P (a ,b )是反比例函数y =1x 图象上异于点(-1,-1)的一个动点,∴ab =1,∴11+a +11+b =1+b (1+a )(1+b )+1+a (1+a )(1+b )=2+a +b 1+a +b +ab =2+a +b2+a +b=1.7.A 解析:∵正比例函数y =x 与反比例函数y =1x 的图象相交于A 、B 两点,∴点A 与点B 关于原点对称,∴S △AOC =S △BOC .∵BC ⊥x 轴,∴S △ABC =2S △BOC =2×12×|1|=1.8.B 解析:∵直线y =-x +3与y 轴交于点A ,∴点A 的坐标为(0,3),即OA =3.∵AO =3BO ,∴OB =1,∴点C 的横坐标为-1.∵点C 在直线y =-x +3上,∴点C 的坐标为(-1,4),∴反比例函数的解析式为y =-4x.9.k >0 10.1 11.-3<x <-1 12.1 13.614.(1)m +4m (2)2 解析:(1)∵点A 在反比例函数y =4x (x >0)的图象上,且点A 的横坐标为m ,∴点A 的纵坐标为4m ,即点A 的坐标为⎝⎛⎭⎫m ,4m .令一次函数y =-x +b 中x =m ,则y =-m +b ,∴-m +b =4m ,即b =m +4m. (2)作AM ⊥OD 于M ,BN ⊥OC 于N .∵反比例函数y =4x ,一次函数y =-x +b 都是关于直线y =x 对称,∴AD=BC ,OD =OC ,DM =AM =BN =CN .记△AOF 的面积为S ,则△OEF 的面积为2-S ,四边形EFBC 的面积为4-S ,△OBC 和△OAD 的面积都是6-2S ,△ADM 的面积为6-2S -2=4-2S =2(2-S ),∴S △ADM =2S △OEF ,∴DM =2EF ,∴EF =12BN ,∴OE =12ON ,∴点B 的横坐标为2m .点B 的坐标为⎝⎛⎭⎫2m ,2m ,代入直线y =-x +m +4m ,得2m =-2m +m +4m,整理得m 2=2.∵m >0,∴m = 2.15.解:(1)∵点A (2,1)在一次函数y =x +m 的图象上,∴2+m =1,∴m =-1.∵点A (2,1)在反比例函数y =k x 的图象上,∴k2=1,∴k =2; (2)∵一次函数解析式为y =x -1,令y =0,得x =1,∴点C 的坐标是(1,0).由图象可知不等式组0<x +m ≤k x 的解集为1<x ≤2.16.解:(1)p 与V 成反比例,p =6V ;(2)当V =12cm 3时,p =0.5Pa.17.解:(1)∵反比例函数y =kx 的图象经过点A ,点A 的坐标为(4,2),∴k =2×4=8,∴反比例函数的解析式为y =8x;(2)过点A 作AM ⊥x 轴于点M ,过点C 作CN ⊥x 轴于点N ,由题意可知CN =2AM =4,ON =2OM =8,∴点C 的坐标为(8,4).设OB =x ,则BC =x ,BN =8-x .在Rt △CNB 中,x 2-(8-x )2=42,解得x =5,∴点B 的坐标为(5,0).设直线BC 的函数表达式为y =ax +b ,∴⎩⎪⎨⎪⎧5a +b =0,8a +b =4,解得⎩⎨⎧a =43,b =-203,∴直线BC 的解析式为y =43x -203.根据题意得方程组⎩⎨⎧y =43x -203,y =8x ,解此方程组得⎩⎪⎨⎪⎧x =6,y =43或⎩⎪⎨⎪⎧x =-1,y =-8.∵点F 在第一象限,∴点F 的坐标为F ⎝⎛⎭⎫6,43. 18.解:(1)当k =1时,直线y =x +k 和双曲线y =k +1x 化为y =x +1和y =2x ,解方程组⎩⎪⎨⎪⎧y =x +1,y =2x得⎩⎪⎨⎪⎧x =-2,y =-1,⎩⎪⎨⎪⎧x =1,y =2,∴A 点的坐标为(1,2),B 点的坐标为(-2,-1); (2)当k =2时,直线y =x +k 和双曲线y =k +1x 化为y =x +2和y =3x ,解方程组⎩⎪⎨⎪⎧y =x +2,y =3x 得⎩⎪⎨⎪⎧x =-3,y =-1,⎩⎪⎨⎪⎧x =1,y =3,∴A 点的坐标为(1,3),B 点的坐标为(-3,-1).又∵直线AB (y =x +2)与y 轴的交点为(0,2),∴S △AOB =12×2×1+12×2×3=4; (3)当k =1时,S 1=12×1×(1+2)=32,当k =2时,S 2=12×2×(1+3)=4,…当k =n 时,S n =12n (1+n +1)=12n 2+n .∵S 1+S 2+…+S n =1332,∴12×(12+22+32+…+n 2)+(1+2+3+…+n )=1332,整理得12×n (n +1)(2n +1)6+n (n +1)2=1332,解得n =6.。
2018年反比例函数综合训练题一.选择题(共13小题)1.在同一平面直角坐标系中,函数y=mx+m(m≠0)与y=(m≠0)的图象可能是()A.B.C.D.2.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限的图象与△ABC有交点,则k的取值围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤163.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6B.10 C.2D.24.如图,在直角坐标系中,点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AB的垂直平分线与y轴交于点C,与函数y=(x>0)的图象交于点D,连结AC,CB,BD,DA,则四边形ACBD的面积等于()A.2 B.2C.4 D.45.如图,P(m,m)是反比例函数y=在第一象限的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为()A.B.3C.D.6.如图,矩形OABC中,A(1,0),C(0,2),双曲线y=(0<k<2)的图象分别交AB,CB于点E,F,连接OE,OF,EF,S△OEF=2S△BEF,则k值为()A.B.1 C.D.7.如图,双曲线y=﹣(x<0)经过▱ABCO的对角线交点D,已知边OC 在y轴上,且AC⊥OC于点C,则▱OABC的面积是()A.B.C.3 D.68.如图,P为反比例函数y=(k>0)在第一象限图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若∠AOB=135°,则k的值是()A.2 B.4 C.6 D.89.若点A(﹣6,y1),B(﹣2,y2),C(3,y3)在反比例函数y=(a 为常数)的图象上,则y1,y2,y3大小关系为()A.y1>y2>y3B.y2>y3>y1C.y3>y2>y1D.y3>y1>y210.如图,点A是反比例函数y=(x>0)上的一个动点,连接OA,过点O 作OB⊥OA,并且使OB=2OA,连接AB,当点A在反比例函数图象上移动时,点B也在某一反比例函数y=图象上移动,则k的值为()A.﹣4 B.4 C.﹣2 D.211.如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=12.如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的表达式为()A.y=B.y=C.y=D.y=13.如图,直线y=x﹣6分别交x轴,y轴于A,B,M是反比例函数y=(x >0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6二.填空题(共5小题)14.如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反比例函数y=的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k= .15.如图,菱形ABCD的面积为6,边AD在x轴上,边BC的中点E在y轴上,反比例函数y=的图象经过顶点B,则k的值为.16.如图,在平面直角坐标系中,正方形ABOC和正方形DOFE的顶点B,F 在x轴上,顶点C,D在y轴上,且S△ADF=4,反比例函数y=(x>0)的图象经过点E,则k= .17.如图,正方形ABCD的边长为2,AD边在x轴负半轴上,反比例函数y=(x<0)的图象经过点B和CD边中点E,则k的值为.18.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数y1=(x>0)的图象上,顶点B在函数y2=(x>0)的图象上,∠ABO=30°,则= .三.解答题(共8小题)19.如图,直线y=kx(k为常数,k≠0)与双曲线y=(m为常数,m>0)的交点为A、B,AC⊥x轴于点C,∠AOC=30°,OA=2.(1)求m的值;(2)点P在y轴上,如果S△ABP=3k,求P点的坐标.20.如图,在平面直角坐标系xOy中,双曲线y=经过▱ABCD的顶点B,D.点D的坐标为(2,1),点A在y轴上,且AD∥x轴,S▱ABCD=5.(1)填空:点A的坐标为;(2)求双曲线和AB所在直线的解析式.21.如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点C,求△OBC的面积.22.【探究函数y=x+的图象与性质】(1)函数y=x+的自变量x的取值围是;(2)下列四个函数图象中函数y=x+的图象大致是;(3)对于函数y=x+,求当x>0时,y的取值围.请将下列的求解过程补充完整.解:∵x>0∴y=x+=()2+()2=(﹣)2+∵(﹣)2≥0∴y≥.[拓展运用](4)若函数y=,则y的取值围.23.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.24.如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积.25.如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD 的面积为S,求S的取值围.26.如图,一次函数y=ax+b的图象与反比例函数y=的图象交于C,D两点,与x,y轴交于B,A两点,且tan∠ABO=,OB=4,OE=2.(1)求一次函数的解析式和反比例函数的解析式;(2)求△OCD的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值围.2018年反比例函数综合训练题一.选择题(共13小题)1.(2017•)在同一平面直角坐标系中,函数y=mx+m(m≠0)与y=(m≠0)的图象可能是()A.B.C.D.解:A、由反比例函数图象得m<0,则一次函数图象经过第二、三、四象限,所以A选项错误;B、由反比例函数图象得m>0,则一次函数图象经过第一、二、三象限,所以B选项错误;C、由反比例函数图象得m<0,则一次函数图象经过第二、三、四象限,所以C选项错误;D、由反比例函数图象得m<0,则一次函数图象经过第一、二、三象限,所以D选项正确.故选D.2.(2017•)如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y=在第一象限的图象与△ABC有交点,则k的取值围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16解:∵△ABC是直角三角形,∴当反比例函数y=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选C.3.(2017•)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6B.10 C.2D.2解:∵正方形OABC的边长是6,∴点M的横坐标和点N的纵坐标为6,∴M(6,),N(,6),∴BN=6﹣,BM=6﹣,∵△OMN的面积为10,∴6×6﹣×6×﹣6×﹣×(6﹣)2=10,∴k=24,∴M(6,4),N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,∵AM=AM′=4,∴BM′=10,BN=2,∴NM′===2,故选C.4.(2017•)如图,在直角坐标系中,点A在函数y=(x>0)的图象上,AB ⊥x轴于点B,AB的垂直平分线与y轴交于点C,与函数y=(x>0)的图象交于点D,连结AC,CB,BD,DA,则四边形ACBD的面积等于()A.2 B.2C.4 D.4解:设A(a,),可求出D(2a,),∵AB⊥CD,∴S四边形ACBD=AB•CD=×2a×=4,故选C.5.(2017•仙桃)如图,P(m,m)是反比例函数y=在第一象限的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为()A.B.3C.D.解:作PD⊥OB,∵P(m,m)是反比例函数y=在第一象限的图象上一点,∴m=,解得:m=3,∴PD=3,∵△ABP是等边三角形,∴BD=PD=,∴S△POB=OB•PD=(OD+BD)•PD=,故选D.6.(2017•)如图,矩形OABC中,A(1,0),C(0,2),双曲线y=(0<k <2)的图象分别交AB,CB于点E,F,连接OE,OF,EF,S△OEF=2S△BEF,则k值为()A.B.1 C.D.解:∵四边形OABC是矩形,BA⊥OA,A(1,0),∴设E点坐标为(1,m),则F点坐标为(,2),则S△BEF=(1﹣)(2﹣m),S△OFC=S△OAE=m,∴S△OEF=S矩形ABCO﹣S△OCF﹣S△OEA﹣S△BEF=2﹣m﹣m﹣(1﹣)(2﹣m),∵S△OEF=2S△BEF,∴2﹣m﹣m﹣(1﹣)(2﹣m)=2•(1﹣)(2﹣m),整理得(m﹣2)2+m﹣2=0,解得m1=2(舍去),m2=,∴E点坐标为(1,);∴k=,故选A.7.(2017•)如图,双曲线y=﹣(x<0)经过▱ABCO的对角线交点D,已知边OC在y轴上,且AC⊥OC于点C,则▱OABC的面积是()A.B.C.3 D.6解:∵点D为▱ABCD的对角线交点,双曲线y=﹣(x<0)经过点D,AC ⊥y轴,∴S平行四边形ABCO=4S△COD=4××|﹣|=3.故选C.8.(2017•)如图,P为反比例函数y=(k>0)在第一象限图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若∠AOB=135°,则k的值是()A.2 B.4 C.6 D.8解:方法1、作BF⊥x轴,OE⊥AB,CQ⊥AP;设P点坐标(n,),∵直线AB函数式为y=﹣x﹣4,PB⊥y轴,PA⊥x轴,∴C(0,﹣4),G(﹣4,0),∴OC=OG,∴∠OGC=∠OCG=45°∵PB∥OG,PA∥OC,∴∠PBA=∠OGC=45°,∠PAB=∠OCG=45°,∴PA=PB,∵P点坐标(n,),∴OD=CQ=n,∴AD=AQ+DQ=n+4;∵当x=0时,y=﹣x﹣4=﹣4,∴OC=DQ=4,GE=OE=OC=;同理可证:BG=BF=PD=,∴BE=BG+EG=+;∵∠AOB=135°,∴∠OBE+∠OAE=45°,∵∠DAO+∠OAE=45°,∴∠DAO=∠OBE,∵在△BOE和△AOD中,,∴△BOE∽△AOD;∴=,即=;整理得:nk+2n2=8n+2n2,化简得:k=8;故选D.方法2、如图1,过B作BF⊥x轴于F,过点A作AD⊥y轴于D,∵直线AB函数式为y=﹣x﹣4,PB⊥y轴,PA⊥x轴,∴C(0,﹣4),G(﹣4,0),∴OC=OG,∴∠OGC=∠OCG=45°∵PB∥OG,PA∥OC,∴∠PBA=∠OGC=45°,∠PAB=∠OCG=45°,∴PA=PB,∵P点坐标(n,),∴A(n,﹣n﹣4),B(﹣4﹣,)∴AD=AQ+DQ=n+4;∵当x=0时,y=﹣x﹣4=﹣4,∴OC=4,当y=0时,x=﹣4.∴OG=4,∵∠AOB=135°,∴∠BOG+∠AOC=45°,∵直线AB的解析式为y=﹣x﹣4,∴∠AGO=∠OCG=45°,∴∠BGO=∠OCA,∠BOG+∠OBG=45°,∴∠OBG=∠AOC,∴△BOG∽△OAC,∴=,∴=,在等腰Rt△BFG中,BG=BF=,在等腰Rt△ACD中,AC=AD=n,∴,∴k=8,故选D.9.(2017•)若点A(﹣6,y1),B(﹣2,y2),C(3,y3)在反比例函数y=(a为常数)的图象上,则y1,y2,y3大小关系为()A.y1>y2>y3B.y2>y3>y1C.y3>y2>y1D.y3>y1>y2解:∵a2≥0,∴a2+1≥1,∴反比例函数y=(a为常数)的图象位于第一三象限,∵﹣6<﹣2,∴0>y1>y2,∵3>0,∴y3>0,∴y3>y1>y2.故选D.10.(2017•黔西南州)如图,点A是反比例函数y=(x>0)上的一个动点,连接OA,过点O作OB⊥OA,并且使OB=2OA,连接AB,当点A在反比例函数图象上移动时,点B也在某一反比例函数y=图象上移动,则k的值为()A.﹣4 B.4 C.﹣2 D.2解:∵点A是反比例函数y=(x>0)上的一个动点,∴可设A(x,),∴OC=x,AC=,∵OB⊥OA,∴∠BOD+∠AOC=∠AOC+∠OAC=90°,∴∠BOD=∠OAC,且∠BDO=∠ACO,∴△AOC∽△OBD,∵OB=2OA,∴===,∴OD=2AC=,BD=2OC=2x,∴B(﹣,2x),∵点B反比例函数y=图象上,∴k=﹣•2x=﹣4,故选A.11.(2017•)如图,在菱形ABOC中,∠A=60°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=解:过点C作CD⊥x轴于D,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2),则,解得.故反比例函数解析式为y=﹣.故选:A.12.(2017•威海)如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的表达式为()A.y=B.y=C.y=D.y=解:如图,过点C作CE⊥y轴于E,在正方形ABCD中,AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠OAB+∠ABO=90°,∴∠OAB=∠CBE,∵点A的坐标为(﹣4,0),∴OA=4,∵AB=5,∴OB==3,在△ABO和△BCE中,,∴△ABO≌△BCE(AAS),∴OA=BE=4,CE=OB=3,∴OE=BE﹣OB=4﹣3=1,∴点C的坐标为(3,1),∵反比例函数y=(k≠0)的图象过点C,∴k=xy=3×1=3,∴反比例函数的表达式为y=.故选A.13.(2017•)如图,直线y=x﹣6分别交x轴,y轴于A,B,M是反比例函数y=(x>0)的图象上位于直线上方的一点,MC∥x轴交AB于C,MD⊥MC交AB于D,AC•BD=4,则k的值为()A.﹣3 B.﹣4 C.﹣5 D.﹣6解:过点D作DE⊥y轴于点E,过点C作CF⊥x轴于点F,令x=0代入y=x﹣6,∴y=﹣6,∴B(0,﹣6),∴OB=6,令y=0代入y=x﹣6,∴x=2,∴(2,0),∴OA=2,∴勾股定理可知:AB=4,∴sin∠OAB==,cos∠OAB==设M(x,y),∴CF=﹣y,ED=x,∴sin∠OAB=,∴AC=﹣y,∵cos∠OAB=cos∠EDB=,∴BD=2x,∵AC•BD=4,∴﹣y×2x=4,∴xy=﹣3,∵M在反比例函数的图象上,∴k=xy=﹣3,故选(A)二.填空题(共5小题)14.(2017•阿坝州)如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN ⊥y轴于点N,反比例函数y=的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k= 6 .解:∵点P(6,3),∴点A的横坐标为6,点B的纵坐标为3,代入反比例函数y=得,点A的纵坐标为,点B的横坐标为,即AM=,NB=,∵S四边形OAPB=12,即S矩形OMPN﹣S△OAM﹣S△NBO=12,6×3﹣×6×﹣×3×=12,解得:k=6.故答案为:6.15.(2017•)如图,菱形ABCD的面积为6,边AD在x轴上,边BC的中点E 在y轴上,反比例函数y=的图象经过顶点B,则k的值为 3 .解:在Rt△AEB中,∵∠AEB=90°,AB=2BE,∴∠EAB=30°,设AE=a,则AB=2a,由题意2a×a=6,∴a2=,∴k=a2=3,故答案为3.16.(2017•)如图,在平面直角坐标系中,正方形ABOC和正方形DOFE的顶点B,F在x轴上,顶点C,D在y轴上,且S△ADF=4,反比例函数y=(x>0)的图象经过点E,则k= 8 .解:设正方形ABOC和正方形DOFE的边长分别是m、n,则AB=OB=m,DE=EF=OF=n,∴BF=OB+OF=m+n,∴S△ADF=S梯形ABOD+S△DOF﹣S△ABF=m(m+n)+n2﹣m(m+n)=4,∴n2=8,∵点E(n.n)在反比例函数y=(x>0)的图象上,∴k=n2=8,故答案为8.17.(2017•)如图,正方形ABCD的边长为2,AD边在x轴负半轴上,反比例函数y=(x<0)的图象经过点B和CD边中点E,则k的值为﹣4 .解:∵正方形ABCD的边长为2,∴AB=AD=2,设B(,2),∵E是CD边中点,∴E(﹣2,1),∴﹣2=k,解得:k=﹣4,故答案为:﹣4.18.(2017•株洲)如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标原点,斜边AB垂直于x轴,顶点A在函数y1=(x>0)的图象上,顶点B在函数y2=(x>0)的图象上,∠ABO=30°,则= ﹣.解:如图,Rt△AOB中,∠B=30°,∠AOB=90°,∴∠OAC=60°,∵AB⊥OC,∴∠ACO=90°,∴∠AOC=30°,设AC=a,则OA=2a,OC=a,∴A(a,a),∵A在函数y1=(x>0)的图象上,∴k 1=a•a=,Rt△BOC中,OB=2OC=2a,∴BC==3a,∴B(a,﹣3a),∵B在函数y2=(x>0)的图象上,∴k 2=﹣3a a=﹣3,∴=﹣;故答案为:﹣.三.解答题(共8小题)19.(2017•)如图,直线y=kx(k为常数,k≠0)与双曲线y=(m为常数,m>0)的交点为A、B,AC⊥x轴于点C,∠AOC=30°,OA=2.(1)求m的值;(2)点P在y轴上,如果S△ABP=3k,求P点的坐标.解:(1)在Rt△AOC中,∵∠ACO=90°,∠AOC=30°,OA=2,∴AC=1,OC=,∴A(,1),∵反比例函数y=经过点A(,1),∴m=,∵y=kx经过点A(,1),∴k=.(2)设P(0,n),∵A(,1),B(﹣,﹣1),∴•|n|•+•|n|•=3×,∴n=±1,∴P(0,1)或(0,﹣1).20.(2017•)如图,在平面直角坐标系xOy中,双曲线y=经过▱ABCD的顶点B,D.点D的坐标为(2,1),点A在y轴上,且AD∥x轴,S▱ABCD=5.(1)填空:点A的坐标为(0,1);(2)求双曲线和AB所在直线的解析式.解:(1)∵点D的坐标为(2,1),点A在y轴上,且AD∥x轴,∴A(0,1);故答案为(0,1);(2)∵双曲线y=经过点D(2,1),∴k=2×1=2,∴双曲线为y=,∵D(2,1),AD∥x轴,∴AD=2,∵S▱ABCD=5,∴AE=,∴OE=,∴B点纵坐标为﹣,把y=﹣代入y=得,﹣=,解得x=﹣,∴B(﹣,﹣),设直线AB的解析式为y=ax+b,代入A(0,1),B(﹣,﹣)得:,解得,∴AB所在直线的解析式为y=x+1.21.(2017•州)如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A (﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点C,求△OBC的面积.解:(1)∵反比例函数y=﹣(x<0)的图象过点A(﹣1,a),∴a=﹣=2,∴A(﹣1,2),过A作AE⊥x轴于E,BF⊥⊥x轴于F,∴AE=2,OE=1,∵AB∥x轴,∴BF=2,∵∠AOB=90°,∴∠EAO+∠AOE=∠AOE+∠BOF=90°,∴∠EAO=∠BOF,∴△AEO∽△OFB,∴,∴OF=4,∴B(4,2),∴k=4×2=8;(2)∵直线OA过A(﹣1,2),∴直线AO的解析式为y=﹣2x,∵MN∥OA,∴设直线MN的解析式为y=﹣2x+b,∴2=﹣2×4+b,∴b=10,∴直线MN的解析式为y=﹣2x+10,∵直线MN交x轴于点M,交y轴于点N,∴M(5,0),N(0,10),解得,或,∴C(1,8),∴△OBC的面积=S△OMN﹣S△OCN﹣S△OBM=5×10﹣×10×1﹣×5×2=15.22.(2017•)【探究函数y=x+的图象与性质】(1)函数y=x+的自变量x的取值围是x≠0 ;(2)下列四个函数图象中函数y=x+的图象大致是 C ;(3)对于函数y=x+,求当x>0时,y的取值围.请将下列的求解过程补充完整.解:∵x>0∴y=x+=()2+()2=(﹣)2+ 4∵(﹣)2≥0∴y≥ 4 .[拓展运用](4)若函数y=,则y的取值围y≥1或y≤﹣11 .解:(1)函数y=x+的自变量x的取值围是x≠0;(2)函数y=x+的图象大致是C;(3)解:∵x>0∴y=x+=()2+()2=(﹣)2+4∵(﹣)2≥0∴y≥4.(4)①当x>0,y==x+﹣5═()2+()2﹣5=(﹣)2+1∵(﹣)2≥0,∴y≥1.②x<0,y==x+﹣5═﹣[()2+()2+5]=﹣(﹣)2﹣11=∵﹣(﹣)2≤0,∴y≤﹣11.故答案为:x≠0,C,4,4,y≥1或y≤﹣11,23.(2017•)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得x=1,∴点D的坐标为(1,2),∵函数y=的图象经过点D,∴2=,解得k=2,∴函数y=的表达式为y=,∴E(2,1),F(﹣1,﹣2);(2)过点F作FG⊥AB,与BA的延长线交于点G,∵E(2,1),F(﹣1,﹣2),∴AE=1,FG=2﹣(﹣1)=3,∴△AEF的面积为:AE•FG=×1×3=.24.(2017•)如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积.解:(1)由题意可得,BM=OM,OB=2,∴BM=OM=2,∴点B的坐标为(﹣2,﹣2),设反比例函数的解析式为y=,则﹣2=,得k=4,∴反比例函数的解析式为y=,∵点A的纵坐标是4,∴4=,得x=1,∴点A的坐标为(1,4),∵一次函数y=mx+n(m≠0)的图象过点A(1,4)、点B(﹣2,﹣2),∴,得,即一次函数的解析式为y=2x+2;(2)∵y=2x+2与y轴交与点C,∴点C的坐标为(0,2),∵点B(﹣2,﹣2),点M(﹣2,0),点O(0,0),∴OM=2,OC=2,MB=2,∴四边形MBOC的面积是:==4.25.(2017•)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为y=﹣x+4 ,反比例函数的解析式为y=;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD 的面积为S,求S的取值围.解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值围为:≤S≤2故答案为:(1)y=﹣x+4;y=.26.(2017•)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于C,D两点,与x,y轴交于B,A两点,且tan∠ABO=,OB=4,OE=2.(1)求一次函数的解析式和反比例函数的解析式;(2)求△OCD的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值围.解:(1)∵OB=4,OE=2,∴BE=2+4=6.∵CE⊥x轴于点E,tan∠ABO===,∴OA=2,CE=3.∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).∵一次函数y=ax+b的图象与x,y轴交于B,A两点,∴,解得.故直线AB的解析式为y=﹣x+2.∵反比例函数y=的图象过C,∴3=,∴k=﹣6.∴该反比例函数的解析式为y=﹣;(2)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(6,﹣1),则△BOD的面积=4×1÷2=2,△BOC的面积=4×3÷2=6,故△OCD的面积为2+6=8;(3)由图象得,一次函数的值大于反比例函数的值时x的取值围:x<﹣2或0<x<6.。