第三章机械原理《习题答案
- 格式:doc
- 大小:73.00 KB
- 文档页数:2
机械原理作业(部分答案)第一章结构分析作业1.2 解:F = 3n-2P L-P H = 3×3-2×4-1= 0该机构不能运动,修改方案如下图:1.2 解:(a)F = 3n-2P L-P H = 3×4-2×5-1= 1 A点为复合铰链。
(b)F = 3n-2P L-P H = 3×5-2×6-2= 1B、E两点为局部自由度, F、C两点各有一处为虚约束。
(c)F = 3n-2P L-P H = 3×5-2×7-0= 1 FIJKLM为虚约束。
1.3 解:F = 3n-2P L-P H = 3×7-2×10-0= 11)以构件2为原动件,则结构由8-7、6-5、4-3三个Ⅱ级杆组组成,故机构为Ⅱ级机构(图a)。
2)以构件4为原动件,则结构由8-7、6-5、2-3三个Ⅱ级杆组组成,故机构为Ⅱ级机构(图b)。
3)以构件8为原动件,则结构由2-3-4-5一个Ⅲ级杆组和6-7一个Ⅱ级杆组组成,故机构为Ⅲ级机构(图c)。
(a) (b) (c)第二章 运动分析作业2.1 解:机构的瞬心如图所示。
2.2 解:取mmmm l /5=μ作机构位置图如下图所示。
1.求D 点的速度V D13P D V V =而 25241314==P P AE V V E D ,所以 s mm V V E D /14425241502524=⨯==2. 求ω1s r a d l V AE E /25.11201501===ω3. 求ω2因 98382412141212==P P P P ωω ,所以s rad /46.0983825.1983812=⨯==ωω 4. 求C 点的速度V Csmm C P V l C /2.10154446.0242=⨯⨯=⨯⨯=μω2.3 解:取mmmm l /1=μ作机构位置图如下图a 所示。
1. 求B 2点的速度V B2V B2 =ω1×L AB =10×30= 300 mm/s 2.求B 3点的速度V B3V B3 = V B2 + V B3B2大小 ? ω1×L AB ? 方向 ⊥BC ⊥AB ∥BC 取mm s mm v /10=μ作速度多边形如下图b 所示,由图量得:mmpb 223= ,所以smm pb V v B /270102733=⨯=⨯=μ由图a 量得:BC=123 mm , 则mmBC l l BC 1231123=⨯=⨯=μ3. 求D 点和E 点的速度V D 、V E利用速度影像在速度多边形,过p 点作⊥CE ,过b 3点作⊥BE ,得到e 点;过e 点作⊥pb 3,得到d 点 , 由图量得:mmpd 15=,mmpe 17=,所以smm pd V v D /1501015=⨯=⨯=μ , smm pe V v E /1701017=⨯=⨯=μ;smm b b V v B B /17010173223=⨯=⨯=μ4. 求ω3s rad l V BC B /2.212327033===ω5. 求n B a 222212/30003010smm l a AB n B =⨯=⨯=ω6. 求3B aa B3 = a B3n + a B3t = a B2 + a B3B2k + a B3B2τ 大小 ω32L BC ? ω12L AB 2ω3V B3B2 ?方向 B →C ⊥BC B →A ⊥BC ∥BC 22233/5951232.2s mm l a BC n B =⨯=⨯=ω223323/11882702.222s mm V a B B k B B =⨯⨯=⨯=ω取mm s mm a 2/50=μ作速度多边形如上图c 所示,由图量得:mmb 23'3=π ,mmb n 20'33=,所以233/11505023's mm b a a B =⨯=⨯=μπ2333/10005020's mm b n a at B =⨯=⨯=μ7. 求3α233/13.81231000s rad l a BC tB ===α8. 求D 点和E 点的加速度a D 、a E利用加速度影像在加速度多边形,作e b 3'π∆∽CBE ∆, 即 BE eb CE e CB b 33''==ππ,得到e 点;过e 点作⊥3'b π,得到d 点 , 由图量得:mme 16=π,mmd 13=π,所以2/6505013s mm d a a D =⨯=⨯=μπ ,2/8005016s mm e a a E =⨯=⨯=μπ 。
宁夏大学机械工程学院基础部《机械原理》课程第三章机构的运动分析习题答案1. 在图示的凸轮机构中,已知各构件尺寸,长度比例尺μl ,凸轮1的角速度ω1,逆时针方向转动,试确定:(1)全部瞬心的数目(要写出计算公式);(2)全部瞬心的位置(标注在图上);(3)从动杆2的速度υ2的表达式。
解:分332)13(32)1N (N (1)K ----=-⨯=-=(2)瞬心位置如图----3分 (3)l 13121P122P P V V μω•==----3分2.在图示的四杆机构中,已知各构件尺寸,长度比例尺为μl ,构件1的角速度为ω1,逆时针方向转动,试确定:(1)全部瞬心的数目(要写出计算公式);(2)全部瞬心的位置(标注在图上);(3)从动杆3的角速度ω3的表达式。
解:分332)13(32)1N (N (1)K ----=-⨯=-=(2)瞬心位置如图----4分(3)2241424124l24144l 24122P P P P P P P P ωωμωμω==----3分3. 试求下图机构中的所有速度瞬心。
1234ω1P 12 P 24P 13P 14P 34P 23P 23 ∝P 23P 124. 画出下图所示机构的指定速度瞬心。
(1)画出图(a )中的全部瞬心;(2)画出图(b)中的瞬心2426,P P5.在下图的四杆机构中,己知65,90,125,AB CD AD BC l mm l mm l l mm ==== 顺时针方向转动,试用瞬心法求: (1)当15oϕ=,点C 的速度C v(2) 当15o ϕ=时,构件BC(即BC 线上或其延长线上)速度最小的一点E 的位置及其速度值; (3)当0C v =时角ϕ的值。
110/,rad s ω=6. 已知下图所示机构各构件的尺寸,并知原动件1以速度'1v 匀速运动,试确定: (1)在图示位置时机构全部瞬心的位置;(2)构件2的角速度2ω、角加速度2α及其上C 点的速度C v 和加速度C a (写出表达式。
3-2 计算题图3-1所示各机构(或运动链)的自由度。
并判断其中是否含有复合铰链、局部自由度或虚约束?如有,请指出。
(b)(d)(g)题图3-1答:(a )064===H L p ,p ,n ,0624323=⨯-⨯=-=L p n F 。
因为 0=F ,所以不能成为机构。
(b )143===H L p ,p ,n ,01423323=-⨯-⨯=--=H L p p n F 。
因为0=F ,所以不能成为机构。
(c )032===H L p ,p ,n ,0322323=⨯-⨯=-=L p n F 。
因为0=F ,所以不能成为机构。
(d )01410===H L p ,p ,n ,214210323=⨯-⨯=-=L p n F 。
因为 2F ==原动件数,所以能成为机构。
(e )075===H L p ,p ,n ,123=--=H L p p n F 。
D 处有一个复合铰链。
(f )186===H L p ,p ,n , 32362811L H F n p p =--=⨯-⨯-=,I 处有一个局部自由度;B 或C 处的移动副为虚约束;I 处的两个高副之一为虚约束。
(g ) 滚子B 和M 为局部自由度,没有复合铰链和虚约束,因此9=n ,12=L P ,2=H P ,于是该运动链的自由度为:121229323=-⨯-⨯=--=H L P P n F 。
由于该运动链的自由度等于原动件数目,因此具有确定的运动。
3-3 题图3-2所示为一回转式三缸内燃发动机的机构简图。
其中A 、B 、C 处三个活塞,它们依次点火推动从动件绕O 2转动。
(1) 计算机构的自由度。
并指出存在的复合铰链、局部自由度或冗余约束。
(2) 说明该发动机是由哪种四杆机构组成的。
题图3-2解:机构的自由度为1。
O 1处有复合铰链。
曲柄滑块机构。
无局部自由度和冗余约束。
注:O 1O 2有一个杆。
3-6 试计算题图3-4所示两种8杆机构的自由度,并进行ADAMS 模型运动仿真。
《机械原理》课后习题答案第2章(P27)2-2 计算下列机构的自由度,如遇有复合铰链、局部自由度、虚约束等加以说明。
(a)n=3,p l=3 F=3*3-2*3=3(b)n=3,p l=3,p h=2 F=3*3-2*3-2=1 (B处有局部自由度)(c)n=7,p l=10 F=3*7-2*10=1(d)n=4,p l=4,p h=2 F=3*4-2*4-2=2 (A处有复合铰链)(e)n=3,p l=4 F=3*3-2*4=1 (A或D处有虚约束)(f)n=3,p l=4 F=3*3-2*4=1 (构件4和转动副E、F引入虚约束)(g)n=3,p l=5 F=(3-1)*3-(2-1)*5=1 (有公共约束)(h)n=9,p l=12,p h=2 F=3*9-2*12-2=1 (M处有复合铰链,C处有局部自由度)2-3 计算下列机构的自由度,拆杆组并确定机构的级别。
(a)n=5,p l=7 F=3*5-2*7=1由于组成该机构的基本杆组的最高级别为Ⅱ级杆组,故此机构为Ⅱ级机构。
(b)n=5,p l=7 F=3*5-2*7=1此机构为Ⅱ级机构。
(c)n=5,p l=7 F=3*5-2*7=1拆分时只须将主动件拆下,其它构件组成一个Ⅲ级杆组,故此机构为Ⅲ级机构。
2-4 验算下列运动链的运动是否确定,并提出具有确定运动的修改方案。
(a)n=3,p l=4,p h=1 F=3*3-2*4-1=0 该运动链不能运动。
修改方案如下图所示:(b)n=4,p l=6 F=3*4-2*6=0 该运动链不能运动。
修改方案如下图所示:或第3章(P42)3-2 下列机构中,已知机构尺寸,求在图示位置时的所有瞬心。
(a)(b)(c)(a) v3=v P13=ω1P14P13μl3-6 在图示齿轮连杆机构中,三个圆互作纯滚,试利用相对瞬心P13来讨论轮1与轮3的传动比i13。
第5章(P80)5-2 一铰接四杆机构(2)机构的两极限位置如下图:(3)传动角最大和最小位置如下图:5-3题略解:若使其成为曲柄摇杆机构,则最短杆必为连架杆,即a 为最短杆。
O OO OP 2P 3F 23(P 24Pl 3(P 34)(a)(b)Pl 3Pl 6A 1题3-6在图a 所示的四杆机构中,第三章平面机构的运动分析题3-3试求图示各机构在图示位置时全部瞬心的位置(用符号P j 直接标注在图上)解:题3-4在图示在齿轮-连杆机构中,试用瞬心法求齿轮1与齿轮3的传动比w1/w3.C 2P 12P 23St -解:1)计算此机构所有瞬心的数目K N (N1)2152) 为求传动比 < 3需求出如下三个瞬心 R 6、P 36、P 13如图3-2所示。
; 1 巳6只33) 传动比 仁3计算公式为: —3P 16P 13I AB =60mm , l cD =90mm , l AD =|Bc =120mm , w 2=10rad/s ,试用瞬心P134 C 4L CP 12AM B3P iP 34CBMF 24F 34P ?4(d)Pl 4法求:V B3I AB2IAB lBPI32.56rad sV ClCR 3 3 0.4m s量得 1 26.42 226.6P 3434B P 233 22A ,D- i Pl4P 12 1(a)P 131) 当0 =165。
时,点C 的速度Vc ;2) 当$ =165。
时,构件3的BC 线上速度最小的一点 E 的位置及速度的大小; 3) 当Vc=O 时,0角之值(有两个解)解:1)以选定比例尺,绘制机构运动简图。
(图3-3 )2)求V c ,定出瞬心P 13的位置。
如图 3-3 (a )3)定出构件3的BC 线上速度最小的点 E 的位置。
因为BC 线上速度最小的点必与 P 13点的距离最近,所以过 P 13点引BC 线延长线的垂线交于 E 点。
如图3-3 (a )v E1ER 3 3 0.375ms4)当V C 0时,P 13与C 点重合,即AB 与BC 共线有两个位置。
作出 V C 0的两个位置。
题3-12在图示的各机构中,设已知各构件的尺寸、原动件 1以等角速度3 1顺时针方向转动。
第三章 平面机构的运动分析习题3-1图1.a 图1.b图1.c 图1.d习题3-2由于齿轮是纯滚动,因此1、2齿轮的瞬心为12P ,2、3的瞬心为23P ,根据三心定量,齿轮1、3的瞬心一定在直线2312P P 与直线3616P P 的交点上,即图示13P,在该点处的速度有 l l P P P P P v μωμω133631316113==故齿轮3的角速度为1336131613P P P ωω=。
传动比为1316133631P P P P =ωω。
习题3-3答:1)三个瞬心中,14P 、12P 为绝对瞬心,24P 为相对瞬心。
2)不利用其它的三个瞬心,因为它们全是相对瞬心。
3)构件2和4之间的转向关系可以根据瞬心24P 的瞬时绝对速度方向判断。
习题3-4 取比例尺为mmm l 003.0=μ,作图如下1) 由图上可知:l l P P P P P v μωμω241442412224==,根据量得的长度,得s rad P P P P /455.414.72/14.32102414241224=⨯==ωω 可计算出C 点的速度为:s m CD v l C /4.0003.030455.44=⨯⨯==μω2) 构件1、3的瞬心在点13P 处,且为绝对瞬心,因此构件3的角速度为 ()s rad C P v l c /53.2)67.52003.0/(4.0133=⨯==μω 显然构件3上速度最小点在E 点,则其速度为s m EP v l E /36.0003.04.4753.2133=⨯⨯==ω3) 要使0=C v ,需瞬心12P 、24P 重合(如图),两位置分别为0126'=∠=DAB ϕ,02227''=∠=DAB ϕ。
第3章3—1 何谓速度瞬心?相对瞬心与绝对瞬心有何异同点?答:参考教材30~31页。
3—2 何谓三心定理?何种情况下的瞬心需用三心定理来确定?答:参考教材31页。
3-3试求图示各机构在图示位置时全部瞬心的位置(用符号P,,直接标注在图上) (a)(b)答:答:(10分)(d)(10分)3-4标出图示的齿轮一连杆组合机构中所有瞬心,并用瞬心法求齿轮1与齿轮3的传动比ω1/ω3。
答:1)瞬新的数目:K=N(N-1)/2=6(6-1)/2=152)为求ω1/ω3需求3个瞬心P 16、P 36、P 13的位置3)ω1/ω3= P 36P 13/P 16P 13=DK/AK由构件1、3在K 点的速度方向相同,可知ω3与ω1同向。
3-6在图示的四杆机构中,L AB =60mm ,L CD =90mm,L AD =L BC =120mm, ω2=10rad/s,试用瞬心法求:1)当φ=165°时,点的速度vc ;2)当φ=165°时,构件3的BC 线上速度最小的一点E 的位置及速度的大小;3)当V C =0时,φ角之值(有两个解)。
解:1)以选定的比例尺μ机械运动简图(图b )2)求vc 定出瞬心p12的位置(图b ) 因p 13为构件3的绝对瞬心,则有ω3=v B /lBp 13=ω2l AB /μl .Bp 13=10×0.06/0.003×78=2.56(rad/s)v c =μc p 13ω3=0.003×52×2.56=0.4(m/s)3)定出构件3的BC 线上速度最小的点E 的位置,因BC 线上速度最小的点必与p13点的距离最近,故丛p13引BC 线的垂线交于点E ,由图可得(2分)(3分)v E=μl.p13Eω3=0.003×46.5×2.56=0.357(m/s)4)定出vc=0时机构的两个位置(图c)量出φ1=26.4°φ2=226.6°3-8机构中,设已知构件的尺寸及点B的速度v B(即速度矢量pb),试作出各机构在图示位置时的速度多边形。
3-2 在如图所示的齿轮-连杆组合机构中,试用瞬心法求齿轮1与3的传动比ω1/ω3。
顺时针)(v 1613361331361331613113P P P PP P P P P ===ωωωω3-3在如图3-32所示的四杆机构中,LAB=60mm ,LCD=90mm ,LAD=LBC=120mm ,ω2=rad/s ,试用瞬心法求:(1) 当φ=165°时,点C 的速度vc;(2) 当φ=165°时,构件3的BC 线上(或延长线上)速度最小的一点E 的位置及其速度的大小;(3) 当vC=0时,φ角之值(有两个解)。
sm EP P P v P P v s m v s rad P P P P P P P P E C C CD C P /36.0143.055.2v (rad/s 55.2158.0403.0/403.009.048.4(/48.438.21738.9710v 133133431334341424122424142441224224=⨯=======⨯=⨯==⨯====ωωωωωωωω顺时针)顺时针)3-4在如图3-33所示的凸轮机构中,已知r=50mm ,LOA=30mm ,LAC=90mm ,φ1=90°,凸轮1以角速度ω1=10rad/s 逆时针转动。
试用瞬心法求从动件的角速度ω2。
顺时针)(/79.286.12486.3410v 2312131212231221312112s rad P P P P P P P P P =⨯====ωωωω 3-5在如图3-34所示的各机构中,已知各构件的尺寸及B 点的速度vB ,试作出其如图3-34所示位置时的速度多边形。
3-6在如图3-35所示的各机构中,已知各构件的尺寸,原动件1以等角速度ω1顺时针方向转动,试以图解法求机构在如图3-35所示位置时构件3上C 点的速度及角速度。
3-8A BCDEbk ec3。
习题1.判断题(1)瞬心即彼此作一般平面运动的两构件上的瞬时等速重合点或瞬时相对速度为零的重合点。
( dui)(2)以转动副相连的两构件的瞬心在转动副的中心处。
(√)(3)以平面高副相连接的两构件的瞬心,当高副两元素作纯滚动时位于接触点的切线上。
(×)(4)矢量方程图解法依据的基本原理是运动合成原理。
(√)(5)加速度影像原理适用于整个机构。
(×)2.单选题(1)以移动副相连的两构件间的瞬心位于( B )A.导路上B.垂直于导路方向的无穷远处C.过构件中心的垂直于导路方向的无穷远处 D.构件中心(2)速度影像原理适用于( C )A.整个机构B.通过运动副相连的机构C.单个构件D.形状简单机构(3)确定不通过运动副直接相连的两构件的瞬心,除了运用概念法外,还需要借助( A )A.三心定理B.相对运动原理C.速度影像原理D.加速度影像原理3.简答题(1)何谓速度瞬心?相对瞬心与绝对瞬心有何异同点。
答:当两构件作平面相对运动时,在任一瞬时,都可以认为它们是绕某一重合点做相对转动,该重合点就称为瞬时速度中心,简称为瞬心。
瞬心是两构件上绝对速度相等,相对速度为零的一对重合点。
若瞬心的绝对速度为零,就称为绝对瞬心;若瞬心的绝对速度不为零,就称为相对瞬心。
(2)何谓三心定理?何种情况下的瞬心需用三心定理来确定?答:三心定理是指三个彼此互作平面相对运动的构件的三个瞬心必位于同一个直线上。
利用三心定理来确定不直接以运动副联接的两构件的瞬心。
(3)当用速度瞬心法和用速度影像法求同一构件,如四杆机构连杆上任一点的速度时,它们的求解条件有何不同?各有何特点?答:用速度瞬心法求机构的速度是利用相对瞬心为两构件的瞬时绝对速度相等的重合点的概念,建立待求运动构件与已知运动构件的速度关系来求解的。
其优点是对于构件比较少的机构,简洁和直观;局限性是对于构件多的机构,求取瞬心的过程比较麻烦,且此方法只能用来进行机构的速度分析,不能用于机构的位移和加速度分析中。