液压伺服系统工作原理及实例
- 格式:ppt
- 大小:408.50 KB
- 文档页数:15
液压伺服系统工作原理1.1 液压伺服系统工作原理液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。
电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。
液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。
液压伺服系统的工作原理可由图1来说明。
图1所示为一个对管道流量进行连续控制的电液伺服系统。
在大口径流体管道1中,阀板2的转角θ变化会产生节流作用而起到调节流量qT的作用。
阀板转动由液压缸带动齿轮、齿条来实现。
这个系统的输入量是电位器5的给定值x i。
对应给定值x i,有一定的电压输给放大器7,放大器将电压信号转换为电流信号加到伺服阀的电磁线圈上,使阀芯相应地产生一定的开口量x v。
阀开口x v使液压油进入液压缸上腔,推动液压缸向下移动。
液压缸下腔的油液则经伺服阀流回油箱。
液压缸的向下移动,使齿轮、齿条带动阀板产生偏转。
同时,液压缸活塞杆也带动电位器6的触点下移x p。
当x p所对应的电压与x i所对应的电压相等时,两电压之差为零。
这时,放大器的输出电流亦为零,伺服阀关闭,液压缸带动的阀板停在相应的qT位置。
图1 管道流量(或静压力)的电液伺服系统1—流体管道;2—阀板;3—齿轮、齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服阀在控制系统中,将被控制对象的输出信号回输到系统的输入端,并与给定值进行比较而形成偏差信号以产生对被控对象的控制作用,这种控制形式称之为反馈控制。
反馈信号与给定信号符号相反,即总是形成差值,这种反馈称之为负反馈。
用负反馈产生的偏差信号进行调节,是反馈控制的基本特征。
而对图1所示的实例中,电位器6就是反馈装置,偏差信号就是给定信号电压与反馈信号电压在放大器输入端产生的△u。
HST的工作原理HST,全称为Hydraulic Servo Turret(液压伺服转塔),是一种用于工业机械领域的关键设备。
它在许多应用中被广泛使用,例如数控机床、物料搬运系统和自动化生产线等。
本文将详细介绍HST的工作原理,包括其组成部份、工作流程和应用案例。
一、HST的组成部份HST主要由以下几个组成部份构成:1. 液压伺服系统:液压伺服系统是HST的核心部份,它由液压泵、液压缸、液压阀和传感器等组成。
液压泵负责提供高压液压油,液压阀用于控制液压油的流动方向和流量,液压缸则将液压能转化为机械能。
2. 伺服机电:伺服机电是HST的动力源,它通过接收控制信号来实现精确的位置和速度控制。
伺服机电通常与液压泵相连,通过控制液压泵的转速来实现对液压系统的控制。
3. 控制系统:控制系统是HST的大脑,它负责接收和处理来自传感器的反馈信号,并生成相应的控制信号。
控制系统通常由微处理器、编码器、传感器和人机界面等组成。
二、HST的工作流程HST的工作流程可以分为以下几个步骤:1. 接收输入信号:HST通过传感器接收输入信号,例如位置、速度和力等。
2. 信号处理:控制系统对接收到的信号进行处理,例如进行滤波、放大和校准等,以确保信号的准确性和稳定性。
3. 生成控制信号:根据经过处理的输入信号,控制系统生成相应的控制信号,用于控制液压伺服系统和伺服机电。
4. 控制液压伺服系统:控制信号通过液压阀控制液压泵的转速和液压阀的开关状态,从而调节液压伺服系统的压力和流量。
5. 驱动伺服机电:控制信号被传送给伺服机电,通过控制伺服机电的转速和方向,实现对工作装置的精确控制。
6. 反馈和调整:伺服机电通过编码器等传感器实时反馈位置和速度信息给控制系统,控制系统根据反馈信息进行调整,以实现更精确的控制。
三、HST的应用案例HST在许多工业领域中都有广泛的应用,以下是几个典型的应用案例:1. 数控机床:HST可以用于数控机床中的转塔控制,通过精确的位置和速度控制,实现工件的高效加工。
液压系统伺服电机的工作原理基于液压伺服系统。
液压伺服系统是一种以液压油作为工作介质的传动装置,主要由液压泵、油箱、液压阀、液压缸(马达)等组成。
液压泵的作用是将从油箱中吸入的液体压缩为高压油,利用阀门控制器控制油液进入液压缸或马达,从而推动或旋转所需控制的执行机构。
四通滑阀作为一个转换放大元件(伺服阀),把输入的机械信号(位移或速度)转换成液压信号(流量或压力)并放大输出至液压缸。
液压缸作为执行元件,输入压力油的流量,输出运动速度(或位移),从而带动负载移动。
四通滑阀和液压缸制成一个整体,构成了反馈连接。
当滑阀处于中间位置时,阀的四个窗口均关闭,阀没有流量输出,液压缸不动,系统处于静止状态。
给滑阀一个向右的输入位移Xi,则窗口a 、b便有一个相应的开口量Xv=Xi,液压油经窗口a进入液压缸右腔,左腔油液经窗口b排出,缸体右移Xp,由于缸体和阀体是一体的,因此阀体也右移Xp。
因滑阀受输入端制约,则阀的开口量减小,直到Xp =Xi,即Xv=0,阀的输出流量等于零,缸体才停止运动,处于一个新的平衡位置上,从而完成了液压缸输出位移对滑阀输入位移的跟随运动。
液压系统伺服电机的工作原理主要分为以下几个步骤:1、启动液压泵:液压泵启动后,转子开始旋转,通过连杆带动活塞运动,从油箱中吸入液体,将其压缩为高压油并将其送入液压系统中。
2、控制液压阀:液压阀控制油液的流动方向和流量。
通过液压阀门的开启和关闭实现对液压缸或马达的控制。
3、输入机械信号:四通滑阀作为一个转换放大元件(伺服阀),接收输入的机械信号(位移或速度),并将其转换为液压信号(流量或压力)。
4、放大输出:四通滑阀将接收到的机械信号转换成液压信号后,会对其进行放大输出至液压缸。
5、执行动作:液压缸作为执行元件,输入压力油的流量,输出运动速度(或位移),从而带动负载移动。
液压伺服体系工作道理1.1 液压伺服体系工作道理液压伺服体系以其响应速度快.负载刚度大.控制功率大等奇特的长处在工业控制中得到了广泛的应用.电液伺服体系经由过程应用电液伺服阀,将小功率的电旌旗灯号转换为大功率的液压动力,从而实现了一些重型机械装备的伺服控制.液压伺服体系是使体系的输出量,如位移.速度或力等,能主动地.快速而精确地追随输入量的变更而变更,与此同时,输出功率被大幅度地放大.液压伺服体系的工作道理可由图1来解释.图1所示为一个对管道流量进行中断控制的电液伺服体系.在大口径流体管道1中,阀板2的转角θ变更会产生撙节感化而起到调撙节量qT的感化.阀板迁移转变由液压缸带动齿轮.齿条来实现.这个体系的输入量是电位器5的给定值x i.对应给定值x i,有必定的电压输给放大器7,放大器将电压旌旗灯号转换为电流旌旗灯号加到伺服阀的电磁线圈上,使阀芯响应地产生必定的启齿量x v.阀启齿x v使液压油进入液压缸上腔,推进液压缸向下移动.液压缸下腔的油液则经伺服阀流回油箱.液压缸的向下移动,使齿轮.齿条带动阀板产生偏转.同时,液压缸活塞杆也带动电位器6的触点下移x p.当x p所对应的电压与x i所对应的电压相等时,两电压之差为零.这时,放大器的输出电流亦为零,伺服阀封闭,液压缸带动的阀板停在响应的qT地位.图1 管道流量(或静压力)的电液伺服体系1—流体管道;2—阀板;3—齿轮.齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服阀在控制体系中,将被控制对象的输出旌旗灯号回输到体系的输入端,并与给定值进行比较而形成误差旌旗灯号以产生对被控对象的控制造用,这种控制情势称之为反馈控制.反馈旌旗灯号与给定旌旗灯号符号相反,即老是形成差值,这种反馈称之为负反馈.用负反馈产生的误差旌旗灯号进行调节,是反馈控制的根本特点.而对图1所示的实例中,电位器6就是反馈装配,误差旌旗灯号就是给定旌旗灯号电压与反馈旌旗灯号电压在放大器输入端产生的△u.图2 给出对应图1实例的方框图.控制体系经常应用方框图暗示体系各元件之间的接洽.上图方框顶用文字暗示了各元件,后面将介绍方框图采取数学公式的表达情势.图2 伺服体系实例的方框图液压伺服体系的构成液压伺服体系的构成由上面举例可见,液压伺服体系是由以下一些根本元件构成;输入元件——将给定值加于体系的输入端的元件.该元件可所以机械的.电气的.液压的或者是其它的组合情势.反馈测量元件——测量体系的输出量并转换成反馈旌旗灯号的元件.各类类形的传感器经常应用作反馈测量元件.比较元件——将输入旌旗灯号与反馈旌旗灯号比拟较,得出误差旌旗灯号的元件.放大.能量转换元件——将误差旌旗灯号放大,并将各类情势的旌旗灯号转换成大功率的液压能量的元件.电气伺服放大器.电液伺服阀均属于此类元件;履行元件——将产生调节动作的液压能量加于控制对象上的元件,如液压缸或液压马达.控制对象——各类临盆装备,如机械工作台.刀架等.液压伺服数学模子2.1 数学模子为了对伺服体系进行定量研讨,应找出体系中各变量(物理量)之间的关系.不单要搞清晰其静态关系,还要知道其动态特点,即各物理量随时光而变更的进程.描写这些变量之间关系的数学表达式称之为数学模子.2.1.1 微分方程伺服体系的动态行动可用各变量及其各阶导数所构成的微分方程来描写.当微分方程各阶导数为零时,则变成暗示各变量间静态关系的代数方程.有了体系活动的微分方程就可知道体系各变量的静态和动态行动.该微分方程就是体系的数学模子.2.1.2 拉氏变换与传递函数拉氏变换全称为拉普拉斯变换.它是将时光域的原函数f(t)变换成复变量s域的象函数F(s),将时光域的微分方程变换成s域的代数方程.再经由过程代数运算求出变量为s的代数方程解.最后经由过程拉氏反变换得到变量为t的原函数的解.数学大将时域原函数f(t)的拉氏变换界说为如下积分:而拉氏逆变换则记为现实应用中其实不须要对原函数一一作积分运算,与查对数表类似,查拉氏变换表(表1)即可求得.拉氏变换在解微分方程进程中有如下几共性质或定理:(1)线性性质设则有式中 B——随意率性常数.(2)迭加道理这一性质极为重要,它使我们可以不作拉氏逆变换就能预感体系的稳态行动.(6)初值定理微分方程表征了体系的动态特点,它在经由拉氏变换后生成了代数方程,仍然表征了体系的动态特点.假如所有肇端前提为零,设体系(或元件)输出y(t)的拉氏变换为Y(s)和输入x(t)的拉氏变换为X(s),则经由代数运算得(1)G(s)为一个以s为变量的函数,我们称这个函数为体系(或元件)的传递函数.故体系(或元件)的动态特点也可用其传递函数来暗示.传递函数是经典控制理论中一个重要的概念.用常系数线性微分方程暗示的体系(或元件),在初始前提为零的前提下,经拉氏变换后,微分方程中n阶的导数项响应地变换为s n项,而系数不变.即拉氏变换后所得代数方程为一系数与原微分方程雷同,以s n代替n阶导数的多项式,移项后就是其传递函数.故一个体系(或元件)的传递函数极易求得.表1 拉氏变换表(部分)原函数ƒ(t)拉氏变换函数F(s)原函数图形(t≥0)1 单位脉冲函数δ(t)= 1单位阶跃函数=1(t>0) 2=0(t≤0)3 t4 t n56 (1-)7 sinωt8 cosωt9 sin(ωt+θ)10 cos(ωt+θ)11 cosbt12131415 sinhωt16 coshωt例如图3所示为一个质量-弹性-油阻尼体系,该体系的力均衡微分方程为(2)式中 M——质量;x——质量的位移;B C——阻尼系数;k——弹簧刚度.图3 质量-弹性-油阻尼体系经拉氏变换得(3)写成传递函数为(4)方框图及其等效变换图4 所示是一种文字情势的方框图,它暗示体系构造中各元件的功用及它们之间的互相贯穿连接和旌旗灯号传递线路.这种方框图又称作构造方框图.另一种方框图即“函数方块图”,就是将元件或环节的传递函数写在响应的方框中,用箭头线将这些方框衔接起来,如图4所示.指向方框图的箭头暗示对其输入旌旗灯号;从方框图出来的箭头暗示输出.图中圆圈暗示比较点,亦称加减点,它对二个以上旌旗灯号根据其正.负进行代数运算.同一旌旗灯号线上的各引出旌旗灯号,数值与性质完整雷同.方框图输出旌旗灯号的因次,等于输入旌旗灯号的因次与方程中传递函数因次的乘积.图4 体系方框图1—输入旌旗灯号;2—比较点;3—引出旌旗灯号;4—输出旌旗灯号方框图等效变换.简化轨则见表2.表2 方块图变换轨则序号原方块图等效方块图1234567891011121314电液伺服阀电液伺服阀电液伺服阀既是电液转换元件,又是功率放大元件,它可以或许把渺小的电气旌旗灯号转换成大功率的液压能(流量和压力)输出.它的机能的好坏对体系的影响很大.是以,它是电液控制体系的焦点和症结.为了可以或许精确设计和应用电液控制体系,必须控制不合类型和机能的电液伺服阀.伺服阀输入旌旗灯号是由电气元件来完成的.电气元件在传输.运算和参量的转换等方面既快速又轻便,并且可以把各类物理量转换成为电量.所以在主动控制体系中广泛应用电气装配作为电旌旗灯号的比较.放大.反馈检测等元件;而液压元件具有体积小,构造紧凑.功率放大倍率高,线性度好,逝世区小,敏锐度高,动态机能好,响应速度快等长处,可作为电液转换功率放大的元件.是以,在一控制体系中常以电气为“神经”,以机械为“骨架”,以液压控制为“肌肉”最大限度地施展机电.液的长处.因为电液伺服阀的种类许多,但各类伺服阀的工作道理又基底细似,其剖析研讨的办法也大体雷同,故今以经常应用的力反馈两级电液伺服阀和地位反馈的双级滑阀式伺服阀为重点,评论辩论它的根本方程.传递函数.方块图及其特点剖析.其它伺服阀只介绍其工作道理,同时也介绍伺服阀的机能参数及其测试办法电液伺服阀的构成电液伺服阀在电液控制体系中的地位如图27所示.电液伺服阀包含电力转换器.力位移转换器.前置级放大器和功率放大器等四部分.3.1.1 电力转换器包含力矩马达(迁移转变)或力马达(直线活动),可把电气旌旗灯号转换为力旌旗灯号.3.1.2 力位移转换器包含钮簧.弹簧管或弹簧,可把力旌旗灯号变成位移旌旗灯号而输出.3.1.3 前置级放大器包含滑阀放大器.喷嘴挡板放大器.射流管放大器.3.1.4 功率放大器——滑阀放大器由功率放大器输出的液体流量则具有必定的压力,驱动履行元件进行工作.图27 电液控制体系方块图电液伺服阀的分类电液伺服阀的分类电液伺服阀的种类许多,根据它的构造和机能可作如下分类:1)按液压放大级数,可分为单级伺服阀.两级伺服阀和三级伺服阀,个中两级伺服阀应用较广.2)按液压前置级的构造情势,可分为单喷嘴挡板式.双喷嘴挡板式.滑阀式.射流管式和偏转板射流式.3)按反馈情势可分为地位反馈.流量反馈和压力反馈.4)按电-机械转换装配可分为动铁式和动圈式.5)按输出量情势可分为流量伺服阀和压力控制伺服阀.6)按输入旌旗灯号情势可分为中断控制式和脉宽调制式.伺服阀的工作道理伺服阀的工作道理下面介绍两种重要的伺服阀工作道理.力反馈式电液伺服阀的构造和道理如图28所示,无旌旗灯号电流输入时,衔铁和挡板处于中央地位.这时喷嘴4二腔的压力p a=p b,滑阀7二端压力相等,滑阀处于零位.输入电流后,电磁力矩使衔铁2连同挡板偏转θ角.设θ为顺时针偏转,则因为挡板的偏移使p a>p b,滑阀向右移动.滑阀的移动,经由过程反馈弹簧片又带动挡板和衔铁反偏向扭转(逆时针),二喷嘴压力差又减小.在衔铁的原始均衡地位(无旌旗灯号时的地位)邻近,力矩马达的电磁力矩.滑阀二端压差经由过程弹簧片感化于衔铁的力矩以及喷嘴压力感化于挡板的力矩三者取得均衡,衔铁就不再活动.同时感化于滑阀上的油压力与反馈弹簧变形力互相均衡,滑阀在分开零位一段距离的地位上定位.这种依附力矩均衡来决议滑阀地位的方法称为力反馈式.假如疏忽喷嘴感化于挡板上的力,则马达电磁力矩与滑阀二端不服衡压力所产生的力矩均衡,弹簧片也只是受到电磁力矩的感化.是以其变形,也就是滑阀分开零位的距离和电磁力矩成正比.同时因为力矩马达的电磁力矩和输入电流成正比,所以滑阀的位移与输入的电流成正比,也就是经由过程滑阀的流量与输入电流成正比,并且电流的极性决议液流的偏向,如许便知足了对电液伺服阀的功效请求.图28 力反馈式伺服阀的工作道理1—永远磁铁;2—衔铁;3—扭轴;4—喷嘴;5—弹簧片;6—过滤器;7—滑阀;8—线圈;9—轭铁因为采取了力反馈,力矩马达根本上在零位邻近工作,只请求其输出电磁力矩与输入电流成正比(不象地位反馈中请求力矩马达衔铁位移和输入电流成正比),是以线性度易于达到.别的滑阀的位移量在电磁力矩必定的情形下,决议于反馈弹簧的刚度,滑阀位移量便于调节,这给设计带来了便利.采取了衔铁式力矩马达和喷嘴挡板使伺服阀构造极为紧凑,并且动特点好.但这种伺服阀工艺请求高,造价高,对于油的过滤精度的请求也较高.所以这种伺服阀实用于请求构造紧凑,动特点好的场合.力反馈式电液伺服阀的方框图如图29.图29 力反馈式伺服阀方框图3.3.2 地位反馈式伺服阀图30为二级滑阀式地位反馈伺服阀构造.该类型电液伺服阀由电磁部分,控制滑阀和主滑阀构成.电磁部分是一只力马达,道理如前所述.动圈靠弹簧定位.前置放大器采取滑阀式(一级滑阀).如图所示,在均衡地位(零位)时,压力油从P腔进入,分别经由过程P腔槽,阀套窗口,固定撙节孔3.5到达上.下控制窗口,然后再经由过程主阀(二级阀芯)的回油口回油箱.输入正向旌旗灯号电流时,动圈向下移动,一级阀芯随之下移.这时,上控制窗口的过流面积减小,下控制窗口的过流面积增大.所以上控制腔压力升高而下控制腔的压力下降,使感化在主阀芯(二级阀芯)两头的液压力掉去均衡.主阀芯在这一液压力感化下向下移动.主阀芯下移,使上控制窗口的过流面积逐渐增大,下控制窗口的过流面积逐渐缩小.当主阀芯移动到上.下控制窗口过流面积从新相等的地位时,感化于主阀芯两头的液压力从新均衡.主阀芯就逗留在新的均衡地位上,形成必定的启齿.这时,压力油由P腔经由过程主阀芯的工作边到A腔而供应负载.回油则经由过程B腔,主阀芯的工作边到T腔回油箱.输入旌旗灯号电流反向时,阀的动作进程与此相反.油流反向为P→B,A→T.上述工作进程中,动圈的位移量,一级阀芯(先导阀芯)的位移量与主阀芯的位移量均相等.因动圈的位移量与输入旌旗灯号电流成正比,所以输出的流量和输入旌旗灯号电流成正比.图30 地位反馈伺服阀构造1—阀体;2—阀套;3—固定撙节口;4—二级阀芯;5—固定撙节口;6—一级阀芯;7—线圈;8—下弹簧;9—上弹簧;10—磁钢二级滑阀型地位反馈式伺服阀的方框图如图31所示.该型电液伺服阀具有构造简略,工作靠得住,轻易保护,可在现场进行调剂,对油液干净度请求不太高.图31 地位反馈式电液伺服阀方框图电液伺服阀的根本特点空载时输出流量和输入旌旗灯号电流之间的关系,经常应用空载流量特点曲线来暗示(图32).由这一曲线可得到该阀的额定值.线性度.滞环.流量增益等特点.额定电流I R——在这一电流规模内,阀的输出流量与输入旌旗灯号电流成正比.额定空载流量——在额定压力与额定电流下阀的空载流量.线性度——q-I曲线直线性的器量.图32 空载流量特点曲线I R——额定电流;q0——最大空载流量;tanθ——流量增益滞环——重要用来标明旌旗灯号电流转变偏向时,由摩擦力.磁滞等原因使I-q曲线不重合的程度.常以曲线上同一流量下电流最大差值△I max与阀的额定电流I R之比来暗示.流量增益——q L与I之比值,即q-I曲线的平均斜率.3.4.2 压力增益特点在必定供油压力下,在输入电流I和负载压力p L=p1-p2曲线上,比值△p L/△I称为压力增益.当负载流量保持为零时,在零位(中央均衡地位)邻近的压力增益称为零位压力增益.零位压力增益与主滑阀的启齿情势有关,以零启齿情势最高.进步供油压力p s也可进步零位压力增益.但这一特点重要与阀的制造质量有关.进步零位压力增益,对于减小不敏锐区.进步精度有感化,但对稳固性起相反的感化.图33是零启齿伺服阀的零位压力增益特点曲线.图33 零位压力增益特点曲线3.4.3 负载压力.流量特点这一特点往往是选用伺服阀的重要根据.图34即为负载压力-流量特点曲线.3.4.4 对数频率特点它暗示电液伺服阀的动态特点.幅频曲线中一3dB时频率为该阀的频宽.其值越大则该阀的工作频率规模越大.对数频率特点也是剖析伺服体系动特点以及设计.分解电液伺服体系的根据.图35即为阀的对数频率特点曲线.3.4.5 零飘与零偏伺服阀因为供油压力的变更和工作油温度的变更而引起的零位(Q L=p L=0的几何地位)变更称为零飘.零飘一般用使其恢复位所需加的电流值与额定电流值之比来权衡.这一比值越小越好.别的,因为制造.调剂.装配的不同,控制线圈中不加电流时,滑阀不必定位于中位.有时必须加必定的电流才干使其恢复中位(零位).这一现象称为零偏.零偏以使阀恢复零位所需加之电流值与额定电流值之比来权衡.图34 负载压力-流量特点曲线图35 对数频率特点曲线3.4.6 不敏锐度因为不敏锐区的消失,伺服阀只有在输入旌旗灯号电流达必定值时才会转变状况.使伺服阀产生状况变更的最小电流与额定电流之比称为不敏锐度.其值愈小愈好.液压伺服体系设计液压伺服体系设计在液压伺服体系中采取液压伺服阀作为输入旌旗灯号的转换与放大元件.液压伺服体系能以小功率的电旌旗灯号输入,控制大功率的液压能(流量与压力)输出,并能获得很高的控制精度和很快的响应速度.地位控制.速度控制.力控制三类液压伺服系同一般的设计步调如下:1)明白设计请求:充分懂得设计义务提出的工艺.构造实时体系各项机能的请求,并应具体剖析负载前提.2)拟定控制计划,画出体系道理图.3)静态盘算:肯定动力元件参数,选择反馈元件及其它电气元件.4)动态盘算:肯定体系的传递函数,绘制开环波德图,剖析稳固性,盘算动态机能指标.5)校核精度和机能指标,选择校订方法和设计校订元件.6)选择液压能源及响应的从属元件.7)完成履行元件及液压能源施工设计.本章的内容主如果按照上述设计步调,进一步解释液压伺服体系的设计原则和介绍具体设计盘算办法.因为地位控制体系是最根本和应用最广的体系,所以介绍将以阀控液压缸地位体系为主.4.1 周全懂得设计请求4.1.1 周全懂得被控对象液压伺服控制体系是被控对象—主机的一个构成部分,它必须知足主机在工艺上和构造上对其提出的请求.例如轧钢机液压压下地位控制体系,除了应可以或许推却最大轧制负载,知足轧钢机轧辊辊缝调节最大行程,调节速度和控制精度等请求外,履行机构—压下液压缸在外形尺寸上还受轧钢机牌楼窗口尺寸的束缚,构造上还必须包管知足改换轧辊便利等请求.要设计一个好的控制体系,必须充分看重这些问题的解决.所以设计师应周全懂得被控对象的工况,并分解应用电气.机械.液压.工艺等方面的理论常识,使设计的控制体系知足被控对象的各项请求.4.1.2 明角设计体系的机能请求1)被控对象的物理量:地位.速度或是力.2)静态极限:最大行程.最大速度.最大力或力矩.最大功率.3)请求的控制精度:由给定旌旗灯号.负载力.干扰旌旗灯号.伺服阀及电控体系零飘.非线性环节(如摩擦力.逝世区等)以及传感器引起的体系误差,定位精度,分辩率以及许可的飘移量等.4)动态特点:相对稳固性可用相位裕量和增益裕量.谐振峰值和超调量等来划定,响应的快速性可用载止频率或阶跃响应的上升时光和调剂时光来划定;5)工作情形:主机的工作温度.工作介质的冷却.振动与冲击.电气的噪声干扰以及响应的耐高温.防水防腐化.防振等请求;6)特别请求;装备重量.安然呵护.工作的靠得住性以及其它工艺请求.4.1.3 负载特点剖析精确肯定体系的外负载是设计控制体系的一个根本问题.它直接影响体系的构成和动力元件参数的选择,所以剖析负载特点应尽量反应客不雅现实.液压伺服体系的负载类型有惯性负载.弹性负载.粘性负载.各类摩擦负载(如静摩擦.动摩擦等)以及重力和其它不随时光.地位等参数变更的恒值负载等.4.2 拟定控制计划.绘制体系道理图在周全懂得设计请求之后,可根据不合的控制对象,按表6所列的根本类型选定控制计划并拟定控制体系的方块图.如对直线地位控制系同一般采取阀控液压缸的计划,方块图如图36所示.图36 阀控液压缸地位控制体系方块图表6 液压伺服体系控制方法的根本类型伺服体系控制旌旗灯号控制参数活动类型元件构成机液电液气液电气液模仿量数字量位移量地位.速度.加快度.力.力矩.压力直线活动摆动活动扭转活动1.阀控制:阀-液压缸,阀-液压马达2.容积控制:变量泵-液压缸;变量泵-液压马达;阀-液压缸-变量泵-液压马达3.其它:步近式力矩马达4.3 动力元件参数选择动力元件是伺服体系的症结元件.它的一个重要感化是在全部工作轮回中使负载按请求的速度活动.其次,它的重要机能参数能知足全部体系所请求的动态特点.此外,动力元件参数的选择还必须斟酌与负载参数的最佳匹配,以包管体系的功耗最小,效力高.动力元件的重要参数包含体系的供油压力.液压缸的有用面积(或液压马达排量).伺服阀的流量.当选定液压马达作履行元件时,还应包含齿轮的传动比.4.3.1 供油压力的选择选用较高的供油压力,在雷同输出功率前提下,可减小履行元件——液压缸的活塞面积(或液压马达的排量),因而泵和动力元件尺寸小重量轻,装备构造紧凑,同时油腔的容积减小,容积弹性模数增大,有利于进步体系的响应速度.但是随供油压力增长,因为受材料强度的限制,液压元件的尺寸和重量也有增长的趋向,元件的加工精度也请求进步,体系的造价也随之进步.同时,高压时,泄露大,发烧高,体系功率损掉增长,噪声加大,元件寿命下降,保护也较艰苦.所以前提许可时,平日照样选用较低的供油压力.经常应用的供油压力等级为7MPa到28MPa,可根据体系的要乞降构造限制前提选择恰当的供油压力.4.3.2 伺服阀流量与履行元件尺寸的肯定如上所述,动力元件参数选择除应知足拖动负载和体系机能两方面的请求外,还应斟酌与负载的最佳匹配.下面侧重介绍与负载最佳匹配问题.(1)动力元件的输出特点将伺服阀的流量——压力曲线经坐标变换绘于υ-F L平面上,所得的抛物线即为动力元件稳态时的输出特点,见图37.图37 参数变更对动力机构输出特点的影响a)供油压力变更;b)伺服阀容量变更;c)液压缸面积变更。
液压伺服阀工作原理
液压伺服阀是一种常用的液压控制元件,其工作原理基于流体压力的调控和流量的控制。
液压伺服阀一般由阀体、阀芯、弹簧、电磁铁等部件组成。
液压伺服阀的工作原理如下:
1. 稳态工作原理:当液压伺服阀处于静止状态时,阀芯通过弹簧受力保持在初始位置。
此时,液压油从液压源通过入口进入阀体,然后经过通道分配至工作执行部件(例如液动缸)。
由于阀芯处于静止状态,液压油流通过阀芯时,阀芯上的孔口会在阀芯与阀体之间形成不同的通道连接情况,从而调节液压油的流量。
当液动缸达到预定的位置时,压力反馈装置感应到液压油压力的变化,并通过反馈信息传给电磁铁。
2. 动态工作原理:当液动缸需要调节位置时,电磁铁会收到反馈信息,并通过调节电磁铁的通电时间和通电强度来控制阀芯的运动。
电磁铁通电后,产生的磁场作用下,将阀芯向开口方向推动或拉动。
随着阀芯的运动,液压油通道的连接情况发生改变,从而调节液压油的流量和压力。
当液动缸达到预定的位置后,电磁铁停止通电,阀芯由弹簧力将其复位到初始位置,从而实现位置的调节和控制。
通过不断调节电磁铁的通电情况,液压伺服阀可以实现对液动缸位置的精确控制。
液压伺服阀的工作原理使其在工程机械、船舶、模具制造等液压系统中起到重要的作用。
液压伺服阀工作原理
液压伺服阀是一种用于控制液压系统中液压执行元件运动的重要元件。
其工作原理是基于液压控制的自动调节功能,能够根据外部信号的变化,调节液压系统中的压力和流量,从而控制执行元件的运动。
液压伺服阀的工作原理可以简单描述为以下几个步骤:
1. 外部信号输入:液压伺服阀接收来自外部的信号输入,例如电信号或机械信号。
这个信号一般是由控制系统或操作者提供的,用于指示所需的阀门位置或运动速度。
2. 信号与控制元件配合:液压伺服阀将接收到的信号与内部的控制元件配合使用。
这些控制元件通常包括电磁阀、节流阀和比例控制阀等,它们通过相互配合的开启或关闭,以及相对大小的流量控制,来实现对液压系统的调节。
3. 液压系统压力和流量调节:根据输入信号的变化,伺服阀内的控制元件将相应地调节液压系统的压力和流量。
例如,当输入信号要求提高液压系统的流量时,控制元件会增大通道的截面积,从而增加液压流体的通过量;当输入信号要求降低压力时,控制元件会减小通道的截面积,从而阻碍液压流体的通过。
这样,液压系统的工作压力和流量就能够随着输入信号的变化而自动调节。
4. 执行元件运动控制:经过液压伺服阀调节后的液压系统,会将调节后的液压流体送到液压执行元件上,例如液压缸或液压
马达。
通过控制液压执行元件内的活塞或转子运动,最终实现对工作负荷的准确控制。
总结起来,液压伺服阀通过接收外部信号,配合内部控制元件的开启或关闭与流量控制,实现对液压系统压力和流量的调节,进而控制液压执行元件的运动。
这种工作原理使得液压伺服阀在各种工业应用中具有广泛的应用前景。
液压伺服系统液压伺服系统是以高压液体作为驱动源的伺服系统,是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。
液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。
一、液压伺服系统的基本组成液压伺服系统无论多么复杂,都是由一些基本元件组成的。
如图就是一个典型的伺服系统,该图表示了各元件在系统中的位置和相互间的关系。
(1)外界能源—为了能用作用力很小的输入信号获得作用力很大的输出信号,就需要外加能源,这样就可以得到力或功率的放大作用。
外界能源可以是机械的、电气的、液压的或它们的组合形式。
(2)液压伺服阀—用以接收输入信号,并控制执行元件的动作。
它具有放大、比较等几种功能,如滑阀等。
(3)执行元件—接收伺服阀传来的信号,产生与输入信号相适应的输出信号,并作用于控制对象上,如液压缸等。
(4)反馈装置—将执行元件的输出信号反过来输入给伺服阀,以便消除原来的误差信号,它构成闭环控制系统。
(5)控制对象—伺服系统所要操纵的对象,它的输出量即为系统的被调量(或被控制量),如机床的工作台、刀架等。
二、液压伺服系统的分类液压伺服系统是由液压动力机构和反馈机构组成的闭环控制系统,分为机械液压伺服系统和电气液压伺服系统(简称电液伺服系统)两类。
电液伺服系统电液伺服系统是一种由电信号处理装置和液压动力机构组成的反馈控制系统。
最常见的有电液位置伺服系统、电液速度控制系统和电液力(或力矩)控制系统。
如图是一个典型的电液位置伺服控制系统。
图中反馈电位器与指令电位器接成桥式电路。
反馈电位器滑臂与控制对象相连,其作用是把控制对象位置的变化转换成电压的变化。
反馈电位器与指令电位器滑臂间的电位差(反映控制对象位置与指令位置的偏差)经放大器放大后,加于电液伺服阀转换为液压信号,以推动液压缸活塞,驱动控制对象向消除偏差方向运动。
当偏差为零时,停止驱动,因而使控制对象的位置总是按指令电位器给定的规律变化。
伺服液压缸原理
伺服液压缸是一种通过液压力来实现精确位置控制的装置。
它由液压缸和伺服控制部分组成。
液压缸是伺服液压系统的执行部分,它包括液压缸筒、活塞以及密封件。
液压缸筒是一个金属筒体,内部衬有涂层来减少摩擦;活塞则是一个固定在筒内的圆柱体,通常由钢制成。
液压缸的密封件主要包括密封圈和密封垫,用于防止液压油泄露。
伺服液压系统通过控制压力和流量来控制液压缸的活塞位置,从而实现所需的运动。
具体来说,伺服控制部分会感知到外部的位置信号,并将其转化为电信号。
然后,这些电信号会经过信号处理部分,计算出所需的压力和流量,并通过控制阀门来实现液压系统的输出。
液压系统会将液压油送入液压缸,使活塞向所需的位置移动。
伺服液压系统具有快速响应、高精度和高稳定性的优点。
它可以广泛应用于工业生产中的定位、自动化控制和机器人技术等领域。
液压伺服工作原理
液压伺服系统是通过液压原理实现精确控制的一种机电装置。
其工作原理如下:
1. 液压伺服系统由液压泵、液压缸、控制阀和传感器等组成。
液压泵通过机械能输入,将机械能转化为流体能。
2. 液压泵将流体送入控制阀,控制阀通过调节液压流量和压力来控制流体的输出。
控制阀是系统的核心部件,它根据传感器信号和预设的控制要求,将流量和压力分配到液压缸上。
3. 传感器用于感知被控对象的实际状态,并将状态信息反馈给控制阀。
控制阀根据传感器的反馈信号,调整液压流量和压力,使得被控对象达到期望的位置、速度或力。
4. 液压流体进入液压缸,通过液压缸的活塞运动,产生线性位移或输出力。
液压缸的活塞由流体推动,通过活塞杆连接到被控对象,将控制信号转化为机械运动。
5. 当被控对象达到期望状态时,传感器感知到的状态信息与控制阀预设的控制要求相符,控制阀停止调节。
通过以上原理,液压伺服系统实现了对机械运动的精确控制。
其优点包括高承载能力、动态响应快、可靠性高、结构简单等。
在工业自动化领域广泛应用,例如数控机床、起重设备、注塑机等。
液压伺服系统工作原理液压伺服系统是一种将液压动力与伺服控制技术结合的控制系统。
它利用液压的优势来实现高速、高精度的运动控制。
液压伺服系统主要由液压源、执行元件、控制元件和传感器组成,通过控制元件对液压信号进行调节,驱动执行元件实现系统的动作。
液压伺服系统的工作原理基于液压传动的基本原理——泵的机械能转化为液压能的过程。
液压伺服系统通过泵将液体压力能转化为动能,然后通过执行元件将液压能转化为机械能,从而实现工作目标。
液压伺服系统使用液体作为工作介质,通过控制元件对液压信号进行调节,控制执行元件的动作。
在液压伺服系统中,常用的液体是油。
油的粘度和压力是影响液压系统工作效果的重要因素。
粘度越大,液压系统的动能传递效率越高。
而压力的大小则取决于工作要求,压力过大或过小都会影响系统的工作效果。
液压伺服系统中的泵是其核心部件,它负责将机械能转化为液压能。
在液压伺服系统中,常用的泵有齿轮泵、液压柱塞泵和叶片泵等。
泵通过提供压力将液体推送到执行元件中,从而实现系统的工作。
执行元件是液压伺服系统的执行部件,它将液压能转化为机械能,实现系统的运动。
常见的执行元件有液压缸和液压马达。
液压缸通过液体的力学效应来实现工作,而液压马达则通过液体的动力效应来实现工作。
执行元件的选择取决于具体的工作要求和系统性能。
控制元件是液压伺服系统中起控制作用的部件,它根据输入信号来控制和调节液压信号的大小和方向,从而实现对执行元件的控制。
常见的控制元件有阀门和流量分配器。
阀门负责控制和调节液体的流量和压力,而流量分配器则负责实现对液体流向的控制。
传感器是液压伺服系统中起反馈作用的部件,它通过感知系统的工作状态来提供反馈信号,从而实现对系统的控制。
常见的传感器有位置传感器和压力传感器。
位置传感器用于测量执行元件的位置,而压力传感器则用于测量液压系统的压力。
综上所述,液压伺服系统是一种将液压动力与伺服控制技术结合的控制系统。
它通过泵将机械能转化为液压能,然后通过控制元件对液压信号进行调节,驱动执行元件实现系统的动作。
液压伺服激振器工作原理
液压伺服激振器是一种利用液压系统实现振动控制的设备。
其工作原理涉及液压系统、传感器、控制器和执行器等多个组成部分。
以下是液压伺服激振器的基本工作原理:
1.液压系统:液压伺服激振器包括一个液压系统,其中包括液压油箱、液压泵、液压阀等组件。
液压油被泵送到执行器(通常是液压缸)以执行振动。
2.传感器:激振器通常配备有传感器,用于监测或测量振动的参数,如振动频率、振动幅度等。
这些传感器的反馈信息将被送回控制器,以便实时监测和调整系统的工作状态。
3.控制器:控制器是液压伺服激振器的核心部分,负责处理传感器反馈信息并根据预设的振动控制算法生成相应的液压控制信号。
控制器通常使用微处理器或数字信号处理器来进行高精度、实时的控制计算。
4.执行器:执行器将控制器生成的液压控制信号转化为机械振动,通常通过液压缸或液压马达来实现。
液压执行器的动作受到液压系统中液压油的压力和流量的控制。
5.闭环反馈控制:液压伺服激振器采用闭环反馈控制系统。
控制器通过不断地比较传感器反馈的实际振动参数与预设的目标振动参数,调整液压系统的工作状态,以使实际振动尽量接近目标振动。
6.振动调节算法:控制器中的振动调节算法可以根据不同的应用需求进行调整。
这可能包括调整振动的频率、幅度、相位等参数,以满足特定振动控制要求。
总体而言,液压伺服激振器通过实时监测振动、采集反馈信息、进行计算和调整液压系统的工作状态,实现了对振动的高精度、高效率的控制。
这种控制方式广泛应用于需要振动控制的领域,如工业生产中的振动台试验、航空航天领域中的结构振动控制等。
液压伺服工作原理
液压伺服是一种通过液压力来控制机械运动的系统。
它的工作原理是利用液压装置将流体压力转换成力或运动,通过传递流体压力来实现机械部件的控制和运动。
液压伺服系统主要由三个基本组成部分组成:能源部分、传动部分和执行部分。
能源部分包括液压泵或压力源,它提供高压液体供应;传动部分包括液压油路、阀门和管道等,它们用于传递液体压力和控制流量;执行部分包括液压缸、活塞和活塞杆等,它们通过接收流体能量来执行力或运动。
在液压伺服系统中,液压泵将机械能转化成液压能,产生高压液体。
液体经过控制阀调节流量和压力,然后通过管道传输到执行部件。
执行部件接收到液体能量后,将其转化为力或运动。
这样,就可以控制机械部件的位置、速度和力量。
液压伺服系统的工作原理可以简单地描述为:当控制阀打开时,液体从液压泵流出,并通过管道传输到液压缸。
液压缸接收到压力后,活塞向前推动,产生力或运动。
反之,当控制阀关闭时,液体停止流动,液压缸的活塞停止运动。
液压伺服系统具有许多优点,如传动比高、精度高、反应速度快、承载能力大等。
它广泛应用于各种工业领域,如机床、冶金、矿山等,实现精密控制和高效能量转换。
伺服液压机原理一、概述伺服液压机是一种利用液压技术和电气控制技术相结合的高精度、高效率的压力机。
它具有快速响应、高精度、低能耗等优点,广泛应用于汽车零部件、家电、电子产品等行业的生产中。
二、液压系统原理1. 液压系统组成液压系统由油箱、泵站、阀组和执行元件等四个部分组成。
其中,油箱储存液体,泵站将油液从油箱中吸入并加压,阀组控制油液流向和流量,执行元件将油液转化为机械能。
2. 液压系统工作原理当泵站启动时,泵体内的柱塞开始旋转,将油液从油箱中吸入并加压。
经过阀组调节后,油液进入执行元件内部,推动活塞运动。
当活塞到达设定位置时,阀组会自动切换方向使得油液流回油箱中。
这样就完成了一个完整的工作循环。
三、伺服控制原理1. 伺服控制系统组成伺服控制系统由控制器、电机、编码器和传感器等组成。
其中,控制器负责接收输入信号并输出控制信号,电机将电能转化为机械能,编码器用于反馈电机运动状态,传感器用于检测工件位置。
2. 伺服控制系统工作原理当输入信号到达控制器时,它会通过PID算法计算出相应的控制信号,并将其输出给电机。
电机根据控制信号的大小和方向调整自身转速和方向,同时编码器实时反馈电机运动状态给控制器。
当工件位置与设定位置相差较大时,传感器会检测到这种差异并发出报警信号,从而触发伺服系统进行调整。
四、伺服液压机原理1. 伺服液压机组成伺服液压机由液压系统、伺服控制系统和机械结构三个部分组成。
其中,液压系统负责提供动力和力量支持,伺服控制系统负责调节动力和力量的输出以及保证精度,机械结构则负责完成工件加工。
2. 伺服液压机工作原理当输入指令到达伺服控制系统时,它会根据设定参数计算出相应的控制信号,并将其输出给液压系统。
液压系统根据控制信号的大小和方向调整油液流量和压力,从而推动机械结构完成工件加工。
同时,伺服控制系统实时监测工件位置和加工状态,并根据反馈信息对液压系统进行调整,保证工件加工精度和稳定性。
五、总结伺服液压机是一种将液压技术和电气控制技术相结合的高精度、高效率的压力机。
液压伺服系统的特点及原理
随着液压伺服控制技术的飞速发展,液压伺服系统的应用越来越广泛,以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。
液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。
液压伺服控制系统原理:
液压伺服控制系统的工作特点:(1)在系统的输出和输入之间存在反馈连接,从而组成闭环控制系统。
反馈介质可以是机械的,电气的、气动的、液压的或它们的组合形式。
(2)系统的主反馈是负反馈,即反馈信号与输入信号相反,两者相比较得偏差信号控制液压能源,输入到液压元件的能量,使其向减小偏差的方向移动,既以偏差来减小偏差。
(3)系统的输入信号的功率很小,而系统的输出功率可以达到很大。
因此它是一个功率放大装置,功率放大所需的能量由液压能源供给,供给能量的控制是根据伺服系统偏差大小自动进行的。
综上所述,液压伺服控制系统的工作原理就是流体动力的反馈控制。
即利用反馈连接得到偏差信号,再利用偏差信号去控制液压能源输入到系统的能量,使系统向着减小偏差的方向变化,从而使系统的实际输出与希望值相符。