第六章回归分析
- 格式:ppt
- 大小:940.00 KB
- 文档页数:48
第6章多重共线性的情形及其处理思考与练习参考答案6.1 试举一个产生多重共线性的经济实例。
答:例如有人建立某地区粮食产量回归模型,以粮食产量为因变量Y,化肥用量为X1,水浇地面积为X2,农业投入资金为X3。
由于农业投入资金X3与化肥用量X1,水浇地面积X2有很强的相关性,所以回归方程效果会很差。
再例如根据某行业企业数据资料拟合此行业的生产函数时,资本投入、劳动力投入、资金投入与能源供应都与企业的生产规模有关,往往出现高度相关情况,大企业二者都大,小企业都小。
6.2多重共线性对回归参数的估计有何影响?答:1、完全共线性下参数估计量不存在;2、近似共线性下OLS估计量非有效;3、参数估计量经济含义不合理;4、变量的显著性检验失去意义;5、模型的预测功能失效。
6.3 具有严重多重共线性的回归方程能不能用来做经济预测?答:虽然参数估计值方差的变大容易使区间预测的“区间”变大,使预测失去意义。
但如果利用模型去做经济预测,只要保证自变量的相关类型在未来期中一直保持不变,即使回归模型中包含严重多重共线性的变量,也可以得到较好预测结果;否则会对经济预测产生严重的影响。
6.4多重共线性的产生于样本容量的个数n、自变量的个数p有无关系?答:有关系,增加样本容量不能消除模型中的多重共线性,但能适当消除多重共线性造成的后果。
当自变量的个数p较大时,一般多重共线性容易发生,所以自变量应选择少而精。
6.5 自己找一个经济问题来建立多元线性回归模型,怎样选择变量和构造设计矩阵X才可能避免多重共线性的出现?答:请参考第三次上机实验题——机场吞吐量的多元线性回归模型,注意利用二手数据很难避免多重共线性的出现,所以一般利用逐步回归和主成分回归消除多重共线性。
如果进行自己进行试验设计如正交试验设计,并收集数据,选择向量使设计矩阵X 的列向量(即X 1,X 2, X p )不相关。
6.6对第5章习题9财政收入的数据分析多重共线性,并根据多重共线性剔除变量。
第六章 相关与回归分析思考与练习一、判断题1.产品的单位成本随着产量增加而下降,这种现象属于函数关系。
答:错。
应是相关关系。
单位成本与产量间不存在确定的数值对应关系。
2.相关系数为0表明两个变量之间不存在任何关系。
答:.错。
相关系数为零,只表明两个变量之间不存在线性关系,并不意味着两者间不存在其他类型的关系。
3.单纯依靠相关与回归分析,无法判断事物之间存在的因果关系。
答:对,因果关系的判断还有赖于实质性科学的理论分析。
4.圆的直径越大,其周长也越大,两者之间的关系属于正相关关系。
答:错。
两者是精确的函数关系。
5.总体回归函数中的回归系数是常数,样本回归函数中的回归系数的估计量是随机变量。
答:对。
6.当抽取的样本不同时,对同一总体回归模型估计的结果也有所不同。
答:对。
因为,估计量属于随机变量,抽取的样本不同,具体的观察值也不同,尽管使用的公式相同,估计的结果仍然不一样。
二、选择题1.变量之间的关系按相关程度分可分为:b 、c 、da.正相关;b. 不相关;c. 完全相关;d.不完全相关; 2.复相关系数的取值区间为:aa. 10≤≤R ;b.11≤≤-R ;c.1≤≤∞-R ;d.∞≤≤-R 1 3.修正自由度的决定系数a 、b 、da.22R R ≤; b.有时小于0 ; c. 102≤≤R ;d.比2R 更适合作为衡量回归方程拟合程度的指标 4.回归预测误差的大小与下列因素有关:a 、b 、c 、da 样本容量;b 自变量预测值与自变量样本平均数的离差c 自变量预测误差;d 随机误差项的方差三、问答题1.请举一实例说明什么是单相关和偏相关?以及它们之间的差别。
答:例如夏季冷饮店冰激凌与汽水的消费量,简单地就两者之间的相关关系进行考察,就是一种单相关,考察的结果很可能存在正相关关系,即冰激凌消费越多,汽水消费也越多。
然而,如果我们仔细观察,可以发现一般来说,消费者会在两者中选择一种消费,也就是两者之间事实上应该是负相关。
第六章回归分析回归分析是研究变量间相关关系的一个统计分支,它主要解决以下面几个问题:(1)确定几个特定的变量之间是否存在相关关系,如果存在,找出它们之间合适的数学表达式;(2)根据一个或几个变量的值,预测或控制另一个变量的取值,并且要知道这种预测或控制可达到什么样的精确度;(3)进行因素分析,在共同影响一个变量的许多变量(因素)之间找出哪些因素重要,哪些因素次要,这些因素之间有什么关系等。
回归分析一元线性回归多元线性回归逐步回归非线性回归与回归诊断一元线性回归建立模型参数估计显著性检验预测预报一.建立模型引例1.一个作匀速直线运动的质点,在时刻t 的位置是S ,则S a bt =+,其中 a 为质点在t =0时刻的初始位置,b 为平均速度。
观测到的数据是ε+=s y ,其中ε是随机误差(测量误差)。
于是我们有ε+=s y ε++=bt a (6-1) 其中t 是非随机的,ε是随机的,通常认为E ε=0,显然y 也是随机的。
为了估计a 、b ,现在 n 个不同时刻作观察,得n 组观察值)(i i y t ,n i ,21 ,,=。
即 y i =i i bt a ε++ (i n =12,,, )用向量矩阵形式表示如下:εβ+=X Y 其中,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n y y y Y 21,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n εεεε 21,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n t t t X 21111,⎪⎭⎫ ⎝⎛=b a β。
问题:如何利用Y X 、的观测值来估计参数a 、b ,进一步预测未来时刻t 质点的位置。
引例2.在硝酸钠(3NaNO )的溶解度试验中,测得在不同温度C X 0下溶解于100份水中的硝酸钠份数y 数据见下表:x i 0 4 10 15 21 29 36 51 68y i 66.7 71.0 76.3 80.6 85.7 92.9 99.4 113.6 125试找出X 与Y 之间的关系。
图6-1bx a +εy =+(6-2)20406080100120140020406080 Y X =+βε 问题:如何利用观测值来估计参数a 、b ,从而确定y 与x 的近似线性关系。