第六章相关与回归分析方法
- 格式:doc
- 大小:274.16 KB
- 文档页数:13
第六章 相关与回归分析方式第一部份 习题一、单项选择题1.单位产品本钱与其产量的相关;单位产品本钱与单位产品原材料消耗量的相关 ( )。
A.前者是正相关,后者是负相关 B.前者是负相关,后者是正相关2.样本相关系数r 的取值范围( )。
∞<r <+∞≤r ≤1 C. -l <r <1 D. 0≤r ≤101y x ββ=+上,那么x 与y 之间的相关系数( )。
A.r =0B.r =1C.r =-1D.|r|=14.相关分析与回归分析,在是不是需要确信自变量和因变量的问题上( )。
A.前者无需确信,后者需要确信 B.前者需要确信,后者无需确信5.直线相关系数的绝对值接近1时,说明两变量相关关系的紧密程度是( )。
6.年劳动生产率x(千元)和工人工资y(元)之间的回归方程为y=10+70x ,这意味着年劳动生产率每提高1千元时,工人工资平均( )。
7.下面的几个式子中,错误的选项是( )。
8.以下关系中,属于正相关关系的有( )。
9.直线相关分析与直线回归分析的联系表现为( )。
10.进行相关分析,要求相关的两个变量( )。
A.都是随机的B.都不是随机的11.相关关系的要紧特点是( )。
B.某一现象的标志与另外的标志之间存在着必然的关系,但它们不是确信的关系12.相关分析是研究( )。
13.现象之间彼此依存关系的程度越低,那么相关系数( )。
01y x ββ=+中,假设10β<,那么x 与y 之间的相关系数( )。
A. r=0B. r=1C. 0<r <1D. —l <r <0 15.当相关系数r=0时,说明( )。
A.现象之间完全无关B.相关程度较小16.已知x 与y 两变量间存在线性相关关系,且210,8,7,100xy xy n σσσ===-=,那么x 与y 之间存在着( )。
17.计算估量标准误差的依据是( )。
A.因变量的数列B.因变量的总变差18.两个变量间的相关关系称为( )。
数据分析中的相关系数与回归分析数据分析是一门重要的学科,它通过收集、整理和分析数据来揭示数据背后的信息和规律。
在数据分析的过程中,相关系数和回归分析是两个常用的分析方法。
本文将介绍相关系数和回归分析的概念、计算方法以及应用场景。
一、相关系数相关系数用于衡量两个变量之间的相关性强度。
在数据分析中,我们经常会遇到多个变量之间的相互影响关系。
相关系数可以帮助我们了解这些变量之间的联系程度,从而更好地进行数据分析和决策。
计算相关系数的常用方法是皮尔逊相关系数(Pearson correlation coefficient)。
该系数的取值范围在-1到1之间,取值接近1表示两个变量呈正相关关系,取值接近-1表示两个变量呈负相关关系,取值接近0表示两个变量之间没有线性相关关系。
相关系数的计算可以使用公式:其中,n表示样本容量,X和Y分别表示两个变量的观测值,X的均值为μX,Y的均值为μY。
通过计算协方差和标准差,可以得到两个变量之间的相关系数。
相关系数在许多领域有着广泛的应用。
例如,在金融领域,相关系数可以用于衡量不同投资品之间的相关性,从而帮助投资者构建更加稳健和多样化的投资组合。
在医学研究中,相关系数可以用于分析药物疗效和副作用之间的关系。
在市场调研中,相关系数可以用于评估产品销售和广告投放之间的关联性。
二、回归分析回归分析是一种通过建立数学模型来预测和解释变量之间关系的方法。
它可以帮助我们了解一个或多个自变量对因变量的影响程度,并进行预测和推断。
回归分析的常用方法包括线性回归、多项式回归、逻辑回归等。
在这些方法中,线性回归是最常用的一种。
线性回归通过建立一个线性方程来描述自变量和因变量之间的关系。
例如,当只有一个自变量和一个因变量时,线性回归可以表示为:其中,Y表示因变量,X表示自变量,β0和β1表示回归系数,ε表示误差项。
回归分析的目标是通过拟合找到最佳的回归系数,使得拟合值尽可能接近实际观测值。
相关分析与回归分析的基本原理1. 引言相关分析与回归分析是统计学中常用的两种数据分析方法,它们可以帮助研究者理解变量之间的关系,并根据这些关系进行预测。
本文将介绍相关分析和回归分析的基本原理,包括其定义、应用场景以及计算方法。
2. 相关分析2.1 定义相关分析是一种用来研究两个或多个变量之间关系的统计方法。
它通过计算相关系数来衡量变量之间的相关性。
相关系数的取值范围为-1到1,其中-1表示完全的负相关,1表示完全的正相关,0表示无相关关系。
2.2 应用场景相关分析可应用于许多领域,如市场研究、医学研究、金融分析等。
例如,在市场研究中,我们可以使用相关分析来研究产品销量与广告投入之间的关系,了解其相关性,并根据相关性进行决策。
2.3 计算方法计算两个变量之间的相关系数可以使用皮尔逊相关系数或斯皮尔曼相关系数。
皮尔逊相关系数适用于连续变量,而斯皮尔曼相关系数适用于有序变量或非线性关系。
3. 回归分析3.1 定义回归分析是一种用来研究变量之间关系的统计方法,其基本思想是通过构建适当的数学模型来描述一个或多个自变量对因变量的影响。
回归分析可以帮助预测未来的观察值,并理解变量之间的因果关系。
3.2 应用场景回归分析可以应用于各种预测和建模的场景。
例如,在金融领域,回归分析可以用来预测股票价格的变动,了解影响股价的各种因素,并根据这些因素进行投资决策。
3.3 计算方法回归分析通常使用最小二乘法来拟合变量间的线性关系。
在回归分析中,自变量可以是单个变量或多个变量,而因变量是需要预测或解释的变量。
通过最小化残差平方和,可以得到最佳拟合的回归模型。
4. 相关分析与回归分析的联系与区别4.1 联系相关分析和回归分析都是用来研究变量之间关系的统计方法,它们都可以帮助研究者理解变量之间的相关性和影响程度。
4.2 区别相关分析主要关注变量之间的相关性,通过计算相关系数来衡量相关性的强度和方向;而回归分析则更加关注自变量对因变量的影响程度和预测能力,适用于建立因果关系和预测模型。
回归分析和相关分析的基本概念和方法回归分析和相关分析是统计学中常用的分析方法,用于研究变量之间的关系、预测变量的值以及对未来情况进行估计。
本文将介绍回归分析和相关分析的基本概念和方法。
回归分析是一种通过建立数学模型来描述变量之间关系的方法。
它基于一个或多个自变量(也称为预测变量)与一个因变量(也称为响应变量)之间的关系。
回归分析的目的是通过自变量的值来预测和解释因变量的值。
常见的回归分析方法有线性回归、多元回归和逻辑回归等。
线性回归是最常用的回归分析方法之一,它假设自变量和因变量之间存在线性关系,并通过拟合一条直线或平面来描述这种关系。
多元回归则可以处理多个自变量的情况,逻辑回归则适用于因变量为二元变量的情况。
回归分析的方法可以帮助我们理解变量之间的关系,并进行预测和解释。
它可以用于各个领域的研究,如经济学、社会学、医学等。
通过观察变量之间的相关性,我们可以了解它们之间的内在关系,并根据这些关系做出相应的决策。
与回归分析类似,相关分析也是研究变量之间关系的一种方法。
相关分析衡量了两个变量之间的线性关系强度和方向,它可以告诉我们变量之间的相关性程度。
相关系数的取值范围在-1到1之间,其中负值表示负相关,正值表示正相关,0表示无相关性。
相关分析可以帮助我们了解变量之间的关系,并可以预测一个变量的值,当我们知道其他相关变量的值时。
相关分析还可以用于探索性数据分析,帮助我们发现变量之间的新关系,并进行深入研究。
在进行回归分析和相关分析之前,我们需要先收集数据,并进行数据预处理。
这包括数据清洗、缺失值处理和异常值检测等步骤。
然后,我们可以根据研究的目的选择合适的回归模型或相关系数,并进行参数估计和假设检验。
为了确保结果的可靠性,我们还需要进行模型诊断和效果评估。
模型诊断可以检查模型是否满足回归或相关分析的假设,并纠正违反假设的情况。
效果评估可以通过计算预测误差、确定系数和显著性检验等指标来评估模型的拟合效果。
相关系数与线性回归分析相关系数和线性回归分析是统计学中常用的方法,用于研究变量之间的关系和进行预测分析。
本文将介绍相关系数和线性回归分析的概念、计算方法和应用场景。
一、相关系数相关系数是用来衡量两个变量之间的相关性强弱的统计指标。
它的取值范围是-1到1之间,值越接近于1或-1,表示两个变量之间的相关性越强;值越接近于0,则表示两个变量之间的相关性越弱。
计算相关系数的方法有多种,常见的是皮尔逊相关系数。
它可以通过协方差和两个变量的标准差来计算。
具体公式如下:r = Cov(X,Y) / (σX *σY)其中,r表示相关系数,Cov(X,Y)表示变量X和Y的协方差,σX和σY分别表示变量X和Y的标准差。
相关系数的应用非常广泛。
例如,在金融领域,相关系数可以用来研究股票之间的关联程度,有助于投资者进行风险分析和资产配置;在医学领域,相关系数可以用来研究疾病因素之间的关系,帮助医生进行诊断和治疗决策。
二、线性回归分析线性回归分析是一种用来研究自变量与因变量之间关系的统计方法。
它通过建立一个线性方程,来描述自变量对因变量的影响程度和方向。
线性回归模型可以通过最小二乘法来估计模型参数。
最小二乘法的基本思想是通过使模型预测值与实际观测值的残差平方和最小化来确定模型参数。
具体公式如下:Y = β0 + β1*X + ε其中,Y表示因变量,X表示自变量,β0和β1表示模型的参数,ε表示误差项。
线性回归分析常用于预测和解释变量之间的关系。
例如,在市场营销中,可以通过线性回归分析来预测产品销售量与价格、广告投入等因素的关系;在经济学中,可以利用线性回归模型来研究GDP与就业率、通货膨胀率等经济指标之间的关系。
三、相关系数与线性回归分析的关系相关系数和线性回归分析常常一起使用,因为它们有着密切的关联。
相关系数可以用来衡量两个变量之间的相关性强弱,而线性回归分析则可以进一步分析两个变量之间的因果关系。
在线性回归分析中,相关系数经常作为检验模型是否适用的依据之一。
回归分析和相关分析的联系和区别一、引言回归分析和相关分析是统计分析中最常用的两个分析方法,它们都可以用来研究变量之间的关系,但是它们有着很大的不同。
本文将深入探讨回归分析和相关分析之间的联系和区别。
二、回归分析回归分析是一种统计分析方法,它可以用来研究两个变量之间的关系,通常一个变量被视为自变量,另一个变量被视为因变量,回归分析可以用来推断自变量对因变量的影响。
回归分析可以用来预测因变量的值,从而帮助人们做出更好的决策。
举例来说,如果我们想研究一个公司的销售额与其广告投入之间的关系,我们可以使用回归分析,自变量为广告投入,因变量为销售额,我们可以通过回归分析来推断广告投入对销售额的影响,从而帮助公司做出更好的决策。
三、相关分析相关分析是一种统计分析方法,它可以用来研究两个变量之间的关系,它可以用来检测两个变量之间是否存在线性关系,以及这种关系的强度有多强。
举例来说,如果我们想研究一个公司的销售额与其广告投入之间的关系,我们可以使用相关分析,我们可以通过相关分析来检测销售额与广告投入之间是否存在线性关系,以及这种关系的强度有多强。
四、联系和区别回归分析和相关分析是统计分析中最常用的两个分析方法,它们都可以用来研究变量之间的关系,但是它们有着很大的不同。
首先,回归分析可以用来推断自变量对因变量的影响,从而帮助人们做出更好的决策,而相关分析只能用来检测两个变量之间是否存在线性关系,以及这种关系的强度有多强。
其次,回归分析可以用来预测因变量的值,而相关分析不能用来预测因变量的值。
最后,回归分析可以用来研究多个自变量对因变量的影响,而相关分析只能用来研究两个变量之间的关系。
五、结论回归分析和相关分析是统计分析中最常用的两个分析方法,它们都可以用来研究变量之间的关系,但是它们有着很大的不同,回归分析可以用来推断自变量对因变量的影响,从而帮助人们做出更好的决策,而相关分析只能用来检测两个变量之间是否存在线性关系,以及这种关系的强度有多强。
回归分析与相关性检验方法引言回归分析和相关性检验方法是统计学中常用的两种分析方法。
它们主要用于研究变量之间的关联程度和预测某一变量对其他变量的影响。
在实际应用中,回归分析和相关性检验方法具有广泛的应用领域,例如经济学、医学、社会科学等。
本文将对回归分析和相关性检验方法进行详细介绍,并给出相应的案例应用。
一、回归分析回归分析是一种统计学方法,用于研究因变量和一个或多个自变量之间关系的强度和方向。
回归分析有两种基本类型:简单线性回归和多元线性回归。
1. 简单线性回归简单线性回归是指当因变量和自变量之间存在一种线性关系时使用的回归分析方法。
简单线性回归的模型可以表示为:$y = \\beta_0 + \\beta_1x + \\epsilon$,其中y表示因变量,x表示自变量,$\\beta_0$和$\\beta_1$是回归系数,表示截距和斜率,$\\epsilon$表示误差项。
简单线性回归的关键是通过最小二乘法估计回归系数,然后进行显著性检验和模型拟合度的评估。
通过显著性检验可以确定回归系数是否显著不为零,进而得出自变量对因变量的影响是否显著。
2. 多元线性回归多元线性回归是指当因变量和多个自变量之间存在一种线性关系时使用的回归分析方法。
多元线性回归的模型可以表示为:$y = \\beta_0 + \\beta_1x_1 +\\beta_2x_2 + ... + \\beta_nx_n + \\epsilon$,其中y表示因变量,x1,x2,...,x n表示自变量,$\\beta_0, \\beta_1, \\beta_2, ..., \\beta_n$表示回归系数,$\\epsilon$表示误差项。
多元线性回归的关键也是通过最小二乘法估计回归系数,并进行显著性检验和模型拟合度的评估。
多元线性回归可以通过检验回归系数的显著性,判断各个自变量是否对因变量产生显著影响。
二、相关性检验方法相关性检验方法是用于检测变量之间关系的非参数统计学方法。
第六章SPSS相关分析和回归分析第六章SPSS相关分析与回归分析6.1相关分析和回归分析概述客观事物之间的关系大致可归纳为两大类,即,函数关系:指两事物之间的一种一一对应的关系,如商品的销售额和销售量之间的关系。
,相关关系(统计关系):指两事物之间的一种非一一对应的关系,例如家庭收入和支出、子女身高和父母身高之间的关系等。
相关关系乂分为线性相关和非线性相关。
相关分析和回归分析都是分析客观事物之间相关关系的数量分析方法。
6. 2相关分析相关分析通过图形和数值两种方式,有效地揭示事物之间相关关系的强弱程度和形式。
6.2. 1散点图它将数据以点的的形式画在直角坐标系上,通过观察散点图能够直观的发现变量间的相关关系及他们的强弱程度和方向。
6.2.2相关系数利用相关系数进行变量间线性关系的分析通常需要完成以下两个步骤:第一,计算样本相关系数r;,+1之间,相关系数r的取值在-1,R>0表示两变量存在正的线性相关关系;r〈0表示两变量存在负的线性相关关系,R,1表示两变量存在完全正相关;r, -1表示两变量存在完全负相关;r, 0表示两变量不相关,|r|>0.8表示两变量有较强的线性关系;r <0.3表示两变量之间的线性关系较弱第二,对样本来自的两总体是否存在显著的线性关系进行推断。
对不同类型的变量应采用不同的相关系数来度量,常用的相关系数主要有Pearson 简单,相关系数、Spearman等级相关系数和Kendall相关系数等。
6. 2. 2. 1 Pearson简单相关系数(适用于两个变量都是数值型的数据)(,)(,)yy, ixxi,r 22(,), (,) yy,, ixxiPearson简单相关系数的检验统计量为:rn, 22t,6. 2. 2. 2 Spearman等级相关系数Spearman等级相关系数用来度量定序变量间的线性相关关系,设计思想与Pearson 简1, r(,)xyii单相关系数相同,只是数据为非定距的,故计算时并不直接采用原始数据,而是利(,)xy(,)UViiii用数据的秩,用两变量的秩代替代入Pearson简单相关系数计算公式中,于是xyii其中的和的取值范禺被限制在1和n之间,且可被简化为:2nn6D, i22,,,,,其中rDUV1 (),, iii,, 2, nn(l)iillnn22DUV,, (),, iii,, llii,如果两变量的正相关性较强,它们秩的变化具有同步性,于是的值较小,r趋向于1;nn22DUV,, (),, iii,, Uii,如果两变量的正相关性较弱,它们秩的变化不具有同步性,于是的值较大,r趋向于0;,在小样本下,在零假设成立时,Spearman等级相关系数服从Spearman分布; 在大样本下,Spearman等级相关系数的检验统计量为Z统计•量,定义为:Zrn,, 1Z统计量近似服从标准正态分布。
回归分析与相关分析回归分析是一种通过建立数学模型来预测或解释因变量与自变量之间关系的方法。
它的核心思想是通过对已有数据建立一个函数,通过这个函数可以推断其他未知数据的值。
常见的回归模型包括线性回归、多项式回归、逻辑回归等。
线性回归是最为常见的回归模型之一,其基本原理是通过拟合一条直线来描述自变量与因变量之间的关系。
在线性回归中,常常使用最小二乘法来确定最佳拟合直线。
最小二乘法通过使得残差平方和最小来确定回归系数。
回归系数表示了自变量与因变量之间的关系强度和方向。
除了线性回归,还有多项式回归可以拟合非线性关系。
逻辑回归则适用于因变量为二元分类变量的情况。
相关分析是一种用来研究变量之间相关性的方法。
它可以帮助我们判断两个变量之间是否存在其中一种关系,并且能够量化这种关系的强度和方向。
常见的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
皮尔逊相关系数是一种用来测量两个连续变量之间线性相关程度的指标。
它的取值范围为-1到+1之间,-1表示完全负相关,0表示无相关,+1表示完全正相关。
斯皮尔曼相关系数则是一种非参数的相关系数,适用于两个变量之间的关系非线性的情况。
回归分析和相关分析可以相互配合使用,用来探索和解释变量之间的关系。
首先,通过相关分析,可以初步判断两个变量之间是否存在相关性。
然后,如果判断出存在相关性,可以使用回归分析来建立一个数学模型,以解释自变量对因变量的影响。
总之,回归分析和相关分析是统计学中常用的两种数据分析方法。
它们可以帮助我们研究和解释变量之间的关系,并用于预测和控制因变量的变化。
了解和掌握这两种方法,对于研究者和决策者来说都是非常重要的。
相关性分析与回归分析的区别及其应用一、前言统计学中有两个重要方法,一个是相关性分析,另一个则是回归分析。
对于这两种方法的应用,许多人都有所耳闻,但是他们很少有机会深入研究这些概念的内在区别。
在我们这篇文章中,我们将会对相关性分析和回归分析进行比较,并探讨它们各自在实际应用场景中的不同作用。
二、相关性分析相关性分析是研究变量之间的相关程度的一种方法。
通过计算变量之间的相关系数,我们可以了解到两个变量之间的线性关系强度和方向。
相关系数的值范围在-1和1之间,当它接近-1时,表示变量呈完全的负相关;当接近1时,则表示它们呈完全的正相关;当为0时,则表示变量之间不存在线性关系。
在实际应用中,相关性分析被广泛使用,如市场调查、医疗研究以及统计预测等领域。
例如,一些研究人员会使用相关性分析来研究消费者的购买习惯和年龄之间的关系,以便确定其目标市场并开发更有效的营销策略。
三、回归分析回归分析则是通过建立一个预测模型来探究变量之间的关系。
与相关性分析不同的是,回归分析不仅仅只是探索线性关系,还可以揭示非线性关系。
通过引入一些控制因素,我们可以建立一个比相关性分析更为复杂的模型。
在实际应用中,回归分析也被广泛使用。
例如,当我们想知道股票价格的变化和利率之间的关系时,就可以通过建立回归模型进行预测。
此外,回归分析还可以应用于风险分析、财务预测及时间序列等应用场景中。
四、相关性分析和回归分析的区别虽然相关性分析和回归分析都用于探究变量之间的关系,但它们之间还是有一些区别的。
首先,相关性分析只是描述了变量之间的线性关系强度和方向,而回归分析则是通过建立一个模型来预测其中一个变量的值。
其次,相关性分析只能告诉我们变量之间是否存在线性关系,而回归分析则可以更加深入地探究两个变量之间的关系,包括它们的函数形式关系及其中的交互作用。
最后,相关性分析和回归分析在应用场景中也有所不同。
相关性分析可用于研究市场调查和医疗研究等领域,而回归分析则更适用于预测和风险分析等应用场景中。
回归分析分析与相关性检验方法回归分析与相关性检验方法回归分析是一种常见的统计方法,用于研究两个或多个变量之间的关系。
相关性检验方法则是用来确定变量之间是否存在显著的相关性。
本文将介绍回归分析的原理和应用,并探讨相关性检验方法的使用。
一、回归分析回归分析是一种通过建立数学模型来描述和预测变量之间关系的方法。
在回归分析中,我们首先需要确定一个因变量和一个或多个自变量。
回归分析的目标是找到一个最佳拟合线(或曲线),用来描述因变量与自变量之间的关系。
回归分析有许多不同的方法,常见的包括简单线性回归、多元线性回归和非线性回归等。
简单线性回归适用于只有一个自变量和一个因变量的情况,多元线性回归则适用于有多个自变量的情况。
非线性回归则可以处理自变量与因变量之间的非线性关系。
在进行回归分析时,我们需要考虑一些重要的统计指标,如回归系数、拟合优度和显著性检验。
回归系数表示因变量在自变量变化时的变化量,拟合优度则用于评估回归模型对实际数据的拟合程度。
显著性检验则用来确定回归模型是否存在统计显著性。
回归分析可以在许多领域中得到广泛应用。
它可以用于经济学中分析收入与支出的关系,用于生物学中研究生物特征间的相关性,还可以用于营销学中预测产品销售额等。
二、相关性检验方法相关性检验是一种常用的统计方法,用于确定变量之间是否存在显著的相关性。
相关性检验可以帮助我们了解变量之间的关系,从而更好地进行数据分析和预测。
最常见的相关性检验方法是皮尔逊相关系数。
皮尔逊相关系数衡量了两个变量之间的线性相关性,它的取值范围在-1到1之间。
当皮尔逊相关系数为正时,表示两个变量呈正相关;当皮尔逊相关系数为负时,表示两个变量呈负相关;当皮尔逊相关系数接近于0时,则表示两个变量之间没有线性关系。
在进行相关性检验时,我们首先需要计算皮尔逊相关系数,然后进行显著性检验。
显著性检验通常使用t检验或F检验,以确定相关系数是否显著。
若相关系数的p值小于设定的显著性水平(如0.05),则可以认为相关系数是显著的,变量之间存在相关性。
第六章 相关与回归分析方法第一部分 习题一、单项选择题1.单位产品成本与其产量的相关;单位产品成本与单位产品原材料消耗量的相关 ( )。
A.前者是正相关,后者是负相关 B.前者是负相关,后者是正相关 C.两者都是正相关 D.两者都是负相关2.样本相关系数r 的取值范围( )。
A.-∞<r <+∞B.-1≤r ≤1C. -l <r <1D. 0≤r ≤13.当所有观测值都落在回归直线01y xββ=+上,则x 与y 之间的相关系数( )。
A.r =0 B.r =1 C.r =-1 D.|r|=1 4.相关分析与回归分析,在是否需要确定自变量和因变量的问题上( )。
A.前者无需确定,后者需要确定 B.前者需要确定,后者无需确定 C.两者均需确定 D.两者都无需确定5.直线相关系数的绝对值接近1时,说明两变量相关关系的密切程度是( )。
A.完全相关 B.微弱相关 C.无线性相关 D.高度相关6.年劳动生产率x(千元)和工人工资y(元)之间的回归方程为y=10+70x ,这意味着年劳动生产率每提高1千元时,工人工资平均( )。
A.增加70元B.减少70元C.增加80元D.减少80元 7.下面的几个式子中,错误的是( )。
A. y= -40-1.6x r=0.89B. y= -5-3.8x r =-0.94C. y=36-2.4x r =-0.96D. y= -36+3.8x r =0.98 8.下列关系中,属于正相关关系的有( )。
A.合理限度内,施肥量和平均单产量之间的关系B.产品产量与单位产品成本之间的关系C.商品的流通费用与销售利润之间的关系D.流通费用率与商品销售量之间的关系 9.直线相关分析与直线回归分析的联系表现为( )。
A.相关分析是回归分析的基础B.回归分析是相关分析的基础C.相关分析是回归分析的深入D.相关分析与回归分析互为条件 10.进行相关分析,要求相关的两个变量( )。
A.都是随机的B.都不是随机的C.一个是随机的,一个不是随机的D.随机或不随机都可以 11.相关关系的主要特征是( )。
A.某一现象的标志与另外的标志之间存在着确定的依存关系B.某一现象的标志与另外的标志之间存在着一定的关系,但它们不是确定的关系C.某一现象的标志与另外的标志之间存在着严重的依存关系D.某一现象的标志与另外的标志之间存在着函数关系 12.相关分析是研究( )。
A.变量之间的数量关系B.变量之间的变动关系C.变量之间相互关系的密切程度D.变量之间的因果关系 13.现象之间相互依存关系的程度越低,则相关系数( )。
A.越接近于0B.越接近于-1C.越接近于1D.越接近于0.514.在回归直线01y x ββ=+中,若10β<,则x 与y 之间的相关系数( )。
A. r=0B. r=1C. 0<r <1D. —l <r <0 15.当相关系数r=0时,表明( )。
A.现象之间完全无关B.相关程度较小C.现象之间完全相关D.无直线相关关系16.已知x 与y 两变量间存在线性相关关系,且210,8,7,100xy xy n σσσ===-=,则x 与y 之间存在着( )。
A.较密切的正相关B.较低度的正相关C.较密切的负相关D.低度负相关 17.计算估计标准误差的依据是( )。
A.因变量的数列B.因变量的总变差C.因变量的回归变差D.因变量的剩余变差 18.两个变量间的相关关系称为( )。
A.单相关B.复相关C.无相关D.负相关 19.从变量之间相关的方向看,可分为( )。
A.正相关与负相关 B.直线相关和曲线相关 C.单相关与复相关 D.完全相关和无相关20.从变量之间相关的表现形式看,可分为( )。
A.正相关与负相关 B.直线相关和曲线相关 C.单相关与复相关 D.完全相关和无相关21.物价上涨,销售量下降,则物价与销售量之间属( )。
A.无相关 B.负相关 C.正相关 D.无法判断 22.估计标准误差是反映( )。
A.平均数代表性的指标B.相关关系的指标C.回归直线的代表性指标D.序时平均数代表性指标23.回归直线和相关系数的符号是一致的,其符号均可用来判断现象是( )。
A.正相关还是负相关 B.线性相关还是非线性相关 D.单相关还是复相关 C.完全相关还是不完全相关24.某校经济管理类的学生学习《统计学》的时间x 与考试成绩y 之间建立线性回归方程01y x ββ=+。
经计算,方程为y =20-0.8x ,该方程参数的计算( )。
A.0β值是明显不对的 B. 1β值是明显不对的 C.0β值和1β值都是不对的 D.0β值和1β值都是正确的25.在回归分析中,自变量同因变量地位不同,在变量x 与y 中,y 依x 回归同x 依y 回归是( )。
A.同一个问题B.有联系但意义不同的问题C.一般情况下是相同的问题D.是否相同,视两相关变量的具体内容而定二、多项选择题1.下列现象中属于相关关系的有( )。
A.压力与压强B.现代化水平与劳动生产率C.圆的半径与圆的面积D.身高与体重E.机械化程度与农业人口 2.相关关系与函数关系各有不同特点,主要体现在( )。
A .相关关系是一种不严格的互相依存关系 B.函数关系可以用一个数学表达式精确表达 C.函数关系中各现象均为确定性现象D.相关关系是现象之间具有随机因素影响的依存关系E.相关关系中现象之间仍可以通过大量观察法来寻求其变化规律3.销售额与流通费用率,在一定条件下,存在相关关系,这种相关关系属于( )。
A.正相关 B.单相关 C.负相关 D.复相关 E.完全相关4.在直线相关和回归分析中( )。
A .据同一资料,相关系数只能计算一个 B.据同一资料,相关系数可以计算两个 C.据同一资料,回归方程只能配合一个D.据同一资料,回归方程随自变量与因变量的确定不同,可能配合两个E.回归方程和相关系数均与自变量和因变量的确定无关 5.相关系数r 的数值( )。
A.可为正值B.可为负值C.可大于1D.可等于-1E.可等于16.相关系数r =0.9,这表明现象之间存在着( )。
A.高度相关关系B.低度相关关系C.低度负相关关系D.高度正相关关系E.低度正相关关系 7.拟合直线回归方程是为了( )。
A.确定两个变量之间的变动关系B.用因变量推算自变量C.用自变量推算因变量D.两个变量相互推算E.确定两个变量间的相关程度8.在直线回归分析中,确定直线回归方程的两个变量必须是( )。
A.一个自变量,一个因变量 B.均为随机变量 C.对等关系 D.一个是随机变量,一个是可控制变量 E.不对等关系 9.直线相关分析的特点有( )。
A.两个变量是对等关系B.只能算出一个相关系数C.相关系数有正负号,表示正相关或负相关D.相关的两个变量必须都是随机的E.回归方程有两个10.从变量之间相互关系的表现形式看,相关关系可分为( )。
A.正相关B.负相关C.直线相关D.曲线相关E.不相关和完全相关 11.直线相关分析与直线回归分析的区别在于( )。
A.相关的两个变量都是随机的,而回归分析中自变量是给定的数值,因变量是随机的B.回归分析中的两个变量都是随机的,而相关中的自变量是给定的数值,因变量是随机的C.相关系数有正负号,而回归系数只能取正值D.相关的两个变量是对等关系,而回归分析中的两个变量不是对等关系E.相关分析中根据两个变量只能计算出一个相关系数,而回归分析中根据两个变量只能配合一个回归方程12.确定直线回归方程必须满足的条件是( )。
A.现象之间存在着直接因果关系B.现象之间存在着较密切的直线相关关系C.相关系数必须等于1D.两变量必须均属于随机变量E.相关数列的项数必须有相应的数量 13.下列哪些关系是相关关系( )。
A.圆的半径长度和周长的关系 B.农作物收获和施肥量的关系 C.商品销售额和利润率的关系 D.产品产量与单位成品成本的关系 E.家庭收入多少与消费支出增长的关系14.直线回归方程01y x ββ=+中的1β称为回归系数,回归系数的作用是( )。
A.可确定两变量之间因果的数量关系 B.可确定两变量的相关方向 C.可确定两变量相关的密切程度D.可确定因变量的实际值与估计值的变异程度E.可确定当自变量增加一个单位时,因变量的平均增加量 15.相关系数与回归系数( )。
A.回归系数大于零则相关系数大于零B.回归系数小于零则相关系数小于零C.回归系数大于零则相关系数小于零D.回归系数小于零则相关系数大于零E.回归系数等于零相关系数等于零三、填空题1、按变量的多少可将相关关系分为( )和( )两种;按变量之间的相关的表现形态可分为( )和( )两种;按相关关系的程度不同可分为( )、( )和( )三种;而简单相关按相关的方向不同分为( )和( )两种。
2、一般地,当相关系数的绝对值为1时,相关关系就转化为( )。
3、相关系数r 的符号反映相关关系的( ),其绝对值的大小反映两变量线性相关的( )。
4、相关系数r=0表明两个变量( )。
5、样本容量较大时,样本相关系数r 越大,表示总体的相关程度( )。
6、相关系数的取植范围是( );判定系数的取植范围是( )。
7、估计回归方程的参数时,常用的方法是( ),其基本要求是( )。
8、当回归系数大于零时,相关系数( )零。
9、在线性总体回归模型中,变量i Y的取值可以分割为两部分:一部分是( ),另一部分是( )。
10、回归分析和相关分析的联系表现在:相关分析是回归分析的( ),回归分析是相关分析的( )。
11、总离差可分解为两部分,一部分是可以被解释的( ),另一部分则是不能被解释的( )。
12、反映样本回归线对总体回归线拟合好坏的指标是( )。
四、简答题1.什么是相关关系?相关关系有什么特点,如何度量?2.简述相关关系的种类。
3.相关分析的主要内容包括哪些?4.试给出测定变量相关关系的常用方法。
5.简述积矩相关系数检验的步骤。
6.简述相关分析与回归分析的区别与联系。
7.什么是估计标准误差? 有什么作用?8.以一元线性回归方程为例,简述回归系数显著性检验的主要步骤。
9.简述非线性线性化的常用方法。
10.一元线性回归中两变量的样本相关系数、回归系数斜率项的估计值和回归模型的判定系数的关系如何?五、计算题(1)根据以上简单相关表的资料,绘制相关散点图,并判别相关关系的表现形式和方向。
(2)试以耐用消费品销售额为因变量、人均收入为自变量做回归分析(包括相关的检验)。
2.某地区31年中的个人储蓄及个人收入资料如下表所示:储蓄收入储蓄收入储蓄收入264 8777 898 16730 2017 27430105 9210 950 17663 2105 2956090 9954 779 18575 1600 28150131 10508 819 19535 2250 32100122 10979 1222 21163 2420 32500107 11912 1702 22880 2570 35250406 12747 1578 24127 1720 33500503 13499 1654 25604 1900 36000431 14269 1400 26500 2100 36200588 15522 1829 27670 2300 38200898 16730 2200 28300 4333 46733 利用给定的资料,建立一元线性回归模型,进行回归分析。