控制冷却对HJ58钢中厚板性能的影响
- 格式:pptx
- 大小:2.90 MB
- 文档页数:12
中厚板控制冷却技术研究作者:刘辉来源:《商品与质量·学术观察》2014年第01期摘要:控制冷却是提高中厚板产品性能和附加值的重要手段。
它能简化生产工艺并提高生产效率,节约能源及昂贵合金元素,并有很大的经济效益。
本文就控制冷却技术的现状、控制冷却的作用、影响冷却质量的主要因素以及控制冷却技术在应用中需解决的几个问题四方面进行阐述。
关键词:中厚板控制冷却因素1、控制冷却技术的现状中厚钢板大约有 200 年的生产历史,它是国家工业化进程和发展中不可缺少的钢铁品种,被广泛用于大直径输送管、压力容器、锅炉、桥梁、海洋平台、各类舰艇、坦克装甲、车辆、建筑构件、机器结构等领域。
世界钢铁工业的发展历程表明,中厚板的生产水平及材料所具有的水平也是国家钢铁工业及钢铁材料水平的一个重要标志。
随着我国经济的快速增长,中厚板的市场需求将越来越大,同时市场竞争也将越来越激烈。
各中厚板厂家为了提高产品竞争力,纷纷采用新的设备或者新的控轧控冷工艺来提高中厚板的综合性能。
控制轧制和控制冷却工艺(CRC)是现代钢铁工业最大的技术成就之一。
对于一些钢材,控轧控冷后不必实施常规轧制的轧后热处理工艺,从而简化了生产工艺,提高了生产效率,并且可以节约能源,省去昂贵的合金元素,具有很大的社会效益和经济效益。
随着用户对中厚板质量和性能的要求越来越高,控制轧制和控制冷却新工艺逐渐应用于中厚板生产领域。
控制冷却是中厚板生产中提高产品质量、开发高附加值产品的最重要的手段。
但是我国有些钢厂的控制冷却装置使用效果并不理想,有的甚至基本不用,成为一种摆设。
不少厂家采用的是简易喷淋冷却装置及用控温轧制来替代控制轧制。
而控轧控冷技术在日本应用率达 70%以上。
国内许多中厚板厂只是引进国外的控轧控冷设备,对国外工艺技术消化不彻底,没有充分发挥出控轧控冷技术的潜力。
近几年,各中厚板厂在残酷的市场竞争中充分认识到控制冷却的优越性,相继安装了控制冷却设备,同时积极开发冷却控制系统。
中厚板轧后控冷技术应用中厚板轧后控冷技术应用摘要:叙述了控制冷却技术对钢材组织性能的影响、控制方式、主要设备、工艺、技术应用,并提出了应用控冷技术应注意的几个问题。
关键词:中厚板;控制冷却技术;应用中图分类号:TF713.2文献标识码:A文章编号:引言:生产中厚钢板的控制冷却技术(ACC)自20世纪80年代初在日本首次投入使用以来,由于它在控制产品的组织和性能,提高产品附加值方面发挥了很大的作用,因而很快在世界范围内被推广应用。
目前控制冷却技术已广泛应用于桥梁、建筑、结构、管道、压力容器用钢生产过程成为当代钢铁工业最重要的技术成就之一。
1.控制冷却技术对钢材性能的影响控制冷却技术是控制轧后钢板的冷却速度从而达到控制钢板组织性能的目的。
控制冷却技术之所以受到重视并得到广泛应用推广,是因为它比经过再加热后的等轴奥氏体加速冷却能产生更大的强化韧性效果,在进一步细化铁素体的同时使珠光体分布均匀,消除带状珠光体,并且有可能形成细贝氏体组织。
此外在控制冷却过程中阻止或延迟了碳化物过早析出,使其在铁素体中弥散,提高钢板强度而不损害脆性转化温度。
2.控制冷却的主要方式目前,中厚板控制冷却方式主要有压力喷射冷却、层流冷却、雾化冷却、喷淋冷却和直接淬火等。
2.1高压喷射冷却水以一定压力从喷嘴喷出,水流连续呈紊流状态喷射到钢板表面。
这种冷却方法穿透性好,一般在水汽膜比较厚的条件下采用。
但是,这种冷却方式用水量大、水花飞溅严重、冷却不均匀、水质要求高、喷嘴易被堵塞而且水的利用率较低。
2.2喷淋冷却将水加压,由喷嘴喷出的水的流速超过连续喷流,水流破断后形成的液滴冲击被冷却的钢板表面。
这种喷嘴冷却能力强,冷却较为均匀,但是需要很高的水压,冷却能力的调节范围较窄,而且对水质要求高。
2.3层流冷却水以较低压力从水口自然连续流出,形成平滑水流。
水流流到钢板表面后在一段距离内仍保持平滑层流状态,可获得很强的冷却能力,冷却均匀。
目前,钢板热轧后的层流冷却一般采用板层流(水幕冷却)和管层流(U形管层流)两种方式。
冷却条件对金属的影响一、冷却条件的基本概念冷却条件是指金属在加工过程中,从高温状态迅速或不迅速地冷却到室温的条件。
冷却条件对金属的晶体结构、机械性能、塑性、韧性、耐磨性等性能指标产生重要影响。
二、冷却条件对金属晶体结构的影响1.晶粒大小:冷却速度越快,晶粒越细小;冷却速度越慢,晶粒越大。
晶粒大小对金属的机械性能产生重要影响,晶粒越细,金属的强度和硬度越高,但韧性降低。
2.相变:冷却条件会影响金属的相变过程,如马氏体转变、贝氏体转变等。
冷却速度不同,相变产物也不同,从而影响金属的机械性能。
三、冷却条件对金属机械性能的影响1.强度和硬度:冷却速度越快,金属的强度和硬度越高。
这是因为快速冷却使晶粒细小,晶界增多,阻碍了位错的运动,从而提高了强度和硬度。
2.韧性:冷却速度越慢,金属的韧性越好。
慢冷使晶粒长大,晶界减少,位错运动容易,从而提高了韧性。
3.塑性:冷却条件对金属的塑性影响较小,但一般来说,慢冷有利于提高金属的塑性。
四、冷却条件对金属耐磨性的影响冷却条件对金属的耐磨性也有很大影响。
一般来说,快速冷却得到的细晶金属具有更好的耐磨性,因为细晶金属的晶界更多,阻碍了磨损颗粒的侵入。
五、冷却条件的控制与改善1.控制冷却速度:通过控制冷却速度,可以得到不同性能指标的金属材料。
例如,高速冷却可以得到高强度、高硬度的金属材料;慢速冷却被用于提高金属的韧性和塑性。
2.热处理:通过热处理工艺,如退火、正火、淬火等,可以改变金属的冷却条件,从而改善金属的性能。
3.材料选择:选择合适的材料,根据其本身的性能特点,可以更好地适应不同的冷却条件。
综上所述,冷却条件对金属的晶体结构、机械性能、塑性、韧性、耐磨性等性能指标产生重要影响。
了解和掌握冷却条件对金属性能的影响,对于金属材料的加工和应用具有重要意义。
习题及方法:1.习题:冷却速度对晶粒大小有何影响?方法:冷却速度越快,晶粒越细小;冷却速度越慢,晶粒越大。
这是因为快速冷却使晶粒生长时间不足,导致晶粒细小;慢冷使晶粒有足够时间生长,因此晶粒较大。
特厚钢板的冷却速率控制及组织性能改善方法钢板作为一种重要的结构材料,广泛应用于建筑、船舶、汽车等领域。
特厚钢板因其更高的强度和更好的耐热性能,在一些特殊工程中尤其重要。
然而,特厚钢板的生产过程中常常出现冷却速率控制不当和组织性能不理想的问题。
本文将针对这一问题进行探讨,并提出一些改善方法。
首先,特厚钢板的冷却速率控制对其机械性能和组织性能有着重要的影响。
通常情况下,快速冷却会导致钢板产生较高的强度和较细的晶粒,但同时也容易引起应力集中和脆性相的生成。
相反,慢速冷却能够减少内应力和改善韧性,但会增加晶粒尺寸,从而降低钢板的强度。
因此,钢板生产过程中需要在保证强度的同时控制冷却速率,以获得理想的组织性能。
针对特厚钢板的冷却速率控制,一种常用的方法是采用分层冷却技术。
该技术在钢板的厚度方向上设置多个冷却区段,通过调整各区段的冷却强度和速度,实现特厚钢板冷却速率的控制。
具体实施时,可以增加冷却引导装置,增加冷却介质的流速或降低冷却剂的温度,以加快冷却速率;或者采用预冷法,通过预先在局部区域降低温度,控制钢板冷却速率的非均匀性。
这些方法可以有效减少特厚钢板冷却速率的不均匀性,提高其组织性能。
其次,特厚钢板的组织性能改善也是值得关注的问题。
组织性能的优化可以进一步提高钢板的强度和韧性,从而满足特定工程的要求。
目前,常用的方法包括热处理、控轧和微合金化等。
热处理是一种常用的组织性能改善方法,通过钢板的加热和冷却过程,调整相组成和相结构,获得理想的组织性能。
在特厚钢板的热处理过程中,通常采用正火、淬火和回火等工艺。
正火能够使钢板的组织均匀化,提高其强度和韧性;淬火则能够获得较高的强度但韧性较低的组织;回火可以降低应力和改善韧性。
根据特厚钢板的具体要求,可以选择适当的热处理方法进行组织性能的改善。
控轧技术是另一种常用的组织性能改善方法。
在特厚钢板的轧制过程中,控制轧制温度和变形温度可以调整钢板的组织结构和尺寸。
通常情况下,高温轧制能够获得较粗的晶粒和较低的组织硬度,有利于提高韧性;而低温轧制则能够获得细小的晶粒和较高的组织硬度,提高强度。
控制轧制及控制冷却技术在型钢生产中的应用一、导言在当今工业领域中,钢铁工业一直扮演着不可或缺的角色。
而型钢作为钢铁产品中的重要一员,其质量和性能的提升一直是企业和行业追求的目标。
控制轧制及控制冷却技术作为一种重要的生产工艺,对型钢的生产和性能提升具有重要意义。
本文将从控制轧制和控制冷却技术在型钢生产中的基本原理、关键技术和应用实例等方面展开探讨,旨在深入了解这一主题的重要性和具体应用。
二、控制轧制技术控制轧制技术是指钢铁生产中利用先进的控制系统和设备,对轧制过程中的参数进行精确控制,以获得高质量、高性能的型钢产品的一种技术。
这项技术最早应用于薄板生产领域,后来逐步在型钢生产中得到推广和应用。
1. 温度控制:在轧制过程中,控制轧制技术可以通过对钢坯的温度进行精确调控,以保证轧制过程中的塑性变形性能,从而得到均匀、细腻的晶粒结构。
2. 形状控制:利用控制轧制技术可以对轧制过程中的轧辊、模具等设备进行精确控制,获得符合设计要求的型钢截面形状和尺寸精度。
3. 轧制力控制:控制轧制技术可以实现对轧制力的实时监测和调节,避免轧制过程中的过度变形,并保证产品的尺寸和形状精度。
三、控制冷却技术控制冷却技术是指在型钢生产过程中,通过对冷却过程的控制,使钢材在冷却过程中获得理想的组织和性能。
这项技术的应用可以有效提高型钢的强度、韧性和耐磨性等性能,同时降低产品的变形和裂纹率。
1. 冷却介质控制:通过选择不同的冷却介质和控制冷却速度,可以使型钢获得不同的组织和性能,如马氏体组织、贝氏体组织等,从而满足不同领域对型钢性能的要求。
2. 温度控制:在控制冷却技术中,对冷却过程中的温度进行精确控制,可以有效控制组织相变,并获得理想的力学性能,如强度、韧性等。
3. 冷却速度控制:通过对型钢冷却速度进行控制,可以获得不同的组织和性能,如快速冷却可以获得细小的组织和高强度,而缓慢冷却则可以得到较好的塑性和韧性。
四、控制轧制及控制冷却技术在型钢生产中的应用实例1. 控制轧制技术在型钢生产中的应用:某钢铁企业引进了先进的控制轧制系统和设备,通过对轧制过程中的温度、形状和轧制力等参数进行精确控制,生产出了高精度、高强度的型钢产品,受到了市场的广泛认可。
控制轧制工艺对中厚板性能的影响摘要:基于2800 mm热轧生产线的装备特点,对TC4中厚板材进行了控制轧制工艺的开发,以提高它的强韧性。
为了对比工艺效果,对同一规格TC4合金板材分别采用常规轧制与控制轧制工艺进行热轧,经800℃×1 h/AC的普通退火后,对板材试样进行了金相分析和力学性能测试。
结果表明:与常规轧制工艺相比,控制轧制后的板材室温强度提高了约30 MPa,而伸长率与常规轧制板材的基本相当;由于轧透性大大提高,板材断面组织更加细小均匀。
关键词:钛合金板;控制轧制;力学性能;微观组织1、前言管线钢在国内许多钢厂都已生产,但成品均为板卷交货。
在中厚板轧机上生产管线钢受到设备能力限制,一直不能大批量生产。
近几年来国内引进国外的先进控轧控冷设备和技术,使在中厚板生产过程中实现控轧控冷工艺成为可能。
由于中厚板生产采用未再结晶控轧控冷工艺,不能实施大压下制度,因此提出了再结晶区控轧控冷工艺。
国内外许多资料介绍了Nb-V-Ti微合金钢的再结晶区控轧控冷工艺实施机理2、两种控轧控冷工艺对组织和性能的影响通过实验室得到了一40℃时低温冲击韧性为150J/ c}n2左右的低碳微合金钢板,为中厚板管线钢的生产奠定了理论基础。
日本也有双机架中厚板轧机采用再结晶控轧工艺生产管线钢的实例。
本文根据前人的试验结果,在单机架四辊可逆中厚板轧机上作了试轧,比较了两种工艺的各自优缺点,可作为同类产品的生产借鉴。
2试轧工艺制度和数据采集管线钢化学成分见表对于14~的成品板,选用160~厚的板坯,采用两种轧制工艺:再结晶区控轧控冷和未再结晶区控轧及轧后空冷工艺。
由于工艺上的限制,轧后20 s进入水冷段。
力学性能采用MIS一300 kN万能试验机测试,用Neophot 显微镜观察金相组织和夹杂物形貌。
现场工艺参数记录和性能检验见表203试验结果分析和讨论。
可以看出:(1)两种工艺的6、和明相差不大,这是由于在多边形铁素体+少量珠光体钢中,微合金元素的析出强化是影响强度的主要因素,因此,化学成分是影响钢的强度的主要因素;(2)再结晶区控轧冲击韧性要比未再结晶区控轧的冲击韧性低,而且随着冲击功的测试温度的降低,下降很快,见图1、图2。
冷加工对钢材性能的影响
在常温下加工叫冷加工,冷拉、冷弯、冲孔、机械剪切等加工使钢材产生很大塑性变形,产生很大塑性变形后的钢材在重新加荷时将提高屈服点,同时降低塑性和韧性。
例如图2-7最下面一条线是一次拉伸试验时的应力一应变曲线,若到达图中的B点卸荷后,曲线将循B 下降到C点,重新加荷,曲线将循CBD进行,这相当于将原点0移至C点,结果是减小了钢的变形能力,亦即降低了钢的塑性性能,这个过程称为冷加工硬化或应变硬化。
在钢结构中由于对钢材的塑性和韧性要求较高,因此一般不利用这现象以提高钢材的属服点。
把微弯的杆调直,如应变不超出屈服平台,则不提高属服强度,材料的延性也下降不多。
但剪切和冲孔使钢材产生严重的塑性变形,以致剪断的边缘和冲成的孔壁严重硬化,甚至出现裂纹。
对比较重要的结构,剪断处需要刨边,如重级工作制吊车梁截面的剪切边,冲孔则用较小的冲头,冲完再行扩钻。
把钢板或其局部弯成圆柱面,在提高强度的同时也使塑性下降,常需用热处理方法来消除冷加工硬化的不利影响。
但在冷弯薄壁型钢结构中,允许利用钢板冷弯成型时转角处钢材届服点的提高。
如加荷到应变硬化阶段卸载后隔一定时间,再重新加载,钢材的强度将继续有所提高,如图2-7所示。
冷却措施对钢材性能的影响研究随着钢材在建筑、汽车、机械等领域的广泛应用,对其性能的要求也越来越高。
冬季是钢材生产的重要季节,由于气温较低,需要进行冷却措施来确保钢材的品质。
然而,冷却措施对钢材的性能会产生一定影响,本文将探讨冷却措施对钢材性能的影响研究。
1. 研究背景钢材作为重要的建筑材料和工业材料,其品质直接关系到建筑、工业、交通等领域的安全和可靠性。
钢材的制造过程中,冷却措施是不可或缺的步骤。
在高温炉中加热后,钢材需要进行冷却才能达到一定的硬度和韧性。
然而,过于强烈的冷却会影响钢材的性能,导致其脆性增加、延展性减弱。
因此,研究冷却措施对钢材性能的影响,有助于制定科学的生产方案,保证钢材的品质。
2. 研究方法本研究选用了常见的钢材金相分析和力学性能测试方法,对采用不同冷却措施的钢材进行了对比研究。
具体方法如下:(1)样品制备。
选取不同材料的钢坯,在高温炉中加热至规定温度后,采用不同冷却方法,制备出相应的样品。
(2)金相分析。
将制备好的样品进行金相制备,观察其组织结构、晶粒尺寸和晶界分布情况。
(3)力学性能测试。
对样品进行拉伸试验,测试其屈服点、延伸率和硬度等力学性能。
3. 结果分析经过金相分析和力学性能测试,本研究得到以下结果:(1)冷却速率增加对钢材的组织结构和晶粒尺寸有较大影响。
当冷却速率增加时,钢材的晶粒尺寸变小,晶界数量增加。
(2)不同的冷却措施对钢材的硬度影响较大。
水冷却对钢材的硬度影响最大,气体冷却次之,盐水冷却对钢材的硬度影响较小。
(3)冷却措施对钢材的延展性有一定影响。
在快速冷却的情况下,钢材的延展性会减弱。
综上所述,冷却措施对钢材性能的影响是显著的,特别是在钢材的硬度和延展性方面。
对于需要高硬度和低延展性的钢材,可以增加冷却速率或采用水冷却等方式;而对于需要高延展性的钢材,应减小冷却速率或采用盐水冷却等方式。
4. 结论本研究通过金相分析和力学性能测试,探讨了冷却措施对钢材性能的影响,并得出了相应的结论。