09 第九讲 有趣的数阵图(一)
- 格式:doc
- 大小:333.00 KB
- 文档页数:5
有趣的数阵图(一)教学要求:1、使学生掌握解答有趣的数阵图的方法。
2、培养学生的逻辑思维能力和推理能力,以及联想、试探归纳等思维能力。
教学过程:一、导入新课语:如果把一些数按照一定的规律填在特定的图形里,那么这种图形,我们就称它为数阵图。
它是一种趣味性很强的游戏,它的形式很多,大概分为三种:封闭型数阵、辐射型数阵、复合型数阵。
二、探索新课:1、教学例1:将2、4、6、8、10填入“十字形数阵图中,使横行、竖列三个数的和相解题思路:找出中间数,填在中间的公关位置,再剩下的数中,找一对和相等的数。
再分别填入。
2、教学例2:把1~6形式尝试,练习。
解题思路:由于三个顶点上的数要加二次,所以我们先假设,顶点,再推出,其它的点。
3、教学例3:把1~9这九个数,填入到方格中,使横、竖、斜上的三个数和相等。
解题思路:先观察数,1+9=2+8=3+7=4+6而5在中间其余的成对来填。
方法有多种。
4、教学例4:把1、2、3、5、6、7、填入右表,使每行三个数和相等,竖列二数也相等。
解题思路:有2行3列,而1+2+3+5+6+7 =24,所以每行为12,这样分成(1、5、6);(2、3、7)两组。
每列和是24÷3=8,所以:(1、7);(2、6);(3、5)。
答案多种。
三、课堂练习:1、填上合适的数,2、用1~534、使横、竖、斜和相等。
余数的妙用(二)教学要求:1、使学生掌握正确计算有余数的除法。
2、培养学生活跃的思维能力,提高学习奥数的兴趣。
教学过程:一、导入新课:同学们都会正确计算有余数的除法,其实有余数除法还蕴含着丰富的数学知识,所以我们运用它还可以解决不少的数学难题。
今天,我们将继续学习余数的妙用(二)。
二、探索新知:1、教学例4:体育课排队,老师让同学们按1、2、3、4、5循环报数,最后一个人报2,这一排有()人。
A、26B、27C、28D、32《吉林省“金翅杯”小学数学竞赛试题》解题思路:答案必须是5的倍数还要加2,所以我们经过计算发现可以选B D。
有趣的数阵图有些数按照一定的要求排列成各种各样的图形,就叫做数阵图,数阵填数的游戏是非常有趣的,有时也有一定的难度。
不过它能促使我们积极地思考问题,分析问题,拓展我们的能力。
有的同学说:这样的数阵图填写时只能采取试的方法,没有其他捷径好走。
其实这话不对。
填写数阵图时,我们应抓住数阵中的关键位置(例如两种线的交点,长方形和正方形的顶点),再根据题目的要求,进行必要的计算,先填写这些关键位置的数,再填写出其他位置的数。
例1:将1,2,3,4,5这五个数分别填入下图的各正方形中,组成一个“十字数阵图”,使图中横行三个数的和与竖行三个数据的和相等。
根据图形的特点,中间那个数是横行与竖行共用的,要使横行与竖行三个数的和相等,可以先确定中间的数,再让左右两数的和与上、下两数的和相等。
①中间填1,则剩下2,3,4,5,而2+5=4+3,共有8种填法。
②中间填2,则余下1,3,4,5而这四个数无法组成□+□=□+□的形式所以中间不可以填?③中间填3,则剩下1,2,4,5,而1+5=2+4,共有8种填法:④中间填4,则剩下1,2,3,5而这四个数无法组成□+□=□+□的形式所以中间可能填4。
⑤中间填5,则剩下1,2,3,4,1+4=2+3共有8种填法。
例1将1,2,3,5,6,7这六个数字填入下表中,使每行中三个数的和相等,同时使每列两个数的和也相等。
因为表中有2行、3行,这样六个数可分成(7,3,2)和(6,5,1)每列两个数的和为24÷3=8,同样这六个数也可分为(7,1)、(6,2)和(5,3)三组。
根据题意,我们同时考虑使每行中的数和每列中数的和分别相等。
你能想出其他11种填法吗?例2请你把1-6这六个数字填在下面三角形的O内,使每条边上的数字之和相等。
你能做到吗?这是一种封闭型的数阵图,填写时的关键是确定三个顶点上的数。
1+2+3+4+5+6=21,用k表示每边上三个数的和,因为三个顶点上的数在求和时,都用了两次,用a,b,c表示三个顶点的数,使有21+a+b+c=3k因为a+b+c的最小值为6,最大值为15,所以3个k的最小值为27,最大为36,那么k的最小值是9,最大值是12。
第9讲 数阵图和幻方(一)爱因斯坦是举世文明的大科学家,以发明物理学上的相对论著称。
他在成名后,仍继续为德国的《法兰克福报》写稿,给读者提出一些数学问题。
下面是爱因斯坦做过的一道题目:如下图所示的几个圆的圆心是4个小的等腰三角形和3个大的等腰三角形的顶点,把数字1~9填入圆圈内,使这7个三角形中每个三角形顶点的数字之和都相等。
在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。
它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。
那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。
右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。
上面两个图就是数阵图。
准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。
要排出这样巧妙的数阵图,可不是一件容易的事情。
我们还是先从几个简单的例子开始。
把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。
下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。
解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。
也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。
因为横行的三个数之和与竖列的三个数之和都等于9,所以 (1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。
重叠数求出来了,其余各数就好填了(见右上图)。
第7讲有趣的数阵图(一)【知识导航】1、认真分析数阵图中隐含的数量关系和数字的位置关系,以特殊的位置为突破口。
通常选择使用次数多的数作为关键数。
2、依据数阵图中的条件,建立所求的和与关键数的关系式,一般采用试验的方法,确定关键数的数值及相等的和。
3、数字比较复杂的图形,可采用化简数据,消去公共部分,设立未知量等方法。
基本训练1、把1—7这七个数分别填入下图中的七个圆圈内,使每条直线上的三个圆圈内各数之和都相等。
2、把1--11这11个数,分别填入下图的辐射型数阵图中,使每条线上三个○内数的和相等。
3、将1--9这9个数分别填入下图中,使每条线段上五个○内数的和相等。
4、把1—7这七个数分别填入圆圈内,使图中每个圆和每条直线上的三个数和都相等。
5、把1—9这九个数填入圆圈内,使每条对角线五数之和相等,大小正方形四角上四数之和也相等。
拓展提高6、下图中四个圆被相互分割成八个部分,在这八个部分中分别填入1或2,使得各圆内三个数字之和互不相同。
7、把1--10这10个数分别填入下图复合型数阵图中,使每条线上四个○内数的和相等,每个三角形三个顶点上○内的和边相等。
8、把4—9分别填入下图中的圈内,使每个圆周上四个数的和尽可能最大。
自然数(包括6在内),填入圈内,使每条线上各数的和都等于23。
10、把1-10这十个自然数填入图中的10个方格中,要求图中3个2×2的正方形中四数之和相等,那么这个和的最小值是几?想一想,算一算下图像十字路口的红绿灯吗?请你在每盏灯处分别填入1~9中的任何一个数字,让相连的每三个数相乘的得数都相同。
你能行吗?。
1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。
【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】学而思杯,3年级,第6题 【解析】例题精讲知识点拨教学目标5-1-3-1.数阵图87654321【答案】87654321【例 2】 将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?(1)【考点】封闭型数阵图 【难度】2星 【题型】填空【解析】 为了叙述方便,先在各圆圈内填上字母,如下图(2).由条件得出以下四个算式:(2)h gf ed c baa+b+c=14(1)c+d+e=14 (2) e+f+g=14 (3)a+h+g=14 (4)由(1)+(3),得:a+b+c+e+f+g=28,(a+b+c+d+e+f+g+h )-(d+h )=28,d+h=(1+2+3+4+5+6+7+8)-28=8,由(2)+(4),同样可得b+f=8, 又1,2,3,4,5,6,7,8中有1+7=2+6=3+5=8.又1要出现在顶点上,d+h 与b+f 只能有2+6和3+5两种填法. 又由对称性,不妨设b=2,f=6,d=3,h=5. a ,c ,e ,g 可取到1,4,7,8若a=1,则c=14-(1+2)=11,不在1,4,7,8中,不行.若c=1,则a=14-(1+2)=11,不行. 若e=1,则c=14-(1+3)=10,不行. 若g=1,则a=8,c=4,e=7.说明:例题为封闭型数阵,由它的分析思考过程可以看出,确定各边顶点所应填的数为封闭型数阵的解题突破口.【答案】【例 3】 在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C 的和为18,则三个顶点上的三个数的和是 。
第7讲有趣的数阵图(一)
【知识导航】
1、认真分析数阵图中隐含的数量关系和数字的位置关系,以特殊的位置为突破
口。
通常选择使用次数多的数作为关键数。
2、依据数阵图中的条件,建立所求的和与关键数的关系式,一般采用试验的方
法,确定关键数的数值及相等的和。
3、数字比较复杂的图形,可采用化简数据,消去公共部分,设立未知量等方法。
基本训练
1、把1—7这七个数分别填入下图中的七个圆圈内,使每条直线上的三个圆圈内
各数之和都相等。
2、把1--11这11个数,分别填入下图的辐射型数阵图中,使每条线上三个○内
数的和相等。
3、将1--9这9个数分别填入下图中,使每条线段上五个○内数的和相等。
4、把1—7这七个数分别填入圆圈内,使图中每个圆和每条直线上的三个数和都
相等。
5、把1—9这九个数填入圆圈内,使每条对角线五数之和相等,大小正方形四角
上四数之和也相等。
拓展提高
6、下图中四个圆被相互分割成八个部分,在这八个部分中分别填入1或2,使得
各圆内三个数字之和互不相同。
7、把1--10这10个数分别填入下图复合型数阵图中,使每条线上四个○内数的
和相等,每个三角形三个顶点上○内的和边相等。
8、把4—9分别填入下图中的圈内,使每个圆周上四个数的和尽可能最大。
9、下图的六条线分别连着九个圆圈,其中一个圆圈里的数是6,请选出九个连续
自然数(包括6在内),填入圈内,使每条线上各数的和都等于23。
10、把1-10这十个自然数填入图中的10个方格中,要求图中3个2×2的正方
形中四数之和相等,那么这个和的最小值是几?
想一想,算一算
下图像十字路口的红绿灯吗?请你在每盏灯处分别填入1~9中的任何一个数字,让相连的每三个数相乘的得数都相同。
你能行吗?。