第二节原子结构与元素的性质
- 格式:doc
- 大小:82.50 KB
- 文档页数:7
原子结构与元素的性质原子是构成所有物质的基本单位。
原子结构与元素的性质之间存在密切的关系。
原子结构包括原子的核和电子壳层,而元素的性质则取决于这些结构的特征。
在本文中,我将详细探讨原子结构与元素性质之间的关系。
原子结构可以通过元素的原子序数和质子数来描述。
原子的核心由质子和中子组成,质子带有正电荷,中子是中性的。
质子数决定了元素的原子序数,而中子的数量决定了元素的同位素。
原子核外围则是由电子壳层组成。
电子是带有负电荷的粒子,它们以不同的能级围绕核心转动,每个能级可以容纳一定数量的电子。
电子的数目与元素的原子序数相等。
原子结构对元素性质的影响主要体现在原子的化学性质和物理性质上。
原子的化学性质包括元素的化学反应性、反应类型和化学键的形成。
原子的物理性质则包括元素的物理状态、密度、熔点、沸点和电导率等。
首先,原子结构决定了元素的原子半径。
原子半径是指原子中心到电子壳层边界的距离。
随着原子核的电荷数增加,原子的半径减小。
这是因为质子带有正电荷,而电子带有负电荷,它们之间存在电磁力的相互作用。
根据库仑定律,质子和电子之间的排斥力越大,原子半径就越小。
其次,原子结构还决定了元素的化学反应性。
元素的化学反应性取决于电子结构中未填满的能级。
具有未填满能级的元素更容易发生化学反应,以获得稳定的电子结构。
例如,碱金属元素的电子结构中有一个未填满的s能级,因此它们很容易失去一个电子,与其他元素形成阳离子。
另外,原子结构也影响了元素的物理性质。
原子的物理性质主要由原子核和电子之间的相互作用力以及电子之间的相互作用力决定。
原子核和电子之间的相互作用力决定了原子的密度和硬度。
电子之间的相互作用力决定了原子的熔点和沸点。
还有一些元素的性质与原子的同位素有关。
同位素具有相同的质子数,但不同的中子数。
由于中子的数量不同,同位素的质量也会有所不同。
同位素的存在可以影响元素的物理性质,例如稳定同位素的存在可以提高元素的熔点和沸点。
第二节原子结构与元素的性质一、教材分析本节课是人教版化学选修3第一章第二节的教学内容,是在必修2第一章《物质结构元素周期律》, 选修3第一章第一节《原子结构》基础上进一步认识原子结构与元素性质的关系。
本节教学内容分为两部分:第一部分在复习原子结构及元素周期表相关知识的基础上,从原子核外电子排布的特点出发,结合元素周期表进一步探究元素在周期表中的位置与原子结构的关系。
第二部分在复习元素的核外电子排布、元素的主要化合价、元素的金属性与非金属性变化的基础上,进一步从原子半径、电离能以及电负性等方面探究元素性质的周期性变化规律。
本节教学需要三个课时,本教学设计是第一课时的内容。
总的思路是通过复习原子结构及元素周期表的相关知识引入新知识的学习,然后设置问题引导学生进一步探究原子结构与元素周期表的关系,再结合教材中的“科学探究”引导学生进行问题探究,最后在学生讨论交流的基础上,总结归纳元素的外围电子排布的特征与元素周期表结构的关系。
根据新课标的要求,本人在教学的过程中采用探究法,坚持以人为本的宗旨,注重对学生进行科学方法的训练和科学思维的培养,提高学生的逻辑推理能力以及分析问题、解决问题、总结规律的能力。
二、教学重点1、原子结构与元素周期表的关系及原子核外电子排布的周期性变化。
2、电离能得定义及与原子结构之间的关系。
3、电负性及其意义。
三、教学难点1、电离能得定义及与原子结构之间的关系2、电离能得定义及与原子结构之间的关系3、电负性的应用。
四、教学方法复习法、延伸归纳法、讨论法、引导分析法1. 可以以问题思考的形式复习原子结构、元素周期律和元素周期表的相关知识,引导学生从元素原子核外电子排布特征的角度进一步认识、理解原子结构与元素在周期表中位置的关系。
2. 对于电离能和电负性概念的教学,应突出电离能、电负性与元素性质间的关系。
在了解电离能概念和概念要点的基础上,重点引导学生认识、理解元素电离能与元素性质间的关系。
第二节原子结构与元素的性质第1课时〖复习〗必修中什么是元素周期律?元素的性质包括哪些方面?元素性质周期性变化的根本原因是什么?〖课前练习〗写出锂、钠、钾、铷、銫基态原子的简化电子排布式和氦、氖、氩、氪、氙的简化电子排布式。
一、原子结构与周期表1、周期系:随着元素原子的核电—荷数递增,每到出现碱金属,就开始建立一个新的电子层,随后最外层上的电子逐渐增多,最后达到8个电子,出现稀有气体。
然后又开始由碱金属到稀有气体,如此循环往复——这就是元素周期系中的一个个周期。
例如,第11号元素钠到第18号元素氩的最外层电子排布重复了第3号元素锂到第10号元素氖的最外层电子排布——从1个电子到8个电子;再往后,尽管情形变得复杂一些,但每个周期的第1个元素的原子最外电子层总是1个电子,最后一个元素的原子最外电子层总是8个电子。
可见,元素周期系的形成是由于元素的原子核外屯子的排布发生周期性的重复。
2、周期表我们今天就继续来讨论一下原子结构与元素性质是什么关系?所有元素都被编排在元素周期表里,那么元素原子的核外电子排布与元素周期表的关系又是怎样呢?说到元素周期表,同学们应该还是比较熟悉的。
第一张元素周期表是由门捷列夫制作的,至今元素周期表的种类是多种多样的:电子层状、金字塔式、建筑群式、螺旋型(教材p15页)到现在的长式元素周期表,还待进一步的完善。
首先我们就一起来回忆一下长式元素周期表的结构是怎样的?在周期表中,把能层数相同的元素,按原子序数递增的顺序从左到右排成横行,称之为周期,有7个;在把不同横行中最外层电子数相同的元素,按能层数递增的顺序由上而下排成纵行,称之为族,共有18个纵行,16个族。
16个族又可分为主族、副族、0族。
〖思考〗元素在周期表中排布在哪个横行,由什么决定?什么叫外围电子排布?什么叫价电子层?什么叫价电子?要求学生记住这些术语。
元素在周期表中排在哪个列由什么决定?阅读分析周期表着重看元素原子的外围电子排布及价电子总数与族序数的联系。
第一章原子结构与性质第二节原子结构与元素的性质【知识梳理】一、元素周期系1、含义:元素按其原子核电荷数递增排列的序列。
2、元素周期系的形成(1)每一周期从________元素开始到________元素结束,最外层电子排布从________递增到________(第一周期除外),但元素周期系的周期不是单调的,每一周期里元素的数目不总是一样多。
(2)元素形成周期系的根本原因是________________________发生周期性的重复。
(3)根据构造原理得出的核外电子排布,可以解释元素周期系的基本结构。
例如:第一周期从________开始,以________结束;其余各周期总是从________能级开始,以________能级结束,其间递增的核电荷数(或电子数)就等于每个周期里的元素数。
二、元素周期表的分区1、元素周期表的分区(1)根据核外电子的排布分区按电子排布式中最后填入电子的________可将元素周期表分为s、p、d、f共4个区,而第IB、第ⅡB族这2个纵列的元素的核外电子因先填满了________能级而后再填充________能级而得名ds区。
(2)根据元素的金属性和非金属性分区【正误判断】(1)价电子一定是最外层电子()(2)元素的价电子数一定等于其所在族的族序数()(3)同一族元素的价电子数一定相同()(4)基态原子的N层上只有一个电子的元素,一定是第IA族元素()(5)原子的价电子排布为(n-1)dn6~8ns2的元素一定是过渡元素()【课后作业】1.下列有关元素周期表分区的说法错误的是()A.p区不包含副族元素B.第五周期有15种f区元素C.d区、ds区均不存在非金属元素D.s区所有元素的p能级电子均为全满或全空状态2.核电荷数为52的元素,在元素周期表中的位置是()A.第五周期ⅡA族B.第四周期ⅡA族C.第五周期ⅡA族D.第五周期ⅡA族n-1d ns(a、b均是大于0的整数),下列有关说法正确的是()3.已知某元素基态原子的价层电子排布式为()a bA.该元素位于元素周期表的d区B.该元素位于元素周期表的ds区C.该元素的族序数为a+b D.该元素一定为金属元素4.下列说法正确的是()A.6C的电子排布式1s22s22p2y,违反了泡利不相容原理B.价电子排布为5s25p1的元素位于第五周期第ⅡA族,是p区元素C.电子排布式(22Ti)1s22s22p63s23p10违反了洪特规则D.ns电子的能量一定高于(n-1)p电子的能量4.下列说法正确的是()A.6C的电子排布式1s22s22p2y,违反了泡利不相容原理B.价电子排布为5s25p1的元素位于第五周期第ⅡA族,是p区元素C.电子排布式(22Ti)1s22s22p63s23p10违反了洪特规则D.ns电子的能量一定高于(n-1)p电子的能量5.在元素周期表中非金属元素最多的区是()A.s区B.p区C.d区D.ds区6.闪烁着银白色光泽的金属钛(22Ti)因具有密度小、强度大、无磁性等优良的机械性能,被广泛应用于军事、医学等领域,号称“崛起的第三金属”。
原子结构与元素性质首先,我们来看原子结构。
原子是物质的基本组成单位,由原子核和围绕在核外的电子构成。
原子核由质子和中子组成,质子带正电荷,中子不带电。
电子带负电荷,围绕原子核中心的轨道上运动。
原子的质量主要集中在原子核中,电子的质量相对较小。
原子核的结构对元素的性质有着重要的影响。
首先是质子的数量。
质子决定了原子的元素特性,也就是原子的原子序数(或称为质子数)。
不同的元素由于质子数不同,其原子核中的质子数也不同。
例如,氢的原子核中只有一个质子,而氧的原子核中有八个质子。
这种质子数的差异直接导致了不同元素之间的化学性质的不同。
例如,氢原子倾向于与其他元素共价结合形成化合物,而氧原子倾向于形成带有负电荷的离子。
另外一个影响原子结构的因素是中子的数量。
中子数决定了原子的同位素。
同位素指的是拥有相同质子数但中子数不同的原子。
同位素在化学性质上基本相似,但可能在核反应、放射性衰变等方面有所不同。
原子核外的电子结构也对元素的性质产生了很大的影响。
电子是带负电荷的,它们通过电子云的方式环绕在原子核附近的轨道上。
电子的运动状态由量子力学描述,也就是由其波函数决定。
有几个重要的概念需要我们了解:主量子数、角量子数、磁量子数和自旋量子数。
主量子数决定了电子所在轨道的能级,角量子数决定了电子在轨道上的角动量大小和形状,磁量子数决定了电子角动量在空间中的方向,而自旋量子数决定了电子自旋的方向。
电子的分布和排布遵循泡利不相容原理,即每个电子在一个原子中都有唯一的一组量子数和自旋状态。
这也反映了原子结构的稳定性和宏观性质的多样性。
原子核的正电荷和电子的负电荷相互吸引,使得电子在原子核附近形成一个相对稳定的电子云。
不同元素的电子排布方式和数量不同,这直接决定了元素的化学性质。
例如,元素周期表就是将元素按照电子结构的规律排列而成的工具。
元素周期表的左侧为金属元素,右侧为非金属元素,而位于两者之间的为过渡元素。
此外,电子的排布方式还决定了原子之间的化学键的形成。
原子结构和元素的性质原子结构是指构成物质的最小单元,原子的组成和排列方式。
了解原子结构对于理解元素的性质至关重要。
在本文中,我们将探讨原子结构和元素性质的关系。
原子由三个基本组成部分组成:质子、中子和电子。
质子和中子位于原子核中,而电子则绕核旋转。
质子带有正电荷,中子中性,电子带有负电荷。
质子和中子的总数称为原子核的质量数,而电子的数量称为原子的电荷数。
原子的核外层电子规定了原子元素的化学特性。
原子核和核外电子的相对数量决定了元素的原子量。
原子量是原子质量单位的数量,而不是原子的质量。
例如,氢原子的原子量约为1克/摩尔,而铅原子的原子量约为207克/摩尔。
元素的性质可以分为物理性质和化学性质。
物理性质是指描述物质外部特征和观察到的变化的特征。
它们可以用于对物质进行分类,如密度、熔点、沸点和颜色。
这些性质与元素的原子结构相关。
例如,原子的大小和电荷分布决定了元素的密度和熔点。
原子核的质量数决定了元素的相对原子质量,从而影响了密度。
化学性质是指描述物质在与其他物质反应时发生的变化的特性。
它们涉及元素与其他元素结合形成化合物的能力。
原子的电子结构决定了元素的化学性质。
例如,原子的外层电子数决定了元素的化合价,即元素与其他元素结合的能力。
元素的化学性质还包括元素与酸、碱和氧化剂等物质的反应性。
元素的周期表是一种按照原子结构和性质排列的方式。
它把元素按照原子核的质量数和原子的电荷数进行分类。
周期表的排列方式揭示了元素间的关系和模式。
原子结构相似的元素被放置在同一列中,被称为“族”,具有类似的化学性质。
原子核质量逐渐增加的元素被放置在同一行中,被称为“周期”。
元素的周期表排列方式反映了原子结构对元素性质的影响。
例如,同一族的元素具有相似的原子结构,因此具有类似的化学性质。
例如,群1元素(如钠和钾)具有相似的外层电子配置,都有一个外层电子,因此它们具有相似的化学性质。
此外,原子结构的改变也会导致元素性质的变化。
第二节原子结构与元素的性质一、元素周期律、元素周期系和元素周期表1.元素周期律:元素性质随着原子核电荷数递增发生周期性的递变。
2.元素周期系:按其原子核电荷数递增排列的序列称为元素周期系。
这个序列中的元素性质随着核电荷数递增发生周期性重复。
3.元素周期表:呈现元素周期系的表格。
【注】元素周期系只有一个,元素周期表多种多样。
二、构造原理与元素周期表1.核外电子排布与周期的划分(1)电子排布与周期划分的本质联系根据构造原理得出的核外电子排布可以解释元素周期系中每个周期的元素数。
第一周期从1s1开始,以1s2结束,只有两种元素。
其余各周期总是从n s能级开始,以n p结束,而从n s能级开始以n p结束递增的核电荷数(或电子数)就等于每个周期里的元素数。
(2)规律:①周期序数=电子层数。
②本周期包含的元素种数=对应能级组所含原子轨道数的2倍=对应能级组最多容纳的电子数。
2.核外电子排布与族的划分(1)划分依据:取决于原子的价电子数目和价层电子排布。
(2)特点:同族元素的价电子数目和价层电子排布相同。
(3)规律①对主族元素,同主族元素原子的价层电子排布完全相同,价层电子全部排布在n s 或n s 、n p 轨道上(见下表)。
价层电子数 = 族序数。
③稀有气体元素:价电子排布为n s2n p6(He除外)。
三、元素周期表1.元素周期表的结构2.元素周期表的分区(1)根据核外电子排布根据核外电子排布式中最后填入电子的能级符号可把周期表里的元素划分成4个区:s区、p区、d区和f区(除ΙB、ⅡB族外。
)(2)根据元素金属性与非金属性①金属元素和非金属元素的分界线为沿B、Si、As、Te、At与Al、Ge、Sb、Po之间所画的一条连线,非金属性较强的元素处于元素周期表的右上角位置,金属性较强的元素处于元素周期表的左下角位置。
②处于d区、ds区和f区的元素全部是金属元素。
s区的元素除氢外,也全部是金属元素。
【注】p区元素价电子不都是n s2n p1~6,如He元素的价电子为2s2。
马塘中学高二理化班导学案选修3 第一章第2节编写人:朱亚萍审核人:张春霞姓名班级第二节原子结构与元素的性质(第1课时)【课标导读】1、认识原子结构和元素周期表的关系2、了解元素周期表的应用价值3、巩固元素的核外电子排布、原子半径、元素的主要化合价、元素的金属性与非金属性周期性变化的规律。
【问题导思】1、元素周期表共有几个周期?每个周期各有多少种元素?写出每个周期开头第一个元素和结尾元素的最外层电子的排布式的通式。
为什么第一周期结尾元素的电子排布跟其他周期不同?2、元素周期表共有多少纵列?可以分为哪些族?每个纵列的价电子层的电子总数是否相同?可以分为哪些族?划分族的依据是什么?3思考:按电子排布,可把周期表里的元素分成s区、p区、d区、f区和ds区的依据是什么?4、元素的原子核外电子排布、原子半径、元素的主要化合价、元素的金属性与非金属性是如何呈周期性变化的?元素周期律的本质是什么?5、为什么s区、d区和ds区都是金属?为什么非金属元素主要集中在元素周期表右上角三角区内?处于非金属三角区边缘的元素常被称为半金属或准金属。
为什么?【例题导练】1、下面给出外围电子排布及对应的元素周期表中的位置,其中正确的是,请说明错误选项的理由A. 4s24p5四周期ⅤA族B. 3d74s2四周期Ⅷ族C. 4d105s2五周期ⅡA族D. 3d54s1三周期ⅥB族2、下列各组中,原子半径由大到小排列顺序正确的是 ( )A.Na、Mg、Ca B.F、O、N C.S、Cl、F D.Na、Al、H3、下列具有特殊性能的材料中,由主族元素和副族元素形成的化合物是()A. 半导体材料砷化镓B. 吸氢材料镧镍合金C. 透明陶瓷材料硒化锌D. 超导材料K3C604、下列有关元素周期表的叙述正确的是()A.原子半径最小的是FB.所含元素种类最多的族是第VIII族C.金属元素的种类多于非金属元素D.第n周期第n主族的元素均为金属5、下列叙述正确的是()A.同周期元素中,VIIA族元素的原子半径最大B.VIA族元素的原子,其半径越大,越容易得到电子C.室温时,零族元素的单质都是气体D.所有主族元素的原子,形成单原子离子时的化合价与它的族序数相等。
第一章原子结构与性质
第二节原子结构与元素的性质
教学目标:
(一)知识与技能:
1、使学生了解电离能的概念及其内涵,认识主族元素电离能的变化规律,知道电离能与元素化合价的关系。
2、使学生知道主族元素电负性与元素性质的关系,认识主族元素电负性的变化规律。
3、使学生体会原子结构与元素周期律的本质联系。
(二)过程与方法:
运用演绎推理和数据分析掌握电离能和电负性在元素周期表中的变化规律。
(三)情感态度与价值观:
通过电负性电离能的逐步引入,感受科学家们在科学创造中的丰功伟绩,体会量变引起质变,内因是变化的根据的辨证唯物主义思想。
本节知识框架:
教学重点难点:
1、电离能、电负性的含义和它们的一般变化规律
2、核外电子排布与元素周期表周期、族的划分
3、元素的电离能、电负性、化合价的关系
教学媒介:多媒体演示
教学素材:
素材1:主族元素原子得失电子能力的变化趋势
素材2、元素的化合价
化合价是元素性质的一种体现。
观察思考:为什么钠元素的常见价态为+1价,镁元素的为+2价,铝元素的为+3价?化合价与原子结构有什么关系?
素材3、第三周期元素的第一电离能变化趋势图
素材4、同主族元素的第一电离能变化示意图
教学方法:诱导——启发式、演绎推理和逻辑探究相结合教学教学过程:。