五年级奥数——假设法解题
- 格式:doc
- 大小:31.50 KB
- 文档页数:2
第 21 讲假设法解题基础卷1.小明有 2 元和 5 元的邮票共 100 枚,总价钱为 320 元,这两种邮票各有多少枚?5×100=500元,500-320=180元2元:180÷﹙5-2﹚=60枚5元:100-60=40枚2.松鼠妈妈采松子,晴天每天可以采 20 个,雨天每天只能采 12 个。
它一连几天采了 112 个松子,平均每天采 14 个。
问:这几天当中有几天有雨?采了:112÷14=8天假设全是晴天应该采 20×8=160个比实际少了 160-112=48个是由于把雨天也看成了晴天每天相差 20-12=8个雨天:48÷8=6天3.徒工小王雕刻红木玩具,平均每天雕刻玩具 48 件。
每雕刻出一件正品,可创造财富 12 元:但如果雕刻坏了一件就要损失 98 元。
他平均每天创造财富 466 元。
小王平均每天雕刻出的正品是多少件?可以这么列:(48×12-466)÷(12+98)=1(件)48-1=47(件)4.数学竞赛中抢答题共 10 道题,规定答对一题得 15 分,答错一题倒扣 10 分(不答按答错计算)。
晓敏回答了所有的问题,结果共得 100 分,问:答对和答错各几题?设答对x题,答错(10-x)题.15x-10(10-x)=10015x+10x-100=10025x=200x=8∴答错10-8=2题答:答对8题,答错2题.5.学校组织春游,一共用了 10 辆客车,已知大客车每辆坐 100 人,小客车每辆坐 60 人,大客车比小客车一共多载 520 人,问:大、小客车各几辆?假设大客车为x辆,小客车则为10-x ,又大客车多坐520人那么100*x-520= 60*(10-x)求得x=7所以7辆大客车,3辆小客车6.人民电影院有座位 1200 个,前排票每张 1.5 元,后排票每张 2.5 元。
已知后排票比前排票的总价多1080 元,该电影院有前排座位和后排座位各多少个?假设前排和后排的座位是相同的,那么后排票会比前排票总价多600元(1200除以2等于600, ,2.5减1.5等于1,1X600=600)而现在实际多了1080元,1080—600=480元因此相当于少算了480除以4等于120个后排的座位.(本来是后排就是2.5却被算成前排,对于后排来说就相差2.5加1.5等于4元)所以前排有600-120=480个座位,后排有600+120=720个座位.1200÷2=600(元) 1080—600=480(元)后排:480÷(2.5+1.5)+600=720(个)前排:1200-720=480(个)提高卷1.有 1 元硬币和 5 角硬币若干枚,共值 675 角。
第二十一讲假设法解题例题1 有5元和10元的人民币共14张,共100元。
问5元币和10元币各多少张?练习一1,笼中共有鸡、兔100只,鸡和兔的脚共248只。
求笼中鸡、兔各有多少只?2,一堆2分和5分的硬币共39枚,共值1.5元。
问2分和5分的各有多少枚?3,营业员把一张5元人币和一张5角的人民币换成了28张票面为一元和一角的人民币,求换来这两种人民币各多少张?例题2 有一元、二元、五元的人民币50张,总面值116元。
已知一元的比二元的多2张,问三种面值的人民币各有几张?练习二1,有3元、5元和7元的电影票400张,一共价值1920元。
其中7元的和5元的张数相等,三种价格的电影票各有多少张?2,有一元、五元和十元的人民币共14张,总计66元,其中一元的比十元的多2张。
问三种人民币各有多少张?3,有1角、2角、4角、5角的邮票共26张,总计6.9元。
其中1角和2角的张数相等,4角的和5角的张数相等。
求这四种邮票各有多少张?例题3 五(1)班有51个同学,他们要搬51张课桌椅。
规定男生每人搬2张,女生两人搬1张。
这个班有男、女生各多少人?练习三1,甲、乙二人共存550元钱,当甲取出自己存款的一半,乙取出自己存款中的70元时,两人余下的钱正好相等。
求甲、乙原来各存多少元钱。
2,学校春游共用了10辆客车,已知大客车每辆坐100人,小客车每辆坐60人,大客车比小客车一共多坐520人。
大、小客车各几辆?3,班级买来50张杂技票,其中一部分是1元5角一张的,另一部分是2元一张的,总共的票价是88元。
两种票各买了多少张?例题4 用大、小两种汽车运货。
每辆大汽车装18箱,每辆小汽车装12箱。
现有18车货,价值3024元。
若每箱便宜2元,则这批货价值2520元。
大、小汽车各有多少辆?练习四1,一辆卡车运矿石,晴天每天运20次,雨天每天可运12次,它一共运了112次,平均每天运14次。
这几天中有几天是雨天?2,有鸡蛋18筐,每只大箩容180个,每只小箩容120个,这批蛋共值302.4元。
1.有一位学者,在几年前去世了。
他去世的年龄正好是他出生年数的1/31.又知道这位学者于1965年获得博士学位。
这位学者是哪一年去世的?去世时是多少岁?分析与解这位学者去世时的年龄是他出生年数的1/31,也就是说,他出生年数是他年龄的31倍。
这位学者于1965年获博士学位,在小于1965年的整数中,1953、1922、1891、……都是31的倍数。
假如这位学者生于1953年,那么获得博士学位时才1965-1953=12(岁),这是不可能的。
又假如这位学者出生于1891年或更早些,那么他的年龄是1891÷31=61(岁),再看看他获得博士学位时的年龄是1965-1891=74(岁),这也是不可能的,因为到1965年时他早已去世了。
由此可推出他生于1922年,去世时是1922÷31=62(岁)。
他去世的年数是1922+62=1984年。
一本书的页码需要1995个数字,问这本书一共有多少页?分析与解从第1页到第9页,用9个数字;从第10页到第99页,用180个数字;从第100页开始,每页将用3个数字。
1995-(9+180)=1806(个数字)1806÷3=602(页)602+99=701(页)小学五年级奥数题——假设法在鸡兔同笼问题中,我们已经学习了如何运用假设法来解题,下面我们进一步探讨用假设法解答的其他问题。
例1:水果店卖出83千克苹果和65千克梨,一共卖得582.6元,每千克苹果的售价比每千克梨贵0.6元。
每千克苹果和每千克梨的售价各是多少元?解:假设每千克苹果的售价降低0.6元,这样卖得的钱就减少0.6×83=49.8(元),这时苹果和梨售价相同,即卖出的苹果和梨一共83+65=148(千克),共售得582.6-49.8=532.8(元),每千克的售价是532.8÷148=3.6(元),这是每千克梨的售价。
每千克苹果的售价是3.6+0.6=4.2(元)。
假设法解题1.有5元和10元的邮票共20张,总面值125元。
问:5元的和10元的邮票多少张?2.中央百货公司委托搬运公司送1000只茶杯,双方签订合同每只运费是O.3元,如果打破1只,不但不付运费,而且还要照价赔偿1.5元。
结果搬运公司共得运费291元。
问:搬运公司在搬运过程中打破了几只茶杯?3.某搬运站为某商店运800只花瓶,运费为每只3元,如果损坏一只,不但不给运费还要照价赔偿5元,结果搬运站共得运费2352元。
问:搬运公司在搬运过程中打破几只花瓶?4.某搬运站为某商店运500只玻璃杯,运费为每只0.24元,如果损坏一只,不但不给运费还要照价赔偿1.26元,结果搬运站共得运费115.50元。
问:搬运公司在搬运过程中打破几只玻璃杯?5.松鼠爸爸采松子,晴天可以采30个,雨天只能采20个,它一连几天共采了240个松子,平均每天采24个。
问:这几天当中有几个晴天?几个雨天?6.甲、乙两人进行投飞镖比赛,规定每中一次记10分,脱靶一次扣6分,两人各投l0次,共得152分,其中甲比乙多16分。
问:甲、乙两人各投中几次?7.甲仓库存粮是乙仓库的2倍,甲仓库每天运出40吨,乙仓库每天运出30吨,若干天后,乙仓库的粮食运完了,甲仓库还有80吨。
问:甲、乙两个仓库原来各有粮食多少吨?8.一堆硬币:面值为1分、2分、5分三种,其中1分的个数是2分的ll倍,如果这堆硬币共1元,那么5分硬币有多少个?9.某班同学参加学校的数学竞赛,试题共20道。
评分标准是:答对l题给5分,答错倒扣2分。
请你说明:这次竞赛小明得了86分,请问他答对了几道题?10.实验小学买来单价分别是3元、4元、5元的奖品共200份,共花去780元,其中4元和5元的奖品份数相同。
问:三种奖品各买了多少份?11.有一筐苹果,把它们三等分后还剩2个,取出其中两份,将它们三等分后还剩2个,再取出两份,将这两份三等分后还剩2个。
问:这筐苹果至少有几个?12.一些2元和5元的邮票共39枚,共值150元,问2元和5元的邮票各有多少枚?13.光华玻璃厂委托运输公司包运2000块玻璃,每块运输费0.4元,如损坏一块,要赔偿损失费7元,结果公司得到运费711.2元,问运输公司损失玻璃多少块?14.体育杨老师买回4个篮球和5个排球,一共用去185元,一个篮球比一个排球贵8元,篮球与排球的单价各是多少元?15.陈红和王刚进行射击比赛,约定每击中一发得20分,脱靶一发扣12分,两人各打了10发,共得208分,其中陈红比王刚多64分,问陈红、王刚各中了几发?16.某工程队有甲、乙两台挖土机,甲机先挖4小时,然后两机一起挖10小时,总共挖土600立方米。
假设法解题✿趣味数学“鸡兔同笼”问题是我国古代一类著名的数学趣题,最早出现在大约1500多年前的古代名著《孙子算经》中。
在那时,一个名叫孙子的人。
有一天,他到一位朋友家中做客,看到朋友养了很多的鸡和兔,随口问道:“你家里养了多少只鸡和兔啊?”朋友回答说:“鸡、兔共35只,脚共94只。
请你算一下,鸡、兔各有几只?”你们知道孙子的朋友家养的鸡和兔各多少只吗?✿知识回顾1、笼子里有若干只鸡和兔。
从上面数有10个头,从下面数有32条腿。
鸡和兔各有几只?2、鸡兔同笼,共有45个头,146条腿。
笼中鸡兔各有多少只?3、停车场上停放了39辆三轮车和自行车,两种车共有108个轮子。
三轮车和自行车各有多少辆?✿例题精讲例1、52名师生到颐和园去划船,共租了11条船。
每条大船坐6人,每条小船坐4人,且每条船恰好坐满。
大船、小船各租了多少只?例2、为了迎接“新中国60华诞”,学校组织了“祖国在我心中知识竞赛”。
共20道题,每做对一道题得5分,做错或未答扣2分。
小明本次竞赛得了79分,他做对了多少道题?例3、有5元和10元的人民币共14张,共100元。
问5元币和10元币各多少张?例4、运输公司给某工厂运送2000箱玻璃。
合同规定:完好运到一箱给50元运费;如损坏一箱,不但不给运费,还要赔偿400元成本费。
这批玻璃运到后,运输公司共收到运货款91900元。
运输过程中,损坏了几箱玻璃?例5、有一元、二元、五元的人民币50张,总面值为116元。
已知一元的比二元的多2张,问三种面值的人民币各有几张?✿针对练习:1、鸡兔同笼,共有100个头,320只脚。
鸡兔各有多少只?2、签字笔每支1.9元,圆珠笔每支1.1元。
小红两种笔共买了16支,花了28元。
小红两种笔各买了多少支?3、停车场上停放了24辆汽车和三轮摩托车,其中汽车有4个轮子,三轮摩托车有3个轮子,这些车共有86个轮子。
那么,停车场上有三轮摩托车多少辆?4、六年级同学乘汽车到某地旅游,买车票99张,共花28元。
假设法解应用题一、知识梳理“假设”是数学中思考问题的一种方法,有些应用题我们无论是从条件出发用综合法去解答,还是从问题出发用分析法去解答,都很难求出答案,但是如果我们合理的进行“假设”,往往能使问题很快得到解决。
所谓“假设法”就是能过假设,再依照已知条件进行推算,根据数量上出现的矛盾,进行比较,作适当调整,从而找到正确答案的方法,比如“鸡兔同笼”中有些题目就是运用“假设法”解决的。
二、例题精讲例1、一队猎手一队狗,两队并着一起走。
数头一共一百六,数脚一共三百九。
则猎手和狗各有多少?例2、我国明代的《算法统宗》中记载有一个“和尚分馒头”的问题:大和尚与小和尚共100名,分配100个馒头,大和尚每人给3个,小和尚每3人给1个。
问大小和尚各有多少人?例3、张明、李华两人进行射击比赛,规定每射中一发得20分,脱靶一发则扣12分。
两人各射了10发,共得208分,其中张明比李华多得64分,则张明射中几发?例4、购买5元、8元和10元的公园门票共100张,用去748元,其中5元和8元门票的张数相同,则10元的门票共有多少张?例5、蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀,蜘蛛有8条腿但没有翅膀。
希望小学的生物标本室里有这三种昆虫60只,共有400条腿,50对翅膀。
那么蜻蜓、蝉、蜘蛛各有多少只?三、课堂小测6、小芳有14张人民币,面值5元的和10元的共100元,则5元币和10元币各有多少张?8、一次口算比赛规定:答对一题得8分,答错一题扣5分,小华答了18道题得92分,小华在此次比赛中答错了几题?9、某场足球赛赛前售出甲、乙、丙类门票共400张,甲类票50元/张,乙类票40元/张,丙类票30元/张,共收入15500元,其中乙、丙类门票张数相同。
则这一天甲类、乙类、丙类门票分别售出多少张?10、希望小学的生物标本室里有蜻蜓,蝉,蜘蛛共11只,它们共有74条腿,10对翅膀,由下图可知该标本室里有只蜘蛛。
11、寺庙有一些和尚每天都要去山下取水。
有关“假设法”“假设法”是解答应用题时常用到的一种方法。
在有些应用题中,要求两个或两个以上的未知量,可以先假设要求的两个或几个的未知量相等,或者先假设要求的的两个未知量是同一个量,然后按照题目里的已知条件进行推算,并对照已知条件把数量上出现的矛盾做适当的调整,最后得到答案,这就是“假设法”“鸡兔同笼”问题研究“假设法”解题的方法,必然提到“鸡兔同笼”问题。
“鸡兔同笼”的基本问题是:已知鸡、兔总头数和总脚数,求鸡、兔各有多少只。
并由此衍生出的一系列问题,形成一类典型的应用题。
解决“鸡兔同笼”问题的方法通常是用假设法。
其基本关系式是:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数)例1 在一个笼子中关有若干只鸡和兔,从上面看有50个头,从下面数有158只脚。
问:笼中鸡、兔各有多少只?拓展百个和尚百个耙,大和尚每人4个耙,小和尚4人1个耙。
问:大和尚、小和尚各有多少个?例2 学校买了两种戏票一共30张,付出200元,找回5元。
甲种票每张7元,乙种票每张6元。
学校买甲种票多少张,乙种票多少张?拓展小明去游山,他从东坡上山,每小时行2千米,到达山顶后休息了1小时;然后从西坡下山,每小时行3千米,全程共行了19千米,共用了9小时。
上山的路与下山的路各有多少千米?例3 小明买了5角、2角、1角5分三种邮票,共20张,总值5元5角。
其中5角和1角5分的邮票张数相等,求三种邮票各多少张拓展有1元、2元、5元的人民币50张面值共计116元,已知1元的人民币比2元的多2张,问:三种人民币各有多少张?小明花4元2角钱买贺年卡和明信片共10张,贺年卡每张3角,明信片每张5角,他买了几张贺年卡,几张明信片?小克林顿做家务每天可得3美元,做得特别好每天可得5美元。
有一个月(30天)他共得100美元,那么这个月他有多少天做得特别好?15元钱买5角和8角的邮票共21张,那么所买的5角邮票与8角邮票相差多少张?实验小学为奖励三好学生,共买钢笔和铅笔27盒,共计300支。
小学奥数——假设法当应用题用一般方法很难解答时,可假设题中的情节发生了变化,假设题中两个或几个数量相等,假设题中某个数量增加了或减少了,然后在假设的基础上推理,调整由于假设而引起变化的数量的大小,题中隐蔽的数量关系就可能变得明显,从而找到解题方法。
这种解题方法就叫做假设法。
用假设法解应用题,要通过丰富的想象,假设出既合乎题意又新奇巧妙,既简单又便于计算的条件。
有些用一般方法能解答的应用题,用假设法解答可能更简捷。
(一)假设情节变化1、学校有篮球和足球共21个,借出篮球个数的31和1个足球后,两种球的个数相等,原来有篮球和足球各有多少个?解:假设篮球没有借出,足球借出一个,那么,可以把现有篮球的个数看作是3份数,把现有足球的个数看作2份数,两种球的总份数是:3+2=5(份)原来篮球的个数是:(21-1)×53=12(个) 原来足球的个数是:21-12=9(个)答略。
2、甲乙两个煤场共存煤92吨,从甲场运出28吨后,乙场的存煤比甲场的4倍少6吨。
两场原来各存煤多少吨?解:假设从甲场运出的不是28吨,而是比28吨少6吨的22吨,那么,乙场的存煤数就正好是甲场的4倍,甲场的存煤是1份数,乙场的存煤是4份数,乙场的存煤是两场存煤总数的54。
所以,乙场原来存煤:(92-22)×54=50(吨) 甲场原来存煤:92-50=42(吨)答:略(二)假设两个(或几个)数量相等1、有两块地,平均亩产粮食185千克。
其中第一块地5亩,平均亩产粮食203千克。
如果第二块地平均亩产粮食170千克,第二块地有多少亩?(适于五年级程度)解:假设两块地平均亩产粮食都是170千克,则第一块地的平均亩产量比两块地的平均亩产多: 203-170=33(千克)5亩地要多产:33×5=165(千克)两块地实际的平均亩产量比假设的平均亩产量多:185-170=15(千克)因为165千克中含有多少个15千克,两块地就一共有多少亩,所以两块地的亩数一共是: 165÷15=11(亩)第二块地的亩数是:11-5=6(亩)答略。
第十二讲假设法解题
例1、鸡与兔共10只,脚共22只,问:鸡有几只?兔有几只?
练习1、鸡与兔共100只,鸡的脚比兔的脚多26只。
问:鸡有几只?兔有几只?
练习2、第21周举一反三1第2题。
例2、有面值分别为10元、5元和2元的人民币34张,共值178元,10元的张数和5元的张数同样多。
问:三种面值的人民币各多少张?
练习3、有面值分别为拾元、伍元、贰元的人民币27张,共108元。
拾元的张数比伍元的张数少7张。
那么,三种面值的人民币各有多少张?
练习4、第21周举一反三2第3题。
例3、要把40个玻璃球放入一个红盒子和一个黑盒子中,每次往红盒子里必须放2个,每次往黑盒子里必须放1个。
一共放了26次,正好将40个玻璃球放完。
此时红盒子、黑盒子中各有多少个玻璃球?
练习5、第21周举一反三3第2题。
练习6、学校组织春游,一共用了10辆客车,已知大客车每辆坐100人,小客车每辆坐60人,大客车比小客车一共多载520人,问:大、小客车各几辆?
练习7、第21周举一反三4第3题。
例4、徒工小王雕刻红木玩具,平均每天雕刻玩具48件。
每雕刻出一件正品,可为国家创造财富12元;但如果雕刻坏了一件就要损失98元。
他平均每天为国家创造财富466元。
小王平均每天雕刻出的正品有多少件?
练习8、数学竞赛中抢答题共10道题,规定答对一题得15分,答错一题倒扣10分(不答按答错计算)。
晓敏回答了所有的问题,结果共得100分,问:她答对了几题?答错了有几题?
练习9、第21周举一反三5第3题。
作业:
1、营业员把一张5元人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来这两种人民币各多少张?
2、A、B两地相距8千米,小钱骑自行车从A地去B地,开始以每分钟120米的速度行驶,后改为每分钟160米的速度行驶,共用了1小时到达B地。
小钱是在离A地多少米的地方改变速度的?
3、操场上有一群同学。
男生人数是女生人数的4倍,每次同时有2名男生和1名女生回教室,若干次后,男生剩下8人,女生剩下1人。
操场上原有多少名同学?
4、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次。
这几天中有几天是雨天?。