matlab 通信仿真案例
- 格式:docx
- 大小:15.15 KB
- 文档页数:2
《Matlab与通信仿真》实验指导书(下) 刘毓杨辉徐健和煦黄庆东吉利萍编著上课时间:学年第学期系部:班级:姓名:班内序号:指导教师:实验课程成绩:通信与信息工程学院2011-1目录实验一MATLAB基础实验 (1)实验一成绩实验二绘图和确知信号分析实验 (8)实验二成绩实验三随机信号与数字基带实验 (15)实验三成绩实验四模拟调制实验 (24)实验四成绩实验五模拟信号数字传输实验(一) (32)实验五成绩实验六模拟信号数字传输实验(二) (39)实验六成绩实验七数字频带传输系统实验 (45)实验七成绩实验八通信系统仿真综合实验 (57)实验八成绩实验一 MATLAB 基础实验一、实验目的● 了解MATLAB 程序设计语言的基本特点,熟悉MATLAB 软件运行环境 ● 掌握创建、保存、打开m 文件及函数的方法● 掌握变量等有关概念,具备初步的将一般数学问题转化为对应的计算机模型并进行处理 的能力二、实验内容及步骤1.在Command Window 里面计算①(358)510++÷⨯;②sin(3)π;③123456789A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,789456123B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,计算:,,\,/C A B D A B A C C B =⨯=+; ④3 1.247.5 6.6 3.15.4 3.4 6.1A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求1,,A A A -'; ⑤12345678i i Z i i ++⎡⎤=⎢⎥++⎣⎦,输入复数矩阵;2.建立.m 文件,用for 循环语句生成50×50的矩阵A :12502351505199⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,将A 矩阵进行水平和垂直翻转得到矩阵B 和C 。
将A 矩阵的前10行,10列变成0并赋值给D 。
3.建立.m 文件,随机产生一个50×50的矩阵,元素值为从0到255,要求用0和255对该矩阵进行标记,元素值大于128的标记为255,元素值小于128的标记为0。
matlab 通信仿真案例
在MATLAB中,通信仿真是一个常见的应用领域,可以用于模拟
和分析数字通信系统的性能。
下面我将从多个角度介绍几个常见的
通信仿真案例。
1. OFDM系统仿真,OFDM(正交频分复用)是一种常见的多载
波调制技术,用于高速数据传输。
你可以使用MATLAB来建立一个基
本的OFDM系统仿真模型,包括信道估计、均衡和解调等模块。
通过
仿真可以分析系统在不同信噪比下的误码率性能,优化系统参数以
及算法设计。
2. 无线通信系统仿真,你可以使用MATLAB建立一个简单的无
线通信系统仿真模型,包括传输信道建模、调制解调、信道编码、
多天线技术等。
通过仿真可以评估系统的覆盖范围、传输速率、抗
干扰能力等性能指标。
3. MIMO系统仿真,MIMO(多输入多输出)技术在无线通信中
得到了广泛应用。
你可以使用MATLAB建立一个MIMO系统仿真模型,包括空间多路复用、信道估计、预编码等。
通过仿真可以分析系统
的信道容量、波束赋形技术对系统性能的影响等。
4. LTE系统仿真,LTE(长期演进)是目前移动通信领域的主流技术之一。
你可以使用MATLAB建立一个LTE系统仿真模型,包括物理层信号处理、上下行链路传输、信道编码解码等。
通过仿真可以评估系统的覆盖范围、传输速率、干扰抑制能力等性能指标。
以上是一些常见的通信仿真案例,通过MATLAB你可以方便地建立仿真模型,分析系统性能,并优化系统设计。
希望这些案例能够帮助到你。
matlab通信仿真实例通信仿真在工程领域中具有广泛的应用,MATLAB作为一种强大的数学建模工具,能够帮助工程师进行通信系统的仿真设计和分析。
在本文中,我们将通过一个具体的MATLAB通信仿真实例来展示如何使用MATLAB进行通信系统的建模和仿真。
首先,我们需要定义一个简单的通信系统,假设我们要设计一个基于QPSK调制的数字通信系统。
我们可以按照以下步骤进行仿真实例的设计:1. 生成随机比特序列:首先我们需要生成一组随机的比特序列作为发送端的输入。
我们可以使用MATLAB的randi函数来生成随机的二进制比特序列。
2. QPSK调制:接下来,我们需要将生成的二进制比特序列进行QPSK调制,将比特序列映射到QPSK星座图上的相应点。
我们可以使用MATLAB的qammod 函数来进行QPSK调制。
3. 添加高斯噪声:在通信信道中,往往会存在各种噪声的干扰,为了模拟通信信道的实际情况,我们需要在信号上添加高斯噪声。
我们可以使用MATLAB的awgn函数来添加高斯噪声。
4. QPSK解调:接收端接收到信号后,需要进行QPSK解调,将接收到的信号映射回比特序列。
我们可以使用MATLAB的qamdemod函数来进行QPSK解调。
5. 比特误码率计算:最后,我们可以计算仿真的比特误码率(BER),用来评估通信系统的性能。
我们可以通过比较发送端和接收端的比特序列来计算比特误码率。
通过以上步骤,我们就可以完成一个基于QPSK调制的数字通信系统的MATLAB仿真实例。
在实际的通信系统设计中,我们可以根据具体的需求和系统参数进行更加复杂的仿真设计,例如考虑信道编码、信道估计等因素,以更加准确地评估通信系统的性能。
MATLAB的强大数学建模和仿真功能,为工程师提供了一个非常有用的工具,可以帮助他们设计和分析各种通信系统。
通过不断的实践和学习,工程师可以更加熟练地运用MATLAB进行通信系统的仿真设计,为通信系统的性能优化提供有力的支持。
2012级移动通信仿真实验——1234567 通信S班一、实验目的:(1)通过利用matlab语言编程学会解决移动通信中基本理论知识的实验分析和验证方法;(2)巩固和加深对移动通信基本理论知识的理解,增强分析问题、查阅资料、创新等各方面能力。
二、实验要求:(1)熟练掌握本实验涉及到的相关知识和相关概念,做到原理清晰,明了;(2)仿真程序设计合理、能够正确运行;(3)按照要求撰写实验报告(基本原理、仿真设计、仿真代码(m文件)、仿真图形、结果分析和实验心得)三、实验内容:1、分集技术在Rayleigh衰落信道下的误码率分析内容要求:1)给出不同调制方式(BPSK/MPSK/QPSK/MQAM任选3种,M=4/8/16)在AWGN和Rayleigh衰落环境下的误码率性能比较,分析这些调制方式的优缺点;2)给出Rayleigh衰落信道下BPSK在不同合并方式(MRC/SC/EGC)和不同路径(1/2/3)时的性能比较,分析合并方式的优缺点;3)给出BPSK在AWGN和Rayleigh衰落信道下1条径和2条径MRC合并时理论值和蒙特卡洛仿真的比较。
3、直接扩频技术在Rayleigh衰落信道下的误码率分析内容要求:1)m-序列、Gold序列和正交Gold序列在AWGN信道下的QPSK误码率分析;2)m-序列、Gold序列和正交Gold序列在Rayleigh信道下的QPSK误码率分析;3)m-序列在AWGN和Rayleigh信道下的QPSK误码率分析;4)m-序列Rayleigh信道下不同调制方式MQAM(M=4/8/16)时的误码率分析。
四、实验数据1、基于MATLAB中的BPSK误码性能研究BPSK(Binary Phase Shift Keying )即双相频移键控,是把模拟信号转换成数据值的转换方式之一。
利用偏离相位的复数波浪组合来表现信息键控移相方式的一种。
本实验将简要介绍BPSK调制方式的特点,调制解调方法,以及在Matlab中在AWGN信道中的误码性能。
例1-1%周期信号(方波)的展开,fb_jinshi.mclose all;clear all;N=100; %取展开式的项数为2N+1项T=1;fs=1/T;N_sample=128; %为了画出波形,设置每个周期的采样点数dt = T/N_sample;t=0:dt:10*T-dt;n=-N:N;Fn = sinc(n/2).*exp(-j*n*pi/2);Fn(N+1)=0;ft = zeros(1,length(t));for m=-N:Nft = ft + Fn(m+N+1)*exp(j*2*pi*m*fs*t);endplot(t,ft)例 1-2利用FFT计算信号的频谱并与信号的真实频谱的抽样比较。
脚本文件T2F.m定义了函数T2F,计算信号的傅立叶变换。
function [f,sf]= T2F(t,st)%This is a function using the FFT function to calculate a signal's Fourier %Translation%Input is the time and the signal vectors,the length of time must greater %than 2%Output is the frequency and the signal spectrumdt = t(2)-t(1);T=t(end);df = 1/T;N = length(st);f=-N/2*df:df:N/2*df-df;sf = fft(st);sf = T/N*fftshift(sf);脚本文件F2T.m定义了函数F2T,计算信号的反傅立叶变换。
function [t st]=F2T(f,sf)%This function calculate the time signal using ifft function for the input %signal's spectrumdf = f(2)-f(1);Fmx = ( f(end)-f(1) +df);dt = 1/Fmx;N = length(sf);T = dt*N;%t=-T/2:dt:T/2-dt;t = 0:dt:T-dt;sff = fftshift(sf);st = Fmx*ifft(sff);另写脚本文件fb_spec.m如下:%方波的傅氏变换, fb_spec.mclear all;close all;T=1;N_sample = 128;dt=T/N_sample;t=0:dt:T-dt;st=[ones(1,N_sample/2), -ones(1,N_sample/2)]; %方波一个周期subplot(211);plot(t,st);axis([0 1 -2 2]);xlabel('t'); ylabel('s(t)');subplot(212);[f sf]=T2F(t,st); %方波频谱plot(f,abs(sf)); hold on;axis([-10 10 0 1]);xlabel('f');ylabel('|S(f)|');%根据傅氏变换计算得到的信号频谱相应位置的抽样值sff= T^2*j*pi*f*0.5.*exp(-j*2*pi*f*T).*sinc(f*T*0.5).*sinc(f*T*0.5);plot(f,abs(sff),'r-')例1-3%信号的能量计算或功率计算,sig_pow.mclear all;close all;dt = 0.01;t = 0:dt:5;s1 = exp(-5*t).*cos(20*pi*t);s2 = cos(20*pi*t);E1 = sum(s1.*s1)*dt; %s1(t)的信号能量P2 = sum(s2.*s2)*dt/(length(t)*dt); %s2(t)的信号功率s[f1 s1f]= T2F(t,s1);[f2 s2f]= T2F(t,s2);df = f1(2)-f1(1);E1_f = sum(abs(s1f).^2)*df; %s1(t)的能量,用频域方式计算df = f2(2)-f2(1);T = t(end);P2_f = sum(abs(s2f).^2)*df/T; %s2(t)的功率,用频域方式计算figure(1)subplot(211)plot(t,s1);xlabel('t'); ylabel('s1(t)');subplot(212)plot(t,s2)xlabel('t'); ylabel('s2(t)');例1-4%方波的傅氏变换,sig_band.mclear all;close all;T=1;N_sample = 128;dt=1/N_sample;t=0:dt:T-dt;st=[ones(1,N_sample/2) -ones(1,N_sample/2)];df=0.1/T;Fx = 1/dt;f=-Fx:df:Fx-df;%根据傅氏变换计算得到的信号频谱sff= T^2*j*pi*f*0.5.*exp(-j*2*pi*f*T).*sinc(f*T*0.5).*sinc(f*T*0.5);plot(f,abs(sff),'r-')axis([-10 10 0 1]);hold on;sf_max = max(abs(sff));line([f(1) f(end)],[sf_max sf_max]);line([f(1) f(end)],[sf_max/sqrt(2) sf_max/sqrt(2)]); %交点处为信号功率下降3dB处Bw_eq = sum(abs(sff).^2)*df/T/sf_max.^2; %信号的等效带宽例 1-5%带通信号经过带通系统的等效基带表示,sig_bandpass.mclear all;close all;dt = 0.01;t = 0:dt:5;s1 = exp(-t).*cos(20*pi*t); %输入信号[f1 s1f]= T2F(t,s1); %输入信号的频谱s1_lowpass = hilbert(s1).*exp(-j*2*pi*10*t); %输入信号的等效基带信号[f2 s2f]=T2F(t,s1_lowpass); %输入等效基带信号的频谱h2f = zeros(1,length(s2f));[a b]=find( abs(s1f)==max(abs(s1f)) ); %找到带通信号的中心频率h2f( 201-25:201+25 )= 1;h2f( 301-25:301+25) = 1;h2f = h2f.*exp(-j*2*pi*f2); %加入线性相位,[t1 h1] = F2T(f2,h2f); %带通系统的冲激响应h1_lowpass = hilbert(h1).*exp(-j*2*pi*10*t1); %等效基带系统的冲激响应figure(1)subplot(521);plot(t,s1);xlabel('t'); ylabel('s1(t)'); title('带通信号');subplot(523);plot(f1,abs(s1f));xlabel('f'); ylabel('|S1(f)|'); title('带通信号幅度谱');subplot(522)plot(t,real(s1_lowpass));xlabel('t');ylabel('Re[s_l(t)]');title('等效基带信号的实部');subplot(524)plot(f2,abs(s2f));xlabel('f');ylabel('|S_l(f)|');title('等效基带信号的幅度谱');%画带通系统及其等效基带的图subplot(525)plot(f2,abs(h2f));xlabel('f');ylabel('|H(f)|');title('带通系统的传输响应幅度谱'); subplot(527)plot(t1,h1);xlabel('t');ylabel('h(t)');title('带通系统的冲激响应');subplot(526)[f3 hlf]=T2F(t1,h1_lowpass);plot(f3,abs(hlf));xlabel('f');ylabel('|H_l(f)|');title('带通系统的等效基带幅度谱');subplot(528)plot(t1,h1_lowpass);xlabel('t');ylabel('h_l(t)');title('带通系统的等效基带冲激响应');%画出带通信号经过带通系统的响应及等效基带信号经过等效基带系统的响应tt = 0:dt:t1(end)+t(end);yt = conv(s1,h1);subplot(529)plot(tt,yt);xlabel('t');ylabel('y(t)');title('带通信号与带通系统响应的卷积')ytl = conv(s1_lowpass,h1_lowpass).*exp(j*2*pi*10*tt);subplot(5,2,10)plot(tt,real(yt));xlabel('t');ylabel('y_l(t)cos(20*pi*t');title('等效基带与等效基带系统响应的卷积×中心频率载波')例 1-6%例:窄带高斯过程,文件 zdpw.mclear all; close all;N0=1; %双边功率谱密度fc=10; %中心频率B=1; %带宽dt=0.01;T=100;t=0:dt:T-dt;%产生功率为N0*B的高斯白噪声P = N0*B;st = sqrt(P)*randn(1,length(t));%将上述白噪声经过窄带带通系统,[f,sf] = T2F(t,st); %高斯信号频谱figure(1)plot(f,abs(sf)); %高斯信号的幅频特性[tt gt]=bpf(f,sf,fc-B/2,fc+B/2); %高斯信号经过带通系统glt = hilbert(real(gt)); %窄带信号的解析信号,调用hilbert函数得到解析信号glt = glt.*exp(-j*2*pi*fc*tt);[ff,glf]=T2F( tt, glt );figure(2)plot(ff,abs(glf));xlabel('频率(Hz)'); ylabel('窄带高斯过程样本的幅频特性')figure(3)subplot(411);plot(tt,real(gt));title('窄带高斯过程样本')subplot(412)plot(tt,real(glt).*cos(2*pi*fc*tt)-imag(glt).*sin(2*pi*fc*tt))title('由等效基带重构的窄带高斯过程样本')subplot(413)plot(tt,real(glt));title('窄带高斯过程样本的同相分量')subplot(414)plot(tt,imag(glt));xlabel('时间t(秒)'); title('窄带高斯过程样本的正交分量')%求窄带高斯信号功率;注:由于样本的功率近似等于随机过程的功率,因此可能出现一些偏差P_gt=sum(real(gt).^2)/T;P_glt_real = sum(real(glt).^2)/T;P_glt_imag = sum(imag(glt).^2)/T;%验证窄带高斯过程的同相分量、正交分量的正交性a = real(glt)*(imag(glt))'/T;用到的子函数function [t,st]=bpf(f,sf,B1,B2)%This function filter an input at frequency domain by an ideal bandpass filter %Inputs:% f: frequency samples% sf: input data spectrum samples% B1: bandpass's lower frequency% B2: bandpass's higher frequency%Outputs:% t: frequency samples% st: output data's time samplesdf = f(2)-f(1);T = 1/df;hf = zeros(1,length(f));bf = [floor( B1/df ): floor( B2/df )] ;bf1 = floor( length(f)/2 ) + bf;bf2 = floor( length(f)/2 ) - bf;hf(bf1)=1/sqrt(2*(B2-B1));hf(bf2)=1/sqrt(2*(B2-B1));yf=hf.*sf.*exp(-j*2*pi*f*0.1*T);[t,st]=F2T(f,yf);例 1-7%显示模拟调制的波形及解调方法DSB,文件mdsb.m%信源close all;clear all;dt = 0.001; %时间采样间隔fm=1; %信源最高频率fc=10; %载波中心频率T=5; %信号时长t = 0:dt:T;mt = sqrt(2)*cos(2*pi*fm*t); %信源%N0 = 0.01; %白噪单边功率谱密度%DSB modulations_dsb = mt.*cos(2*pi*fc*t);B=2*fm;%noise = noise_nb(fc,B,N0,t);%s_dsb=s_dsb+noise;figure(1)subplot(311)plot(t,s_dsb);hold on; %画出DSB信号波形plot(t,mt,'r--'); %标示mt的波形title('DSB调制信号');xlabel('t');%DSB demodulationrt = s_dsb.*cos(2*pi*fc*t);rt = rt-mean(rt);[f,rf] = T2F(t,rt);[t,rt] = lpf(f,rf,2*fm);subplot(312)plot(t,rt); hold on;plot(t,mt/2,'r--');title('相干解调后的信号波形与输入信号的比较');xlabel('t')subplot(313)[f,sf]=T2F(t,s_dsb);psf = (abs(sf).^2)/T;plot(f,psf);axis([-2*fc 2*fc 0 max(psf)]);title('DSB信号功率谱');xlabel('f');function [t st]=lpf(f,sf,B)%This function filter an input data using a lowpass filter %Inputs: f: frequency samples% sf: input data spectrum samples% B: lowpass's bandwidth with a rectangle lowpass%Outputs: t: time samples% st: output data's time samplesdf = f(2)-f(1);T = 1/df;hf = zeros(1,length(f));bf = [-floor( B/df ): floor( B/df )] + floor( length(f)/2 ); hf(bf)=1;yf=hf.*sf;[t,st]=F2T(f,yf);st = real(st);例1-8%显示模拟调制的波形及解调方法AM,文件mam.m%信源close all;clear all;dt = 0.001; %时间采样间隔fm=1; %信源最高频率fc=10; %载波中心频率T=5; %信号时长t = 0:dt:T;mt = sqrt(2)*cos(2*pi*fm*t); %信源%N0 = 0.01; %白噪单边功率谱密度%AM modulationA=2;s_am = (A+mt).*cos(2*pi*fc*t);B = 2*fm; %带通滤波器带宽%noise = noise_nb(fc,B,N0,t); %窄带高斯噪声产生%s_am = s_am + noise;figure(1)subplot(311)plot(t,s_am);hold on; %画出AM信号波形plot(t,A+mt,'r--'); %标示AM的包络title('AM调制信号及其包络');xlabel('t');%AM demodulationrt = s_am.*cos(2*pi*fc*t); %相干解调rt = rt-mean(rt);[f,rf] = T2F(t,rt);[t,rt] = lpf(f,rf,2*fm); %低通滤波subplot(312)plot(t,rt); hold on;plot(t,mt/2,'r--');title('相干解调后的信号波形与输入信号的比较'); xlabel('t')subplot(313)[f,sf]=T2F(t,s_am);psf = (abs(sf).^2)/T;plot(f,psf);axis([-2*fc 2*fc 0 max(psf)]);title('AM信号功率谱');xlabel('f');例 1-9%显示模拟调制的波形及解调方法SSB,文件mssb.m%信源close all;clear all;dt = 0.001; %时间采样间隔fm=1; %信源最高频率fc=10; %载波中心频率T=5; %信号时长t = 0:dt:T;mt = sqrt(2)*cos(2*pi*fm*t); %信源%N0 = 0.01; %白噪单边功率谱密度%SSB modulations_ssb = real( hilbert(mt).*exp(j*2*pi*fc*t) );B=fm;%noise = noise_nb(fc,B,N0,t);%s_ssb=s_ssb+noise;figure(1)subplot(311)plot(t,s_ssb);hold on; %画出SSB信号波形plot(t,mt,'r--'); %标示mt的波形title('SSB调制信号');xlabel('t');%SSB demodulationrt = s_ssb.*cos(2*pi*fc*t);rt = rt-mean(rt);[f,rf] = T2F(t,rt);[t,rt] = lpf(f,rf,2*fm);subplot(312)plot(t,rt); hold on;plot(t,mt/2,'r--');title('相干解调后的信号波形与输入信号的比较');xlabel('t')subplot(313)[f,sf]=T2F(t,s_ssb);psf = (abs(sf).^2)/T;plot(f,psf);axis([-2*fc 2*fc 0 max(psf)]);title('SSB信号功率谱');xlabel('f');例 2-0%显示模拟调制的波形及解调方法VSB,文件mvsb.m%信源close all;clear all;dt = 0.001; %时间采样间隔fm=5; %信源最高频率fc=20; %载波中心频率T=5; %信号时长t = 0:dt:T;mt = sqrt(2)*( cos(2*pi*fm*t)+sin(2*pi*0.5*fm*t) ); %信源%VSB modulations_vsb = mt.*cos(2*pi*fc*t);B=1.2*fm;[f,sf] = T2F(t,s_vsb);[t,s_vsb] = vsbpf(f,sf,0.2*fm,1.2*fm,fc);figure(1)subplot(311)plot(t,s_vsb);hold on; %画出VSB信号波形plot(t,mt,'r--'); %标示mt的波形title('VSB调制信号');xlabel('t');%VSB demodulation[f,rf] = T2F(t,rt);[t,rt] = lpf(f,rf,2*fm);subplot(312)plot(t,rt); hold on;plot(t,mt/2,'r--');title('相干解调后的信号波形与输入信号的比较');xlabel('t')subplot(313)[f,sf]=T2F(t,s_vsb);psf = (abs(sf).^2)/T;plot(f,psf);axis([-2*fc 2*fc 0 max(psf)]);title('VSB信号功率谱');xlabel('f');function [t,st]=vsbpf(f,sf,B1,B2,fc)%This function filter an input by an residual bandpass filter %Inputs: f: frequency samples% sf: input data spectrum samples% B1: residual bandwidth% B2: highest freq of the basedband signal%Outputs: t: frequency samples% st: output data's time samplesdf = f(2)-f(1);T = 1/df;hf = zeros(1,length(f));bf1 = [floor( (fc-B1)/df ): floor( (fc+B1)/df )] ;bf2 = [floor( (fc+B1)/df )+1: floor( (fc+B2)/df )];f1 = bf1 + floor( length(f)/2 ) ;f2 = bf2 + floor( length(f)/2 ) ;stepf = 1/length(f1);hf(f1)=0:stepf:1-stepf;hf(f2)=1;f3 = -bf1 + floor( length(f)/2 ) ;f4 = -bf2 + floor( length(f)/2) ;hf(f3)=0:stepf:(1-stepf);hf(f4)=1;yf=hf.*sf;[t,st]=F2T(f,yf);st = real(st);例 2-1%显示模拟调制的波形及解调方法AM、DSB、SSB,%信源close all;clear all;dt = 0.001;fm=1;fc=10;t = 0:dt:5;N0 = 0.1;%AM modulationA=2;s_am = (A+mt).*cos(2*pi*fc*t);B = 2*fm;noise = noise_nb(fc,B,N0,t); s_am = s_am + noise;figure(1)subplot(321)plot(t,s_am);hold on;plot(t,A+mt,'r--');%AM demodulationrt = s_am.*cos(2*pi*fc*t);rt = rt-mean(rt);[f,rf] = T2F(t,rt);。
matlab通信仿真实例在Matlab中进行通信系统的仿真,可以涉及到多种不同的通信技术和协议,包括调制解调、信道编码、多址接入等。
以下以OFDM系统为例,介绍Matlab 中通信仿真的实例。
OFDM(正交频分复用)是一种常用于现代通信系统中的技术,它将高速数据流分割成多个较低速的子流,并将每个子流分配到不同的子载波上。
优点是能够抵抗多径效应和频率选择性衰落,并提供高数据速率。
首先,我们需要创建一个包含OFDM系统参数的结构体。
例如:ofdmParam.M = 16; % 子载波数量ofdmParam.K = 4; % 用于混合多路复用的用户数量ofdmParam.N = ofdmParam.M * ofdmParam.K; % 总子载波数量ofdmParam.CP = 16; % 循环前缀长度接下来,我们可以生成用于OFDM仿真的数据流。
例如,我们可以使用随机整数生成器生成一系列整数,并将其转换为复数形式的调制符号:data = randi([0, ofdmParam.M-1], 1, ofdmParam.N);dataMod = qammod(data, ofdmParam.M);然后,我们可以创建一个包含OFDM信号的函数。
在OFDM系统中,生成的数据符号将分配到不同的子载波上,然后在时域中通过插入循环前缀进行叠加:function[ofdmSignal] = createOFDMSignal(dataMod, ofdmParam) ofdmSignal = [];for k = 0:ofdmParam.K-1% 提取相应的数据符号,并进行IFFTofdmData =ifft(dataMod(k*ofdmParam.M+1:(k+1)*ofdmParam.M));% 添加循环前缀ofdmDataWithCP = [ofdmData(end-ofdmParam.CP+1:end), ofdmData];% 将OFDM符号添加到OFDM信号中ofdmSignal = [ofdmSignal, ofdmDataWithCP];endend将OFDM信号传输到信道中,我们可以使用加性高斯白噪声(AWGN)信道模型来模拟实际通信环境:EbNo = 10; % 信噪比snr =10*log10(ofdmParam.N*ofdmParam.M/(ofdmParam.N*ofdmParam.M+1 )*(10^(EbNo/10)));ofdmSignalNoisy = awgn(ofdmSignal, snr, 'measured');最后,我们可以对接收到的OFDM信号进行解调和信号恢复。
二并联杆数控螺旋面钻头尖刃磨机的机构仿真一、仿真原理一、实训题目:全自动洗衣机控制系统实训目的及要求:1、掌握欧姆龙PLC的指令,具有独立分析和设计程序的能力2、掌握PLC梯形图的基本设计方法3、培养分析和解决实际工程问题的能力4、培养程序设计及调试的能力5、熟悉传输带控制系统的原理及要求实训设备::1、OMRON PLC及模拟实验装置1台2、安装CX-P编程软件的PC机1台3、PC机PLC通讯的RS232电缆线1根实训内容:1、分析工艺过程,明确控制要求(1)按下启动按扭及水位选择开关,相应的显示灯亮,开始进水直到高(中、低)水位,关水。
(2)2秒后开始洗涤。
(3)洗涤时,正转30秒停2秒;然后反转30秒停2秒。
(4)循环5次,总共320秒,然后开始排水。
排水后脱水30秒。
图1 全自动洗衣机控制2、统计I/O点数并选择PLC型号输入:系统启动按钮一个,系统停止按钮一个,高、中、低水位控制开关三个,高、中、低液位传感器三个,以及排水液位传感器一个。
输出:进出水显示灯一盏,高、中、低水位显示灯各一盏,电机正、反转显示灯各一盏,排水、脱水显示灯灯各一盏。
PLC的型号:输入一共有9个,考虑到留有15%~20%的余量即9×(1+15%)=10.35,取整数10,所以共需10个输入点。
输出共有8个,8×(1+15%)=9.2,取整数9,所以共需9个输出点。
可以选OMRON公司的CPM1A/CPM2A 型PLC就能满足此例的要求。
3、I/O分配表1 全自动洗衣机控制I/O分配表输入输出地址名称地址名称00000 启动系统按钮01000 排水显示灯00001 高水位选择按钮01001 脱水显示灯00002 中水位选择按钮01002 进、出水显示灯00003 低水位选择按钮01003 高水位显示灯00004 排水液位传感器01004 中水位显示灯00005 停止系统按钮01005 低水位显示灯00006 高水位液位传感器01006 电机正转显示灯00007 中水位液位传感器01007 电机反转显示灯00008 低水位液位传感器4、PLC控制程序设计及分析实现功能:当按下按钮00000,中间继电器20000得电并自锁,按下停止按钮00005,中间继电器20000掉电。
MATLAB通信系统仿真实验报告实验一、MATLAB的基本使用与数学运算目的:学习MATLAB的基本操作,实现简单的数学运算程序。
内容:1-1 要求在闭区间[0,2π]上产生具有10个等间距采样点的一维数组。
试用两种不同的指令实现。
运行代码:x=[0:2*pi/9:2*pi]运行结果:1-2 用M文件建立大矩阵xx=[ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.91.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.92.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.93.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9]代码:x=[ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.91.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.92.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.93.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9]m_mat运行结果:1-3已知A=[5,6;7,8],B=[9,10;11,12],试用MATLAB分别计算A+B,A*B,A.*B,A^3,A.^3,A/B,A\B.代码:A=[5 6;7 8] B=[9 10;11 12] x1=A+B X2=A-B X3=A*B X4=A.*B X5=A^3 X6=A.^3 X7=A/B X8=A\B运行结果:1-4任意建立矩阵A,然后找出在[10,20]区间的元素位置。
程序代码及运行结果:代码:A=[12 52 22 14 17;11 10 24 03 0;55 23 15 86 5 ] c=A>=10&A<=20运行结果:1-5 总结:实验过程中,因为对软件太过生疏遇到了些许困难,不过最后通过查书与同学交流都解决了。
例如第二题中,将文件保存在了D盘,而导致频频出错,最后发现必须保存在MATLAB文件之下才可以。
• 139•针对通信原理课程的教学特点和传统实验教学存在的问题,讨论了将Matlab软件引入到通信原理课程教学的必要性。
以模拟调制系统为例,利用Matlab的工具箱和Simulink界面对通信系统进行可视化教学,并给出了仿真结果。
实践证明,不仅在课堂教学中以更加直观的方式进行讲解,而且补充和完善传统实验的不足,提高学生学习积极性,教学效果得到较大提升。
随着5G通信的到来,通信技术在人们日常生活中是无处不在,现代通信技术取得了显著进展。
通信原理作为高校通信工程和电子信息等本科专业课程体系中重要的专业基础课,系统阐述了模拟和数字通信系统的基本概念、基本原理和基本分析方法,为学生学习后续课程储备专业素养(王海华,Matlab/Simulink仿真在“通信原理”教学中的应用研究:湖北理工学院学报,2015)。
然而这门课程理论内容丰富,系统模型抽象,数学公式多,推理过程繁琐,学生普遍感到枯燥难懂,抓不住重点,学习吃力,不能顺利学好本课程(基于Matlab_Simulink的通信原理虚拟仿真实验教学方法研究:现代电子技术,2015;邵玉斌,Matlab/Simulink通信系统建模与仿真实例分析:清华大学出版社,2008)。
为此,在教学过程中引入Matlab仿真技术,理论联系实践开展教学工作,通过simulink界面搭建系统模型,调整参数,观察通信系统性能,激发学生的学习积极性,提升教学质量,实现良好的教学模式。
1 Matlab软件介绍Matlab在工程数值运算和系统仿真方面具有强大的功能,主要包括数值分析、仿真建模、系统控制和优化等功能(牛磊,赵正平,郭博,Matlab仿真在通信原理教学中的应用:阜阳师范学院学报,2014)。
在Matlab的Communication Toolbox(通信工具箱)中提供了许多仿真函数和模块,用于对通信系统进行仿真和分析。
Simulink平台是Matlab中一种可视化仿真工具,提供了建立模型方框图的图形用户界面(GUI),可以将图形化的系统模块连接起来,从而建立直观、功能丰富的动态系统模型(黄琳,曹杉杉,熊旭辉.基于Matlab的通信原理实验课程设计:湖北师范大学学报,2017)。
matlab 通信仿真案例
Matlab是一种强大的工程仿真软件,可以用于各种领域的仿真
案例,包括通信系统。
通信系统仿真是Matlab的一个常见应用领域,可以涉及到数字通信、无线通信、信号处理等方面。
下面我将从多
个角度介绍几个通信仿真案例。
数字调制仿真是通信系统仿真的一个重要方面。
在Matlab中,
你可以使用数字调制技术来模拟各种调制方案,比如QPSK、16-QAM、OFDM等。
你可以创建一个仿真模型,包括信道模型、噪声模型等,
来评估不同调制方案在不同信噪比下的性能。
另一个常见的通信系统仿真案例是无线信道建模。
在Matlab中,你可以使用射线追踪技术或者其他无线信道建模工具,来模拟不同
类型的无线信道,比如室内信道、室外信道等。
通过仿真,你可以
评估不同信道条件下无线通信系统的性能表现。
此外,Matlab还可以用于设计和仿真滤波器和均衡器。
你可以
使用Matlab的信号处理工具箱来设计各种数字滤波器和均衡器,并
通过仿真来评估它们在通信系统中的性能。
另一个重要的通信系统仿真案例是误码率性能评估。
在Matlab 中,你可以通过模拟传输过程中的比特错误来评估系统的误码率性能。
你可以使用各种编码和调制技术,以及不同的信道条件,来评
估系统在不同情况下的误码率表现。
最后,Matlab还可以用于设计和仿真通信系统中的自适应算法,比如自适应均衡、自适应调制解调等。
通过仿真,你可以评估这些
自适应算法在不同信道条件下的性能表现。
总之,Matlab是一个非常强大的工程仿真工具,可以用于各种
通信系统的仿真案例,包括数字调制、无线信道建模、滤波器设计、误码率性能评估以及自适应算法设计等。
希望这些信息能够对你有
所帮助。