高中物理闭合电路欧姆定律
- 格式:doc
- 大小:17.00 KB
- 文档页数:2
高中物理闭合电路的欧姆定律练习题及答案一、高考物理精讲专题闭合电路的欧姆定律1.小勇同学设计了一种测定风力大小的装置,其原理如图所示。
E是内阻不计、电动势40Q的定值电阻。
v是由理想电压表改装成的指针式测风力为6V的电源。
R0是一个阻值为显示器。
R是与迎风板A相连的一个压敏电阻,其阻值可随风的压力大小变化而改变,其关系如下表所示。
迎风板人的重力忽略不计。
试求:(1)利用表中的数据归纳出电阻R随风力F变化的函数式;(2)若电压表的最大量程为5V,该装置能测得的最大风力为多少牛顿;(3)当风力F为500N时,电压表示数是多少;(4)如果电源E的电动势降低,要使相同风力时电压表测得的示数不变,需要调换R0,调(只写结论)换后的R0的阻值大小如何变化?R=30-°・°4F(°);(2)F=550N;(3)U=4.8V;(4)阻值变【答案】(1)m大【解析】【分析】【详解】A F(1)通过表中数据可得:=S故R与F成线性变化关系设它们的关系式为:ARR=kF+b代入数据得:R=30-0.04F(Q)①(2)由题意,R0上的电压U R =5V,通过R0的电流为0RU1=青②U =竺=4.8V ⑤R T ③解①~④式,得,当电压表两端电压U 为5V 时,测得的风力最大RF 二550N ④m(3)由①式得R =10Q(4)阻值变大2. 如图所示,水平U 形光滑框架,宽度L=1m ,电阻忽略不计,导体棒ab 的质量m =°.2弦,电阻R=0.50,匀强磁场的磁感应强度B=0.2T ,方向垂直框架向上•现用F=1N 的拉力由静止开始向右拉ab 棒,当ab 棒的速度达到2m/s 时,求此时:(1) ab 棒产生的感应电动势的大小; (2)ab棒产生的感应电流的大小和方向;(3) ab棒所受安培力的大小和方向;【答案】(1)0.4V (2)0.8A 从a 流向b (3)0.16N 水平向左(4)4.2m/s 2 【解析】 【分析】 【详解】试题分析:(1)根据切割产生的感应电动势公式E=BLv ,求出电动势的大小.(2)由闭合电路欧姆定律求出回路中电流的大小,由右手定则判断电流的方向•(3)由安培力公式求出安培力的大小,由左手定则判断出安培力的方向.(4)根据牛顿第二定律求出ab 棒的加速度.(1)根据导体棒切割磁感线的电动势E=BLv=0.2x l x 2V=0.4VE 04(2)由闭合电路欧姆定律得回路电流I ==A =0.8A ,由右手定则可知电流方向R 0.5为:从a 流向b(3)ab 受安培力F =BIL =0.2x 0.8x l N=0.16N ,由左手定则可知安培力方向为:水平向左 (4)根据牛顿第二定律有:F -F =ma ,得ab 杆的加速度安4.2m/s23 14+1 A=0.2A1-0.16/m/s2=0.23.在如图所示的电路中,电阻箱的阻值K是可变的,电源的电动势为E,电源的内阻为r,其余部分的电阻均可忽略不计。
高中物理【闭合电路的欧姆定律】教案知识点教案内容:一、教学目标1. 让学生理解闭合电路的概念,知道电路中电流、电压和电阻的基本概念。
2. 引导学生掌握欧姆定律的内容,能够运用欧姆定律解决实际问题。
3. 培养学生的实验操作能力和观察能力,提高学生的科学思维能力。
二、教学重难点1. 重点:闭合电路的概念,欧姆定律的内容及其应用。
2. 难点:欧姆定律的推导过程,电阻的计算方法。
三、教学准备1. 实验器材:电源、导线、电阻、电流表、电压表。
2. 教学工具:多媒体课件。
四、教学过程1. 导入新课:通过一个简单的电路实验,让学生观察电流和电压的变化,引发学生对闭合电路和欧姆定律的思考。
2. 讲解概念:介绍闭合电路的概念,解释电流、电压和电阻的基本含义。
3. 推导欧姆定律:引导学生通过实验数据,分析电流、电压和电阻之间的关系,推导出欧姆定律。
4. 解释欧姆定律:讲解欧姆定律的内容,让学生理解电流、电压和电阻之间的关系。
5. 应用欧姆定律:通过实例,让学生学会运用欧姆定律解决实际问题。
五、课堂小结1. 让学生回顾本节课所学的内容,总结闭合电路的概念和欧姆定律的内容。
2. 强调欧姆定律在实际生活中的应用,提醒学生注意安全。
教学反思:本节课通过实验和讲解相结合的方式,让学生掌握了闭合电路的概念和欧姆定律的内容。
在教学过程中,要注意引导学生主动参与实验,观察现象,分析问题,从而培养学生的实验操作能力和科学思维能力。
要关注学生的学习反馈,及时解答学生的疑问,提高教学效果。
六、课堂练习1. 让学生独立完成教材中的相关练习题,巩固对闭合电路和欧姆定律的理解。
2. 教师选取部分学生的练习题进行讲解,分析学生的解题思路和存在的问题。
七、拓展知识1. 介绍欧姆定律在生活中的应用,如:电路设计、电工测量等。
2. 引导学生思考欧姆定律在其他领域中的应用,如:生物学、化学等。
八、课后作业1. 要求学生课后完成教材中的相关作业题,加深对闭合电路和欧姆定律的理解。
高中物理《闭合电路的欧姆定律》教案设计一、教学目标:1. 让学生理解闭合电路的概念,掌握欧姆定律的内容及公式。
2. 培养学生运用欧姆定律解决实际问题的能力。
3. 引导学生通过实验探究,提高观察、分析、解决问题的能力。
二、教学内容:1. 闭合电路的定义及组成。
2. 欧姆定律的内容:电流I与电压U、电阻R之间的关系,即I=U/R。
3. 欧姆定律的应用:解决电流、电压、电阻的实际问题。
三、教学重点与难点:1. 重点:闭合电路的概念,欧姆定律的公式及应用。
2. 难点:欧姆定律在实际问题中的运用。
四、教学方法:1. 采用问题驱动法,引导学生探究闭合电路的欧姆定律。
2. 利用实验现象,让学生直观地理解欧姆定律。
3. 运用案例分析法,培养学生解决实际问题的能力。
五、教学过程:1. 导入新课:通过提问方式引导学生回顾电流、电压、电阻的关系,引出闭合电路的欧姆定律。
2. 讲解闭合电路的概念,阐述欧姆定律的定义及公式。
3. 演示实验:让学生观察实验现象,验证欧姆定律。
4. 案例分析:提供一些实际问题,让学生运用欧姆定律解决。
5. 总结与拓展:对本节课内容进行总结,布置课后作业,引导学生进一步探究欧姆定律的运用。
教案设计示例:1. 导入新课教师提问:“同学们,我们知道电流、电压、电阻之间有什么关系吗?”引导学生回顾电流、电压、电阻的关系。
接着,教师提出:“在闭合电路中,电流、电压、电阻之间的关系又是怎样的呢?今天我们就要学习闭合电路的欧姆定律。
”2. 讲解闭合电路的概念,阐述欧姆定律的定义及公式教师讲解闭合电路的概念,阐述欧姆定律的定义及公式I=U/R。
通过示例让学生理解欧姆定律的应用。
3. 演示实验教师进行实验演示,让学生观察实验现象,验证欧姆定律。
实验过程中,教师引导学生注意观察电流表、电压表的读数变化,并与理论公式进行对比。
4. 案例分析教师提供一些实际问题,让学生运用欧姆定律解决。
例如:“一个电阻为10Ω的电路,电压为10V,求电流大小。
高二物理闭合电路欧姆定律公式及其应用一、基础知识归纳1.闭合电路的欧姆定律(1)内、外电路①内电路:电源两极(不含两极)以内,如电池内的溶液、发电机的线圈等.内电路的电阻叫做内电阻.②外电路:电源两极,用电器和导线等.外电路的电阻叫做外电阻.(2)闭合电路的欧姆定律①内容:闭合电路的电流跟电源的电动势成正比,与内、外电路的电阻之和成反比.②适用条件:纯电阻电路.③闭合电路欧姆定律的表达形式有:Ⅰ.E=U外+U内Ⅱ.I=(I、R间关系)Ⅲ.U=E-Ir(U、I间关系)Ⅳ.U=E(U、R间关系)2.闭合电路中的电压关系(1)电源电动势等于内、外电压之和.注意:U不一定等于IR.(纯电阻电路中U=IR,非纯电阻电路中UIR)(2)路端电压与电流的关系(如图所示).①路端电压随总电流的增大而减小.②电流为零时,即外电路断路时的路端电压等于电源电动势E.在图象中,U-I图象在纵轴上的截距表示电源的电动势.③路端电压为零时(即外电路短路时)的电流Im=(短路电流).图线斜率的绝对值在数值上等于内电阻.(3)纯电阻电路中,路端电压U随外电阻R的变化关系.①外电路的电阻增大时,I减小,路端电压升高;②外电路断开时,R,路端电压U=E ;③外电路短路时,R=0,U=0,I=Im=E/r.3.电动势与路端电压的比较:电动势路端电压U物理意义反映电源内部非静电力做功把其他形式能量转化为电能的情况反映电路中电场力做功把电能转化成为其他形式能量的情况定义式E=,W为电源的非静电力把正电荷从电源负极移到正极所做的功U=,W为电场力把正电荷从电源外部由正极移到负极所做的功量度式E=IR+Ir=U+UU=IR测量运用欧姆定律间接测量用伏特表测量决定因素只与电源性质有关与电源和电路中的用电器有关特殊情况当电源开路时路端电压U值等于电源电动势E4.闭合电路中的功率关系(1)电源的总功率:P总= IE =IU+IU=P出+P内(2)电源内耗功率:P内= I2r =IU=P总-P出(3)电源的输出功率:P出=IU=IE-I2r=P总-P内(4)电源的输出功率与电路中电流的关系P出=IU外=IE-I2r=-r(I-)2+,当I=时,电源的输出功率最大,P出=.P出-I图象如右图示.5.电源的输出功率与外电路电阻的关系对于纯电阻电路,电源的输出功率P出=I2R=()2R=由上式可以看出,当外电阻等于电源内电阻(R=r)时,电源输出功率最大,其最大输出功率为Pm=.当R=r时,即I=E/2r时,电源的输出功率最大,P出=.P出-R图象如右图所示.由图象可知,对应于电源的非最大输出功率P可以有两个不同的外电阻R1和R2,不难证明r=.由图象还可以看出,当Rr时,若R增大,则P 出增大;当Rr时,若R增大,则P出减小.注意:对于内、外电路上的固定电阻,其消耗的功率仅取决于电路中的电流大小.5.电源的效率指电源的输出功率与电源功率之比.即=100%=100%=100%对纯电阻电路,电源的效率=100%=100%=100%由上式看出,外电阻越大,电源的效率越高.6.电路的U-I图象右图中a为电源的U-I图象,b为外电阻的U-I图象.两者的交点坐标表示该电阻接入电路时电路的总电流和路端电压;该点和原点的连线为对角线的矩形的面积表示输出功率;a的斜率的绝对值表示内阻大小;b的斜率的绝对值表示外电阻的大小;当两个斜率相等时,即内、外电阻相等时,图中矩形面积最大,即输出功率最大(可以看出此时路端电压是电动势的一半,电流是最大电流的一半).二、重点难点突破一、闭合电路中的能量关系1.电源的功率、电源消耗的功率、其他形式的能转变为电能的功率、整个电路消耗的功率都是指EI或I2(R外+r).2.电源的输出功率、外电路消耗的功率都是指IU或IE-I2r或I2R外.3.电源内阻消耗的功率是I2r.4.整个电路中有P电源=P外+P内.这显然是能量的转化和守恒定律在闭合电路中的具体体现.二、闭合电路的动态分析分析问题分析解答这类习题的一般步骤是:1.确定电路的外电阻如何变化.说明:(1)当外电路的任何一个电阻增大(或减小)时,电路的总电阻一定增大(或减小).(2)若电键的通断使串联的用电器增多时,总电阻增大;若电键的通断使并联的支路增多时,总电阻减小.(3)在右图所示分压器电路中,滑动变阻器可以视为由两段电阻构成,其中一段与用电器并联(以下简称并联段),另一段与并联部分相串联(以下简称串联段);设滑动变阻器的总电阻为R,灯泡的电阻为R灯,与灯泡并联的那一段电阻为R并,则分压器的总电阻为R总=R-R并+由上式可以看出,当R并减小时,R总增大;当R并增大时,R总减小.由此可以得出结论:分压器总电阻的变化情况,与并联段电阻的变化情况相反,与串联段电阻的变化情况相同.2.根据闭合电路的欧姆定律,确定电路的总电流如何变化.3.由U内=I内r,确定电源的内电压如何变化.4.由U外=E-U内,确定电源的外电压(路端电压)如何变化.5.由部分电路的欧姆定律确定干路上某定值电阻两端的电压如何变化.6.确定支路两端的电压如何变化以及通过各支路的电流如何变化.三、电路的故障分析1.常见的故障现象断路:是指电路两点间(或用电器两端)的电阻无穷大,此时无电流通过,若电源正常时,即用电压表两端并联在这段电路(或用电器)上,指针发生偏转,则该段电路断路.如电路中只有该一处断路,整个电路的电势差全部降落在该处,其他各处均无电压降落.短路:是指电路两点间(或用电器两端)的电阻趋于零,此时电路两点间无电压降落,用电器实际功率为零(即用电器不工作或灯不亮,但电源易被烧坏).2.检查电路故障的常用方法电压表检查法:当电路中接有电源时,可以用电压表测量各部分电路上的电压,通过对测量电压值的分析,就可以确定故障.在用电压表检查时,一定要注意电压表的极性正确和量程符合要求.电流表检查法:当电路中接有电源时,可以用电流表测量各部分电路上的电流,通过对测量电流值的分析,就可以确定故障.在用电流表检查时,一定要注意电流表的极性正确和量程符合要求.欧姆表检查法:当电路中断开电源后,可以利用欧姆表测量各部分电路的电阻,通过对测量电阻值的分析,就可以确定故障.在用欧姆表检查时,一定要注意切断电源.试电笔检查法:对于家庭用电线路,当出现故障时,可以利用试电笔进行检查.在用试电笔检查电路时,一定要用手接触试电笔上的金属体.3.常见故障电路问题的分类解析(1)给定可能故障现象,确定检查方法;(2)给定测量值,分析推断故障;(3)根据观察现象,分析推断故障;(4)根据故障,分析推断可能观察到的现象.三、典例精析1.闭合电路中的功率问题【例1】如图所示,电源电动势为50V,电源内阻为1.0,定值电阻R 为14,M为直流电动机,电动机电阻为2.0.电动机正常运转时,电压表的读数为35V.求在100的时间内电源做的功和电动机上转化为机械能的部分是多少.【解析】由题设条件知r和R上的电压降之和为(E-U),所以电路中的电流为I=A=1.0A所以在100内电源做的功为W=EIt=501100J=5.0103J在100内电动机上把电能转化为机械能的部分是E=IUt-I2rt=(1.035100-122100)J=3.3103J【思维提升】(1)正确理解闭合电路的几种功率.(2)从能量守恒的角度解析闭合电路的有关问题是一条重要思路.【拓展1】如图所示,已知电源电动势为6V,内阻为1,保护电阻R0=0.5,求:(1)当电阻箱R读数为多少时,电源输出功率P出最大,并求这个最大值.(2)当电阻箱R读数为多少时,电阻箱R消耗的功率PR最大,并求这个最大值.(3)当电阻箱R读数为多少时,保护电阻R0消耗的功率最大,并求这个最大值.【解析】(1)由电功率公式P出=()2R外=,当R外=r时,P出最大,即R=r-R0=(1-0.5)=0.5时,P出ma某=W=9W(2)这时要把保护电阻R0与电源内阻r算在一起,据以上结论,当R=R0+r即R=(1+0.5)=1.5时,PRma某=W=6W(3)保护电阻消耗的功率为P=,因R0和r是常量,而R是变量,所以R最小时,PR0最大,即R=0时,PR0ma某=W=8W【拓展2】某同学将一直流电源的总功率PE、输出功率PR和电源内部的发热功率Pr随电流I变化的图线画在同一坐标系中,如图中的a、b、c所示.则下列说法正确的是(CD)A.图线b表示输出功率PR随电流I变化的关系B.图中a线最高点对应的功率为最大输出功率C.在a、b、c三条图线上分别取横坐标相同的A、B、C三点,这三点的纵坐标一定满足关系PA=PB+PCD.b、c线的交点M与a、b线的交点N的横坐标之比一定为1∶2,纵坐标之比一定为1∶42.闭合电路的动态分析【例2】如图所示,当滑动变阻器的滑片P向上端移动时,判断电路中的电压表、电流表的示数如何变化【解析】先认清电流表A测量R3中的电流,电压表V2测量R2和R3并联的电压,电压表V1测量路端电压.再利用闭合电路的欧姆定律判断主干电路上的一些物理量变化.P向上滑,R3的有效电阻增大,外电阻R外增大,干路电流I减小,路端电压U增大,至此,已判断出V1示数增大.再进行分支电路上的分析:由I减小,知内电压U和R1两端电压U减小,由U外增大知R2和R3并联的电压U2增大,判断出V2示数增大.由U2增大和R3有效电阻增大,无法确定A示数如何变化.这就要从另一条途径去分析:由V2示数增大知通过R2的电流I2增大,而干路电流I减小,所以R3中的电流减小,即A示数减小.【答案】V1示数增大,V2示数增大,A示数减小.【思维提升】当电路中任一部分发生变化时,将引起电路中各处的电流和电压都随之发生变化,可谓牵一发而动全身.判断此类问题时,应先由局部的变化推出总电流的变化、路端电压的变化,再由此分析对其他各部分电路产生的影响.3.电路的故障分析【例3】某同学按如图所示电路进行实验,实验时该同学将变阻器的触片P移到不同位置时测得各电表的示数如下表所示:序号A1示数(A)A2示数(A)V1示数(V)V2示数(V)10.600.302.401.2020.440.322.560.48将电压表内阻看做无限大,电流表内阻看做零.(1)电路中E、r分别为电源的电动势和内阻,R1、R2、R3为定值电阻,在这五个物理量中,可根据上表中的数据求得的物理量是(不要求具体计算) .(2)由于电路发生故障,发现两电压表示数相同了(但不为零),若这种情况的发生是由用电器引起的,则可能的故障原因是.【解析】(1)先将电路简化,R1与r看成一个等效内阻r,r=R1+r,则由V1和A1的两组数据可求得电源的电动势E;由A2和V1的数据可求出电阻R3;由V2和A1、A2的数据可求出R2.(2)当发现两电压表的示数相同时,但又不为零,说明V2的示数也是路端电压,即外电路的电压降全在电阻R2上,由此可推断RP两端电压为零,这样故障的原因可能有两个,若假设R2是完好的,则RP一定短路;若假设RP是完好的,则R2一定断路.【答案】(1)E、R2、R3 (2)RP短路或R2断路【思维提升】知晓断路、短路时电压表的示数表现是解答故障类电路题的关键.【拓展3】如图所示,灯泡A和B都正常发光,R2忽然断路,已知U 不变,试分析A、B两灯的亮度如何变化【解析】当R2忽然断路时,电路的总电阻变大,A灯两端的电压增大,B灯两端的电压降低,所以将看到灯B比原来变暗了些,而灯泡A比原来亮了些.易错门诊【例4】如图所示电路,已知电源电动势E=6.3V,内电阻r=0.5,固定电阻R1=2,R2=3,R3是阻值为5的滑动变阻器.按下电键S,调节滑动变阻器的触点,求通过电源的电流范围.【错解】将滑动触头滑至左端,R3与R1串联再与R2并联,外电阻R==2.1I=A=2.4A再将滑动触头滑至右端,R3与R2串联再与R1并联,外电阻R==1.6 I==3A【错因】由于平时实验,常常用滑动变阻器作限流用(滑动变阻器与用电器串联),当滑动头移到两头时,通过用电器的电流将最大或最小,以至给人以一种思维定势:在没有分析具体电路的情况下,只要电路中有滑动变阻器,滑动头在它的两头,通过的电流是最大或最小.【正解】将原图化简成如图所示.外电路的结构是R与R2串联、(R3-R)与R1串联,然后这两串电阻并联.要使通过电路中电流最大,外电阻应当最小,要使通过电源的电流最小,外电阻应当最大.设R3中与R2串联的那部分电阻为R,外电阻R为R=因为两数和为定值,两数相等时其积最大,两数差值越大其积越小.当R2+R=R1+R3-R时,R最大,解得R=2,R大=2.5因为R1=2R小==1.6由闭合电路的欧姆定律有:I小=A=2.1AI大=A=3A【思维提升】不同的电路结构对应着不同的能量分配状态.电路分析的重要性有如力学中的受力分析.画出不同状态下的电路图,运用电阻串联、并联的规律求出总电阻的阻值或阻值变化表达式是分析电路的首要工作.看过的还:。
高中物理《闭合电路的欧姆定律》教案设计一、教学目标1. 让学生理解闭合电路的概念,了解欧姆定律的定义和意义。
2. 让学生掌握欧姆定律的数学表达式,并能进行相关的计算。
3. 培养学生运用物理知识解决实际问题的能力。
二、教学内容1. 闭合电路的概念介绍。
2. 欧姆定律的定义和数学表达式。
3. 欧姆定律的应用和计算。
三、教学重点与难点1. 重点:欧姆定律的数学表达式和应用。
2. 难点:闭合电路的概念和欧姆定律的实际应用。
四、教学方法1. 采用问题驱动的教学方法,引导学生通过观察和实验发现欧姆定律。
2. 使用多媒体教学辅助工具,展示实验过程和结果,帮助学生形象理解。
3. 组织学生进行小组讨论和问题解答,培养学生的合作和思考能力。
五、教学过程1. 引入:通过电路实验,引导学生观察电流和电压的关系,激发学生对闭合电路和欧姆定律的兴趣。
2. 讲解:介绍闭合电路的概念,讲解欧姆定律的定义和数学表达式,解释其物理意义。
3. 实践:学生进行电路实验,测量电流和电压值,验证欧姆定律。
4. 应用:引导学生运用欧姆定律解决实际问题,如电流的计算、电阻的测量等。
5. 总结:对本节课的内容进行总结,强调闭合电路和欧姆定律的重要性和应用。
六、教学评估1. 课堂问答:通过提问方式检查学生对闭合电路概念和欧姆定律的理解程度。
2. 实验报告:评估学生在电路实验中的操作技能和对实验结果的分析能力。
3. 课后作业:布置相关计算题和应用题,检验学生对欧姆定律的应用能力。
七、教学拓展1. 介绍欧姆定律在现代科技领域中的应用,如电路设计、手机电池等。
2. 探讨欧姆定律的局限性,如在非线性电路中的适用性问题。
八、教学资源1. 多媒体课件:展示实验过程、电路图和计算实例。
2. 实验器材:电路实验所需的器材,如电阻、电压表、电流表等。
3. 参考资料:提供相关学术论文或书籍,供有兴趣深入了解的学生参考。
九、教学建议1. 鼓励学生在课堂上积极提问,培养学生的质疑精神。
闭合电路欧姆定律教学设计闭合电路欧姆定律教学设计1一、教材分析1、地位和作用《闭合电路欧姆定律》是高中物理第十五章《恒定电流》的第四节内容,是__的重点,也是整个电学部分的一个重点。
本节内容是在学生学习了“欧姆定律”、“电功”等内容之后编排的,是分析和理解部分电路和全电路的交汇点。
本节内容在教材中具有承上启下的作用,既是前面所学知识的巩固和深化,又为后继内容的学习做出了铺垫。
2、重点和难点重点:闭合电路欧姆定律的内容及其理解难点:电动势的概念;路端电压与负载的关系3、教学目标根据教学大纲、教材内容和学生的认知特点,确定如下的教学目标:(1)知识目标:知道电动势的概念;知道电源的电动势等于外电压和内电压之和;理解闭合电路欧姆定律及其公式,并能熟练地用来解决有关的电路问题;理解路端电压与负载的关系,知道这种关系的公式表达和图像表达,并能用来分析、计算有关问题;理解闭合电路的功率表达式,理解闭合电路中能量的转化。
(2)能力目标培养学生观察、分析、解决问题的能力。
(3)科学思维品质目标通过教学示范作用,培养学生实验探索和科学推理的物理思维品质,由此进一步认识物理思维方法;通过能力训练,培养学生创造性地学习的思维品质,能够变换、创设问题,从中理性地体会物理思维方法。
二、教学方法1、对“电动势”采用“类比”方法,并配以多媒体模拟分析,使学生的认识从感性上升到理性。
2、对“路端电压与负载的关系”,可采用“设疑——猜测——实验——分析——结论”的研究方法,以完成本环节的内容及从实验现象到理论总结,从实验技能到科学推理的教学任务。
3、讲练结合式:结合本节内容,给出相应的练习,随时发现学生的错误,并引导分析其错误原因,把教师的主导作用与学生的主体作用结合起来,巩固强化有关知识。
三、教学程序设计1、指导思想根据教材特点和教学目标设计,教学中以了解、学习研究物理问题的方法为基础,掌握知识为中心,培养能力为主线,突出重点,突破难点为宗旨设计教学程序。
闭合电路欧姆定律-知识点剖析一、对闭合电路欧姆定律的理解要注意1.几种表达式由I=rR E +可得E=IR+Ir 或E=U+Ir,式中U 称为外电压(路端电压),Ir 称为内电压.上述表明,电源的电动势等于外电压和内电压之和.2.从能量转化和守恒的角度对闭合电路分析如下:(1)电源功率(也叫总功率或电源消耗的功率):P 总=EI.电源内部损耗的功率:P 内=U内I=I 2r.电源的输出功率(或叫外电路消耗的功率):P 外=U 外I.闭合电路中功率分配:P 总=P 外+P 内.即EI=U 外I+I 2r,可见电源提供的电能,一部分消耗在内阻上,其余部分输出到外电路中. 值得我们注意的是,若外电路是纯电阻电路,部分欧姆定律适用:P=I 2R=U外2/R,电源的输出功率P 外=U 外I=I 2R=U 外2/R,同样能量守恒的方程也就有:EI=U 外I+I 2r 或EI=I 2R+I 2r,或EI=U 外2/R+I 2r.若外电路是非纯电阻电路,能量守恒方程只有:EI=IU 外+I 2r.(2)电源的效率:η=rR R EI UI P P +==总出. (3)电源的输出功率与外电阻的关系.电源的输出功率为P 出=UI=r Rr R E r R RE 4)()(2222+-=+. 由上式可知①当R=r 时,电源的输出功率最大,P m =rE 42. ②当R >r 时,随着R 的增大输出功率减小.③当R <r 时,随着R 的减小输出功率减小.④P 出与R 的关系如图2-7-2所示.图2-7-2二、路端电压与负载的关系在分析路端电压U 随外电阻R 的变化关系时,首先要明确哪些量是不变的(电源电动势E 和内阻r 一般不变),哪些量是变化的,谁是自变量(外电阻R),谁是因变量(电流I,内电压U 内,外电压U 外等).其次,还要注意推理的逻辑顺序,并通过公式变形来帮助分析和说理.讨论内容可归纳如下:根据I=rR E +,U 内=Ir,E=U 外+U 内E 、r(一定)外电路电阻R ⎪⎪⎪⎩⎪⎪⎪⎨⎧===↓↑→↑→↓→===∞→↑↓→↓→↑→)(0,,0)(,0,0,短路断路外外内外内外内U r E I R U U I R E U U I R U U I R 三、闭合电路的动态分析1.闭合电路的动态分析的具体步骤大体如下:(1)判断动态源及动态源总电阻的变化,进而判断闭合电路总电阻的变化情况.(2)依据I=E/(R+r),判断闭合电路干路电流的变化情况.(3)依据U=E-Ir,判断外电路电压(路端电压)的变化情况.(4)依据分压、分流原理判断动态部分的物理量的变化.2.闭合电路的动态分析的常用方法(1)任一电阻增大(减小),则电路的总电阻增大(减小).(2)任一电阻增大(减小),则该电阻两端的电压一定会增大(减小),而通过该电阻的电流会减小(增大).(3)求差法有时会遇到判断某一并联支路上电流的变化,当此支路的电阻变大(或变小)时,而支路两端的电压也变大(或变小),应用部分电路欧姆定律I=RU 就无法判断该支路电流怎样变化,这时,应判断出干路上及其他并联支路中的电流,然后利用干路上的电流等于各支路电流之和进行判断.。
高中物理闭合电路的欧姆定律专题训练答案一、高考物理精讲专题闭合电路的欧姆定律1.如图所示电路中,r是电源的内阻,R1和R2是外电路中的电阻,如果用P r,P1和P2分别表示电阻r,R1,R2上所消耗的功率,当R=R=r时,求:(1)I r:I1:I2等于多少解析】详解】(1)设干路电流为/,流过R1和R2的电流分别为I1和/2。
由题,R1和R2并联,电压相等,电阻也相等,则电流相等,故/1=/2=21即/r:/1:/2=2:1:1⑵根据公式P=/2R,三个电阻相等,功率之比等于电流平方之比,即P r:P1:P2=4:1:1r122.如图所示,质量m=1kg的通电导体棒在安培力作用下静止在倾角为37°、宽度L=1m的光滑绝缘框架上。
匀强磁场方向垂直于框架平面向下(磁场仅存在于绝缘框架内)。
右侧回路中,电源的电动势E=8V,内阻r=1Q。
电动机M的额定功率为8W,额定电压为4V,线圈内阻R 为0.20,此时电动机正常工作(已知sin37°=0.6,cos37°=0.8,重力加速度g取10m/s2)。
试求:⑴通过电动机的电流/M以及电动机的输出的功率P出;⑵通过电源的电流/总以及导体棒的电流I;总⑶磁感应强度B的大小。
M【答案】(1)7.2W;(2)4A;2A;(3)3T。
【解析】【详解】(1)电动机的正常工作时,有所以故电动机的输出功率为(2)对闭合电路有所以故流过导体棒的电流为P二P-12R二7.2W 出M二I二I—I二2A总MF=mg sin37°=6N 安F=BIL安FB=亠=3TIL3.如图所示,E=IOV,r=1Q,R]=R3=5Q,R2=4Q,C=100卩F,当断开时,电容器中带电粒子恰好处于静止状态;求:(1)S闭合后,带电粒子加速度的大小和方向;⑵S闭合后流过R3的总电荷量.【答案】⑴g,方向竖直向上⑵4x10-4C【解析】【详解】(1)开始带电粒子恰好处于静止状态,必有qE=mg且qE竖直向上.S闭合后,qE=mg的平衡关系被打破.S断开时,带电粒子恰好处于静止状态,设电容器两极板间距离为d,有RU=-2E=4VC R+-+r,21qUC=mgdS闭合后,RU'=E二8Vc-+r2设带电粒子加速度为a,则qU'j-mg=ma,d解得a=g,方向竖直向上.(2)S闭合后,流过R3的总电荷量等于电容器上电荷的增加量,所以\Q=C(U C,-U C)=4x10-4C4.如图所示,电源电动势E二27V,内阻r二2Q,固定电阻R2二4Q,R】为光敏电阻.C为平行板电容器,其电容C二3pF,虚线到两极板距离相等,极板长L二0.2m,间距d二1.0x10—2m.P为一圆盘,由形状相同透光率不同的二个扇形a、b构成,它可绕AA'轴转动.当细光束通过扇形a、b照射光敏电阻R]时,R]的阻值分别为12Q、3Q.有带电量为q二-1.0x10—4C微粒沿图中虚线以速度v°=10m/s连续射入C的电场中.假设照在R】上的光强发生变化时R]阻值立即有相应的改变.重力加速度为g二10m/s2.⑴求细光束通过a照射到%上时,电容器所带的电量;(2)细光束通过a照射到R]上时,带电微粒刚好沿虚线匀速运动,求细光束通过b照射到R]上时带电微粒能否从C的电场中射出.【答案】(1)Q二1.8X10-11C(2)带电粒子能从C的电场中射出【解析】【分析】由闭合电路欧姆定律求出电路中电流,再由欧姆定律求出电容器的电压,即可由Q=CU求其电量;细光束通过a照射到R]上时,带电微粒刚好沿虚线匀速运动,电场力与重力二力平衡.细光束通过b照射到%上时,根据牛顿第二定律求粒子的加速度,由类平抛运动分位移规律分析微粒能否从C的电场中射出.【详解】27(1)由闭合电路欧姆定律,得1———1.5A-+-+r12+4+212又电容器板间电压U=U2=/-得U C=6Vc22C设电容器的电量为Q,则Q=CU C解得Q=1.8X10-11C(2)细光束通过a照射时,带电微粒刚好沿虚线匀速运动,则有mg二解得m=0.6x10-2kg细光束通过b照射时,同理可得U C f=12VU,由牛顿第二定律,得q~C-mg=ma解得a=10m/s21+l微粒做类平抛运动,得y=at2,t=-解得y=0.2x10-2m<£,所以带电粒子能从C的电场中射出.【点睛】本题考查了带电粒子在匀强电场中的运动,解题的关键是明确带电粒子的受力情况,判断其运动情况,对于类平抛运动,要掌握分运动的规律并能熟练运用.5.如图所示,为某直流电机工作电路图(a)及电源的U-I图象(b)。
第47课时 闭合电路的欧姆定律(重点突破课)[考点一 闭合电路的动态分析]动态分析问题是闭合电路欧姆定律的具体应用,这类问题由于形式多样、考法灵活,考生不能统筹系统地去想问题,而导致分析不够全面而失误。
1.闭合电路的欧姆定律(1)内容:闭合电路的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比。
(2)公式:I =E R +r (只适用于纯电阻电路)。
(3)其他表达形式①电压表达式:E =U +Ir 。
②能量表达式:EI =UI +I 2r 。
2.路端电压与外电阻的关系(1)一般情况:U =E -Ir ,当外电阻R 增大时,路端电压U 增大。
U I 图像如图。
(2)特殊情况①当外电路断路时,I =0,U =E 。
②当外电路短路时,I 短=E r,U =0。
[典例] 如图所示电路,当滑动变阻器R 1的滑片向上滑动时,下列说法正确的是( )A .R 2的功率增大B .R 3两端的电压减小C .电流表的示数变大D .R 1的电流增大[解析] 当滑动变阻器R 1的滑片向上滑动时,其接入电路的电阻增大,外电路总电阻增大,则干路电流I 减小,路端电压U 增大,R 3两端的电压等于路端电压,则R 3两端的电压增大,通过R 3的电流I 3增大,通过R 2的电流I 2=I -I 3,I 减小,I 3增大,则I 2减小,故R 2的功率减小,电压U 2也减小;R 1、R 4的并联电压U 并=U -U 2,U 增大,U 2减小,则U 并增大,故通过电流表的电流I A 增大,电流表的示数变大,通过R 1的电流I 1=I 2-I A ,I 2减小,I A 增大,则I 1减小,故只有C 正确。
[答案] C[规律方法]闭合电路动态分析的三种方法1.程序法2.“串反并同”结论法 (1)所谓“串反”,即某一电阻增大时,与它串联或间接串联的电阻中的电流、两端电压、消耗的电功率都将减小,反之则增大。
2所谓“并同”,即某一电阻增大时,与它并联或间接并联的电阻中的电流、两端电压、消耗的电功率都将增大,反之则减小。
闭合电路欧姆定律公式是什么?
答:闭合电路欧姆定律探究的是电源电动势与干路电流、总电阻之间的关系,电源电动势等于干路电流乘以电源内电阻与外界电阻之和。
表达式:E=I(r+R)=U外+Ir=U外+U 内。
问:物体的内能指的是什么?
答:内能包括势能和动能两部分,是物体所有的分子动能和分子势能的总和。
对理想气体而言,分子间作用力为零,分子势能为零。
对一定物理量的理想气体,其内能微观上只取决于分子动能;宏观上取决于温度。
温度是构成物体的所有分子平均动能的标志,与分子平均动能成正比例关系。
再来说一下非理想气体,物体的内能除了温度外,还取决于所属状态,同样温度的水和冰,水的内能要大的多。
问:右手定则怎么用?
答:把右手伸开,放入磁场中,让磁感线垂直进入手心(磁感线为直线时,相当于手心面向N极),大拇指指向切割的导体棒运动方向,则四指所指方向就是电路中感应电流的方向。
问:弹簧问题中,物体恰不能离开地面(桌面)是什么意思?
答:被弹簧悬挂的物体恰好(刚好)不能离开地面,是介于离开与未离开之间,是非常特殊的一种状态,此时地面与物体没有压力作用,物体上升的速度也为零(不能继续上升)。
同学们可以借助于零与正负数之间的关系来理解。
问:离心力是怎么一回事?
答:在一些资料中见到的离心力,确切来说并不是力,而是一种效果或趋势。
物体在做圆周运动,尤其是高速圆周运动的时候,需要受到比较大的向心力,当物体所受到的外力不足以支撑圆周运动所需要的向心力时,就有离心的趋势,俗称离心力。
高中物理闭合电路欧姆定律
一.电源电动势 .
1. 电源的供电原理:在电源内部非静电力做功,其他形式的能转化为电能。
在电源的外部电路,
电场力做功,电能转化为其他形式的能。
2. 电源的作用 : 把其他形式的能转变为电能的装置 .转换本领的大小用电动势的数值来表示 .
3.电动势用字母ε来表示 .
4.电动势数值的计算方法 : 电路中通过 1C 电量时电源所提供的能量. ε = w/q( 对于同一个电源来说
电动势的值是不变的 )
5.单位 : 1J/C = 1 V
6.性质 : 标量 ,但有方向 . 规定其方向是 (在电源内部 )从负极指向正极 .
和电源内部的电流方向一致 .
二.电源内阻 .
电流通过电源内部也受阻碍作用 ,用字母 r 表示 .(一般认为是不变的 )
三.电路组成 .
电阻电压电流功率
闭合电路总电阻 R 总电动势ε 由于内外电路是串联
所以总电流内外电流
均相等 I 总=I 内=I 外
总功率 P 总
内电路内电阻 r 内电压 U 内内电阻消耗的功率 P 内
外电路外电阻 R 外路端 (两极间 )电压 U 外外电阻消耗的功率 P 外
相互关系 R 总 = r +R 外ε=U内 + U 外 P 总=P 内+P 外
注意:电动势和路端 (两极间 )电压虽然有相同的单位且有时数值也相同,但两者有本质的不同。
电动势反映了电源将其他形式的能转化为电能的本领大小,路端 (两极间 )电压反映了外电路中电
能转化为其他形式的能的本领大小。
四.闭合电路欧姆定律
1.公式内容: I= ε /( R外+r)
2.适用范围 : 外电路是纯电阻。
高中物理《闭合电路的欧姆定律》教案设计一、教学目标:1. 让学生理解闭合电路的概念,掌握欧姆定律的表述和含义。
2. 培养学生运用欧姆定律解决实际问题的能力。
3. 引导学生通过实验探究,提高观察、思考、分析问题的能力。
二、教学内容:1. 闭合电路的概念及其组成。
2. 欧姆定律的表述:在一段电路中,电流强度与两端电压成正比,与电路的总电阻成反比。
3. 欧姆定律的应用:解决电路中电流、电压、电阻的问题。
三、教学重点与难点:1. 教学重点:闭合电路的概念,欧姆定律的表述和应用。
2. 教学难点:欧姆定律的推导过程,以及如何运用欧姆定律解决复杂电路问题。
四、教学方法:1. 采用问题驱动的教学方法,引导学生主动探究闭合电路的欧姆定律。
2. 利用实验现象,让学生直观地理解欧姆定律的内涵。
3. 通过举例分析,让学生学会运用欧姆定律解决实际问题。
五、教学过程:1. 引入新课:通过讲解电源、导线、电阻等基本电路元件,引出闭合电路的概念。
2. 讲解欧姆定律:介绍欧姆定律的表述,解释电流、电压、电阻之间的关系。
3. 实验探究:安排学生进行实验,观察电流、电压、电阻的变化规律,引导学生发现欧姆定律。
4. 公式推导:在实验基础上,引导学生推导欧姆定律的公式。
5. 应用练习:布置一些实际问题,让学生运用欧姆定律进行解答,巩固所学知识。
6. 总结与反思:对本节课的内容进行总结,让学生谈谈自己在学习过程中的收获和感悟。
7. 布置作业:布置一些有关闭合电路欧姆定律的练习题,巩固所学知识。
六、教学评价:1. 评价学生对闭合电路概念的理解程度。
2. 评价学生对欧姆定律表述和应用的掌握情况。
3. 评价学生在实验探究中观察、思考、分析问题的能力。
七、教学拓展:1. 介绍欧姆定律在现代科技领域的应用,如电动汽车、太阳能电池等。
2. 引导学生关注电路中的其他定律,如基尔霍夫定律、法拉第电磁感应定律等。
八、教学资源:1. 实验器材:电源、导线、电阻、电压表、电流表等。
闭合电路欧姆定律的内容:闭合电路的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比。
闭合电路欧姆定律公式:I=E/(R+r),I表示电路中电流,E表示电动势,R表示外总电阻,r表示电池内阻。
常用闭合电路欧姆定律公式变形式有:E=I(R+r);E=U外+U内;U 外=E-Ir。
对闭合欧姆定律的理解
①用电压表接在电源两极间测得的电压是路端电压U外,不是内电路两端的电压U内,也不是电源电动势,所以U外
②当电源没有接入电路时,因无电流通过内电路,所以U内=0,此时E=U外,即电源电动势等于电源没有接入电路时的路端电压。
③式E=I(R+r)只适用于外电路为纯电阻的闭合电路。
U外=E-Ir和E=U外+U内适用于所有的闭合电路。
闭合电路欧姆定律相关的定义
①内电路:电源内部的电路叫做闭合电路的内电路。
②内阻:内电路的电阻叫做电源的内阻。
③内电压:当电路中有电流通过时,内电路两端的电压叫内电压,用U内表示。
④外电路:电源外部的电路叫闭合电路的外电路。
⑤外电压:外电路两端的电压叫外电压,也叫路端电压,用U外表示。
⑥电动势:电动势表示在不同的电源中非静电力做功的本领,常用符号E(有时也可用ε)表示。
电动势与电压的区别
电动势是对电源而言的,它描述移送单位电量时非静电力做功的多少,即移送1库电量时其他形式的能转化为电能的多少。
电压是对某一段电路而言的,它描述在这段电路中移送单位电量时电场力做功的多少,即移送1C电量时电能转化为其他形式能的多少。
两者是截然不同的物理量,万勿混淆,顺便指出,从能量转化观点来说,电势差、电压、电压降、电压损失等,都表示电场力移送单位电量时电能转化为其他形式能的多少,只不过是几种形式不同的说法而已,习惯上在静电学中常用“电势差”的说法;在电路问题中常用“电压”的说法;在串联分压电路中,常把分压电阻上的电压叫做“电压降”;在远距离输电问题中,输电导线上的电压是没有利用价值的,常叫做“电压损失”。