第15章 电路方程的矩阵形式(高教五版)
- 格式:ppt
- 大小:946.50 KB
- 文档页数:28
Chapter 15 电路方程的矩阵形式主要内容 1.关联矩阵,回路矩阵,割集矩阵; 2.KCL, KVL 的矩阵形式;3.回路电流(网孔电流)方程、结点电压方程、割集电压方程的矩阵形式;§15-1 割集KCL 和KVL 所表示的电路中各电压、电流之间的约束关系取决于电路中各元件的连接方式。
电路的拓扑 ---- 电路中各元件的连接方式。
电路拓扑性质用图论及矩阵代数进行研究(图,回路,树,割集等)。
1. 割集:是G 的一个支路集合,移去这些支路,将使G 分离为两个部分,如果少移去其中任意一条支路,图仍将是连通的。
可以用在连通图G 上作闭合面的方法来判断确定一个割集,与闭合面相切割的所有支路构成一个割集(因移去这些支路,G 被分离为两部分)。
割集:),,,( ),,,,( ),,,,( ),,,( ),,,( ),,,( ),,,(d c b a f c e a f d e b c e d f c b b e a f d a 非割集:),,,(),,,(c b e a e d aKCL 适用于任何一个闭合面,属于同一割集的所有支路的电流满足KCL ,若一个割集的所有支路都连接在同一个接点上,割集的KCL 方程即变为结点上的KCL 方程2. 独立割集:一组线性独立的KCL 方程对应的割集。
应用割集法,首先必须选择一组独立割集。
① 选定连通图的一个树,则任何连支集合不能构成一个割集;因移去全部连支,剩下的子图(树)仍是连通的,故任何连支集合不能构成割集.② 连通图的每一个树支与一些相应的连支可以构成一个割集。
因移去全部连支,剩下子图为树,再移去一个树支,则树被分离成 21 T T 和两部分,于是联结 21 T T 和的那些连支和这条树支必构成一个割集。
③ 单树支割集(基本割集)由树的一条树支与相应的一些连支所构成的割集为单树支割集。
如下图中 ),,( ),,,( ),,,(d f a f c b e b a④n 个结点和b 条支路的连通图,其树支数为 (n -1),有(n -1)个单树支割集,称为基本割集组。
第15章电路方程的矩阵形式●本章重点1、了解图有关的概念;2、掌握与图的描述有关的三个矩阵;3、基本回路与基本割集的选择;4、状态方程的列写方法。
●本章难点1、复杂电路建立状态方程。
●教学方法本章主要讲述了图论中的基本概念、三个重要矩阵(关联矩阵、回路矩阵和割集矩阵)及由此导出的KCL、KVL矩阵方程,最后,讲述了列写电路的状态方程的两种方法,即直观法和系统法。
对重点内容,课堂上不仅要把概念讲解透彻,并通过讲例题加以分析,课下布置一定的作业,使学生加深对内容的理解并牢固掌握。
本章讲授共用4课时。
对回路电流方程、节点电压方程、割集电压方程和列表方程等内容以自学为主。
●授课内容15.1割集一、图的概念1,图(线图):线段(支路)与点(节点)的集合。
2,有向图:标出支路电压,电流参考方向的图。
3,连通图:任意两个节点间至少存在一条由支路构成的路径。
4,子图:若图G1中所有支路和节点都属于图G,就把G1称为G的子图。
二、树、基本回路、割集(a) (b) (c)(d) (e) (f)1、树1)定义:在连通图G中,把所有的节点连通起来,但不包含任一闭合路径的部分线图称为一棵树。
①含所有节点,②不具有回路,③连通的,④为G的子图。
电路的图G如图(a)所示,图(b)为图G的一棵树,图(c)不是图G的树(未含所有节点);图(d)不是图G的树(出现了回路);图(e)不是图G的树(不是连通图);图(f)不是图G的树(不是图G的子图)。
2)树支:属于一棵树的支路称为该树的数支。
树支数=n-1=独立节点数3)连支:不属于一棵树的支路称为该树的连支。
连支数=b-(n-1)=独立回路数。
连支的集合称为余树、补树2、基本回路:在图G中选取一棵树后,由一条连支及相应的树支所构成的回路称为该树的基本回路(单连支回路)。
1)基本回路数=连支数。
2)基本回路的KVL方程相互独立。
3)不同的树对应于不同的基本回路。
3、割集:图G中所有被切割支路的集合同时满足下列两个条件时称为割集。
第十五章电路方程的矩阵形式重点:1.关联矩阵;2. 结点电压方程的矩阵形式;3. 状态方程。
难点:电路状态方程列写的直观法和系统法。
§ 15.1 图的矩阵表示1. 有向图的关联矩阵2.电路的图是电路拓扑结构的抽象描述。
若图中每一支路都赋予一个参考方向,它成为有向图。
有向图的拓扑性质可以用关联矩阵、回路矩阵和割集矩阵描述 3. 关联矩阵是用结点与支路的关系描述有向图的拓扑性质。
4. 回路矩阵是用回路与支路的关系描述有向图的拓扑性质。
5. 割集矩阵是用割集与支路的关系描述有向图的拓扑性质。
6. 本节仅介绍关联矩阵以及用它表示的基尔霍夫定律的矩阵形式。
7.一条支路连接某两个结点,则称该支路与这两个结点相关联。
支路与结点的关联性质可以用关联矩阵描述。
设有向图的结点数为 n ,支路数为b ,且所有结点与支路均加以编号。
于是,该有向图的关联矩阵为一个 」阶的矩阵,用 表示。
它的每一行对应一个结点,每一列对应一条支路,它的任一元素 定义如下:8.,表示支路 k 与结点j 关联并且它的方向背离结点9.-1 一,表示支路k 与结点j 关联并且它指向结点; 10.n:A,表示支路k 与结点j 无关联。
对于图 15.1 所示的有向图,它的关联矩阵是1 23 45 61'-I -1 0 1 0 0A=2 0 0 1 -1-1 D 3 41 0 0 0+1 +4 0 +1 -1 0图 15.1J-的每一列元素之和为零。
关联矩阵丄的特点:①每一列只有两个非零元素,一个是+1,—个是-1,如果把 的任一行划去,剩下的矩阵用 亠』表示,并称为降阶关联矩阵(今后主要用这种降阶关联矩阵, 所以往往略去“降阶”二字) ,被划去的行对应的结点可以当作参 考结点。
例如,若以结点4为参考结点,把上式中'3-的第4行划去,得 A0 0-1 0+1 -+1的第3行划去,得 A0 01-1 0 0 -1或一个-1 ,每一个这样的列必对应于与参考结从而画岀有向图。
答案第一章【1】:由U A B =5V 可得:I AC .=-25A :U D B =0:U S .=125V 。
【2】:D 。
【3】:300;-100。
【4】:D 。
【题5】:()a i i i =-12;()b u u u =-12;()c ()u u i i R =--S S S ;()d ()i i R u u =--S SS 1。
【题6】:3;-5;-8。
【题7】:D 。
【题8】:P US1=50 W ;P U S 26=- W ;P U S 3=0;P I S 115=- W ;P I S 2 W =-14;P I S 315=- W 。
【题9】:C 。
【题10】:3;-3。
【题11】:-5;-13。
【题12】:4(吸收);25。
【题13】:0.4。
【题14】:3123I +⨯=;I =13A 。
【题15】:I 43=A ;I 23=-A ;I 31=-A ;I 54=-A 。
【题16】:I =-7A ;U =-35V ;X 元件吸收的功率为P U I =-=-245W 。
【题17】:由图可得U E B =4V ;流过2 Ω电阻的电流I E B =2A ;由回路ADEBCA 列KVL 得 U I A C =-23;又由节点D 列KCL 得I I C D =-4;由回路CDEC 列KVL 解得;I =3;代入上 式,得U A C =-7V 。
【题18】:P P I I 12122222==;故I I 1222=;I I 12=; ⑴ KCL :43211-=I I ;I 185=A ;U I I S =-⨯=218511V 或16.V ;或I I 12=-。
⑵ KCL :43211-=-I I ;I 18=-A ;U S =-24V 。
第二章【题1】:[解答]I =-+9473A =0.5 A ;U I a b .=+=9485V ; I U 162125=-=a b .A ;P =⨯6125. W =7.5 W;吸收功率7.5W 。
电路方程的矩阵形式
一、实际工程应用中,电路的规模日益增大,结构日益复杂,为了便于借助计算机做为辅助手段,求解方程,要求将电路方程用矩阵形式表示。
1,回路电流方程(网孔电流法)由于描述支路与回路关联性质的是回路矩阵B,所以适合用以B表示的KCL和KVL推到回路电流方程的矩阵形式,在加一组约束方程,便得到了回路方程的矩阵形式。
(不允许存在无伴电流源)
2,节点电压法:节点电压法以结点电压为电路的独立变量,并且用KCL列足够的独立方程。
宜用以矩阵A表示的KCL和KVL推到结点电压方程的矩阵形式。
在加一组约束方程,便得到了结点电压法的矩阵形式。
(不允许存在无伴电压源)
3,另外还有割集电压方程,(割集电压法是结点电压法的推广)列表法等方法,列表法适应性很强,方程易于建立,但缺点是规模大,零元素所占比例越大,稀疏技术发展以使这一缺点变得微不足道。
二.二端口网络
任何复杂由线性R、L(M)、C元件构成的无源一端口可以用一个等效阻抗表征它的外部特性。
同理,任何给定的由线性R、L(M)、C元件构成的无源二端口的外部性能可以用3个参数确定,那么只要找到一个由具有三个阻抗组成的简单二端口,两个二端口参数相同,则两个二端口的外部特性完全相同,它们是等效的。
三、回转器和负阻抗变换器
回转器有把一个端口上的电流“回转”为另一个端口上的电压或相反的过程的本领。
正是这一性质,使回转器具有把一个电容回转为一个电感的本领。
负阻抗变换器(简称NIC)也是一个二端口,为电路设计中实现负R、L、C提供可能行。