RF的常用基本概念计算及相关知识
- 格式:ppt
- 大小:212.50 KB
- 文档页数:32
射频电路原理1. 引言射频(Radio Frequency,简称RF)电路是指工作频率在无线电波段(一般为3kHz 到300GHz)的电子电路。
射频电路在现代通信系统、雷达、无线电和卫星通信等领域起着至关重要的作用。
本文将详细解释与射频电路原理相关的基本原理。
2. 射频电路基础知识2.1 常见射频波段射频波段按照工作频率可以分为若干个子波段,常见的射频波段包括: - 低频:3kHz - 300kHz - 中频:300kHz - 30MHz - 高频:30MHz - 300MHz - 超高频:300MHz - 3GHz - 极高频:3GHz - 30GHz - 毫米波:30GHz - 300GHz2.2 射频信号特点与低频信号相比,射频信号具有以下特点: - 高工作频率:由于工作在无线电波段,所以具有较高的工作频率。
- 多径传播:射频信号在传播过程中会经历多次反射、散射和绕射,导致多径传播效应。
- 多普勒效应:射频信号在移动通信等场景下,会由于发射源或接收器的运动而产生多普勒频移。
- 传输损耗:射频信号在空间传输过程中会受到路径损耗和自由空间衰减的影响,导致信号强度衰减。
2.3 射频电路元件常见的射频电路元件包括: - 电感器:用于实现阻抗匹配、滤波、谐振等功能。
- 电容器:用于实现阻抗匹配、耦合、滤波等功能。
- 变压器:用于实现阻抗变换、耦合等功能。
- 晶体管:常用的放大元件,可以实现放大和开关功能。
- 集成电路(IC):集成了多个功能模块的射频电路芯片。
3. 射频信号特性3.1 幅度特性射频信号的幅度可以表示为功率或电压。
在射频系统中,常用dBm(分贝毫瓦)来表示功率级别,dBV(分贝伏特)来表示电压级别。
由于射频信号幅度较小,通常使用对数单位来表示。
3.2 相位特性射频信号的相位表示了信号在时间和空间上的变化情况。
相位可以用角度(度或弧度)表示,也可以用时间延迟来表示。
在射频电路中,相位差常用来描述信号之间的相对关系。
射频基础与测量R&S 中国培训中心©2005主要内容一、基本理论o RF基本概念o RF系统的构成o调制与解调二、RF测量o RF信号的测量o RF系统的测量三、测试仪器培训达到的目的1.熟悉射频基本概念.2.了解射频基本测试方法.3.对测试仪器有一定了解.通信系统分类ƌ按传输媒介1.有线通信系统2.无线通信系统ƌ按调制方式1.模拟通信系统2.数字通信系统常用的通信系统音频范围(AF) f<1MHz 射频范围(RF) f<3GHz 微波范围f<40GHz 毫米波范围f>40GHz什么是RF?1.RF,radio frequency,主要指发射的无线电波(又称射频) ,应用于无线通信。
2.RF有时称为高频,它是相对于低频而言。
3.RF的用途,主要是迅速而准确地传输信息,以克服距离上的障碍,是无线通信的关键技术,是传输信息的载体。
RF无处不在RF应用于无线通信1.AMPS、TACS2.GSM/EDGE/GPRS3.CDMA、WCDMA、TD-SCDMA4.Bluetooth5.WLAN 802.11a/b/g(Wi-Fi)6.WIMAX 802.167.PHS8.DECT9.analog wireless communication,Walkie-talkieRF信号是模拟的1.无线数字通信系统采用数字调制方式.2.无线模拟通信系统采用模拟调制方式.3.无线通信系统不管是模拟还是数字的,RF信号是模拟的.常用的微波波段代号0.375-0.380-1000.3W0.5-0.37560-800.4V 0.75-0.540-600.6U 1.11-0.7527-400.8Ka 1.67-1.1118-271.25K 2.5-1.6712-182Ku 3.75-2.58-123X 7.5-3.754-85C 15-7.52-410S 30-151-222L 波长范围(cm )频率范围(GHz)标称波长(cm )波段代号波理论3.当天线可与波长相比拟时,发射效率越高.fc *λ=1.波长与频率成反比,C 是光速,等于3×108米/秒2.波具有直射/反射/绕射/衍射特性,频率越高,直射能力越强,频率越低,绕射能力强.4.RF 是频率很高的波.常用的工程量纲功率:1w=103mw=106µwdBm=10lg(P/1mw))dB=10lg(P/Pref电平:1V=103mv=106µv频率:1kHz=103Hz1MHz=106Hz1GHz=109HzRF端口阻抗1.通常RF电缆和端口为50欧姆2.广播电视同轴电缆为75欧姆3.当负载阻抗和输出阻抗相等时,能够得到最大功率传输4.当端口之间阻抗不相等时,信号会发生反射RRLRF连接头1. BNC,频率最高2GHz2. N ,频率最高18GHz3. SMA ,频率最高24GHz4. 3.5mm ,频率最高38.8GHz5. 2.92mm ,频率最高46.5GHz6.Female,阴头或母头;Male,阳头或公头SMA 阳–SMA 阳SMA阴BNC 阳-BNC 阴N 阴-N 阴N 阳-BNC 阴射频与微波模块、元器件1.电阻R、电容C、电感L2.单端口器件(天线、吸收负载)3.双端口器件(滤波器、衰减器、放大器、移相器)4.多端口器件(混频器,耦合器,功分器/合路器、隔离器、双工器)RF模块/天线RF 模块/合路器性能指标:插入损耗:A 1-B 1带内波动:E 带外抑制:F端口回波损耗:A 1-C 1隔离度:A 1-D1A 1A 2RF模块/放大器1.低噪声放大器(LNA),位于接收机前端。
RF基础知识与史密斯圆图一.RF电路的应用:1.无线通讯,尤其是移动电话的发展。
2.全球定位系统(GPS)。
3.计算机工程(总线系统,CPU以及其他一些频率超过600MHz 的外围设备)。
&<60;二.频谱:1.射频(RF):用于电视,无线电话,GPS等等,工作频率在300MHz 到3GHz,在空气中的波长范围在1米到10厘米。
2.微波(MW):用于雷达,远外传感等,工作频率在8GHz到40GHz,在空气中的波长范围从3.75厘米到7.5毫米。
&<60;三.S参数在微波及射频上的应用1.网络端口参数:对于线性的网络,或者是非线性的网络但信号很小,其响应可以看成是线性的,这时候我们可以不管其内部结构,仅通过测量端口的参数来表征电路的特性,一旦端口的参数被确定,这个网络在任何外部环境下的工作情况也基本上可以预见。
2.麦克斯韦方程式只要和电磁场相关的问题,最终都可以用麦克斯韦方程来解释,包括:▽·E=ρ/ε0▽·B=0▽×E=-B▽×B=μ0j+μ0ε0E从物理意义上讲,这四个方程代表的如下四方面电磁场的基本理论:第一个方程式阐明了电场随距离的变化与电荷(如电子)密度的关系。
距离越远电场越弱,但是电荷密度越大(也就是说在给定空间内电子数越多),电场就越强;第二个方程式告诉我们磁理论中没有磁“单极子”,将一块磁铁锯成两半你也不可能得到一个孤立的“南”极和一个孤立的“北”极,每一块磁铁都有自己的“南”极和“北”极;第三个方程告诉我们变化的磁场如何产生电场;第四个方程所描述的正好相反,即变化的电场(或者说电流)如何产生磁场。
麦克斯韦方程式还可以表达为:其实质是一样的。
3.单端口和双端口网络单端口,双端口以及多端口网络的图示如下:通常来说,有Y,Z,H和S参数可供测量分析电路网络,前三个参数主要用于集总电路,Y也称电导参数,Z称为电阻参数,H称为两者混合参数。
dBmdBm是一个表示功率绝对值的值,计算公式为:10lgP(功率值/1mw)。
如果发射功率P为1mw,折算为dBm后为0dBm。
如果功率40W,按dBm单位进行折算后的值应为:10lg(40W/1mw)=10lg(40000)=46dBm。
dBdB是一个表示相对值的值,即表示两个功率之间之差。
公式为10lg(甲功率/乙功率)如果甲功率比乙功率大一倍,那么10lg(甲功率/乙功率)=10lg2=3dB。
也就是说,甲的功率比乙的功率大3 dB。
40W功率对应46dBm,则43dBm就是20W,49dBm就是80W。
dBi 和dBddBi和dBd是考征增益的值(功率增益),两者都是一个相对值,但参考基准不一样。
dBi 的参考基准为全方向性天线,dBd的参考基准为偶极子,所以两者略有不同。
一般认为,表示同一个增益,用dBi表示出来比用dBd表示出来要大2. 15。
dBcdBc也是一个表示功率相对值的单位,与dB的计算方法完全一样。
一般来说,dBc 是相对于载波(Carrier)功率而言,在许多情况下,用来度量与载波功率的相对值,如用来度量干扰(同频干扰、互调干扰、交调干扰、带外干扰等)以及耦合、杂散等的相对量值。
在采用dBc的地方,原则上也可以使用dB替代。
1、功率/电平(dBm):放大器的输出能力,一般单位为w、mw、dBm注:dBm是取1mw作基准值,以分贝表示的绝对功率电平。
换算公式:电平(dBm)=10lgw5W → 10lg5000=37dBm10W → 10lg10000=40dBm20W → 10lg20000=43dBm从上不难看出,功率每增加一倍,电平值增加3dBm2、增益(dB):即放大倍数,单位可表示为分贝(dB)。
即:dB=10lgA(A为功率放大倍数)3、插损:当某一器件或部件接入传输电路后所增加的衰减,单位用dB表示。
4、选择性:衡量工作频带内的增益及带外辐射的抑制能力。
-3dB带宽即增益下降3dB时的带宽,-40dB、-60dB同理。
RF基本概念培训教材基本概念Radio Frequency ,简称RF。
射频就是射频电流,它是一种高频交流变化电磁波的简称。
每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。
1.频率:一个信号在一秒周期内循环的次数。
2.微波:微波具有很高的频率,在一秒周期内有1G~2G的循环。
3.滤波器:需要的波可以通过,不需要的波滤掉。
4.双工器:双工器包含两个连接在一起的滤波器,这两个滤波器有一个公共的端口,叫天线端。
它们的功能也不同,一个传输信号,一个接受信号,两个滤波器的响应在频率上很接近,因此一个必须抑制另一个滤波器的信号。
5.插损:有多少功率损失在装置中。
6.回损:损耗在装置中产生的回波。
7.为什么校准?排除网络分析仪的误差,了解电缆的性能是否良好以及各种未知情况,消除系统误差。
8.何时校准?测试新产品之前或检查出系统误差较大的时候。
9.如何判断校验是否成功?Channel 1. S11或S22,Channel 2. S21,看系统匹配S21是否>-0.005dB,S11和S22是否当你校验好之后,将双阴连接,再接你使用的负载,看测量值回波损耗是否11.网络分析仪的电缆每天要清洁,减少误差。
你每天使用的连接件也必须每天用酒精和棉签清洁,同样是为了减少误差。
12.带内波动:通带内最差的插损减去最小的插损。
(数值都是用绝对值) 13.滤波器最好的插损可能在哪里?在通带的中间位置。
14.调试螺钉的作用:调谐螺钉:顺时针旋转,频率向低端偏移。
逆时针旋转,频率向高端偏移。
耦合螺钉:顺时针旋转,将通带频率增宽。
逆时针旋转,将通带频率变窄。
TuningRX:接受端 TX:发射端Attenuation: 在某特定频率范围内,滤波器可大量削弱信号程序:一.校验使用响应校验方式对记录本进行校验,使用完全双端口校验方式对其它记录本进行校验。
在每个班的开始用每台网络分析仪测试参考产品,确保全部网络分析仪工作正常。
射频基础知识知识讲解第⼀部分射频基础知识⽬录第⼀章与移动通信相关的射频知识简介 (1)1.1 何谓射频 (1)1.1.1长线和分布参数的概念 (1)1.1.2射频传输线终端短路 (3)1.1.3射频传输线终端开路 (4)1.1.4射频传输线终端完全匹配 (4)1.1.5射频传输线终端不完全匹配 (5)1.1.6电压驻波分布 (5)1.1.7射频各种馈线 (6)1.1.8从低频的集中参数的谐振回路向射频圆柱形谐振腔过渡 (9) 1.2 ⽆线电频段和波段命名 (9)1.3 移动通信系统使⽤频段 (9)1.4 第⼀代移动通信系统及其主要特点 (12)1.5 第⼆代移动通信系统及其主要特点 (12)1.6 第三代移动通信系统及其主要特点 (12)1.7 何谓“双⼯”⽅式?何谓“多址”⽅式 (12)1.8 发信功率及其单位换算 (13)1.9 接收机的热噪声功率电平 (13)1.10 接收机底噪及接收灵敏度 (13)1.11 电场强度、电压及功率电平的换算 (14)1.12 G⽹的全速率和半速率信道 (14)1.13 G⽹设计中选⽤哪个信道的发射功率作为参考功率 (15) 1.14 G⽹的传输时延,时间提前量和最⼤⼩区半径的限制 (15) 1.15 GPRS的基本概念 (15)1.16 EDGE的基本概念 (16)第⼆章天线 (16)2.1天线概述 (16)2.1.1天线 (16)2.1.2天线的起源和发展 (17)2.1.3天线在移动通信中的应⽤ (17)2.1.4⽆线电波 (17)2.1.5 ⽆线电波的频率与波长 (17)2.1.6偶极⼦ (18)2.1.7频率范围 (19)2.1.8天线如何控制⽆线辐射能量⾛向 (19)2.2天线的基本特性 (21)2.2.1增益 (21)2.2.2波瓣宽度 (22)2.2.3下倾⾓ (23)2.2.4前后⽐ (24)2.2.5阻抗 (24)2.2.6回波损耗 (25)2.2.7隔离度 (27)2.2.8极化 (29)2.2.9交调 (31)2.2.10天线参数在⽆线组⽹中的作⽤ (31)2.2.11通信⽅程式 (32)2.3.⽹络优化中天线 (33)2.3.1⽹络优化中天线的作⽤ (33)2.3.2天线分集技术 (34)2.3.3遥控电调电下倾天线 (1)第三章电波传播 (3)3.1 陆地移动通信中⽆线电波传播的主要特点 (3)3.2 快衰落遵循什么分布规律,基本特征和克服⽅法 (4)3.3 慢衰落遵循什么分布规律,基本特征及对⼯程设计参数的影响 (4) 3.4 什么是⾃由空间的传播模式 (5)3.5 2G系统的宏⼩区传播模式 (5)3.6 3G系统的宏⼩区传播模式 (6)3.7 微⼩区传播模式 (6)3.8 室内传播模式 (9)3.9 接收灵敏度、最低功率电平和⽆线覆盖区位置百分⽐的关系 (10) 3.10 全链路平衡和最⼤允许路径损耗 (11)第四章电磁⼲扰 (12)4.1 电磁兼容(EMC)与电磁⼲扰(EMI) (12)4.2 同频⼲扰和同频⼲扰保护⽐ (13)4.3 邻道⼲扰和邻道选择性 (14)4.4 发信机的(三阶)互调⼲扰辐射 (15)4.5 收信机的互调⼲扰响应 (15)4.6 收信机的杂散响应和强⼲扰阻塞 (15)4.7 dBc与dBm (16)4.8 宽带噪声电平及归⼀化噪声功率电平 (16)4.9 关于噪声增量和系统容量 (17)4.10 直放站对基站的噪声增量 (17)4.11 IS-95 CDMA 对 GSM 基站的⼲扰 (19)4.12 G⽹与PHS⽹的相互⼲扰 (20)4.13 3G系统电磁⼲扰 (22)4.14 PHS系统与3G系统之间的互⼲扰 (24)4.15 GSM系统与3G系统之间的互⼲扰 (25)第五章室内覆盖交流问题应答 (12)5.1、⽬前GSM室内覆盖⽆线直放站作信源站点数量达60%,WCDMA的建设中,此类站点太多将导致⽹络上⾏噪声被直放站抬⾼,请问怎么考虑?5.2、⾼层窗边的室内覆盖信号场强难以做到主导,⽽室内窗边将是数据业务需求的⾼发区域,室内窗边的⾼速速率如何保证?5.3、有⼚家建议室内覆盖不⽤⼲放,全⽤⽆源覆盖分布,我们如何考虑?5.4、室内覆盖中,HSDPA引⼊后,有何新要求?5.5、系统引⼊多载频对室内覆盖的影响?5.6、上、下⾏噪声受限如何考虑?5.7、室内覆盖时延分集增益。
RF的常用基本概念计算及相关知识射频(Radio Frequency,RF)是指频率在300kHz至300GHz之间的电磁波。
在射频领域中,有一些常用的基本概念和相关知识。
下面将对这些概念进行介绍并进行相关的计算。
1. 频率(Frequency):频率是指单位时间内电磁波振动的次数,通常以赫兹(Hz)为单位。
频率可以通过以下公式计算:频率=1/周期2. 周期(Period):周期是指电磁波一个完整振动所需的时间。
周期可以通过以下公式计算:周期=1/频率3. 空间波长(Wavelength):空间波长是指电磁波在空间中一个完整波动所需的距离。
空间波长可以通过以下公式计算:空间波长=速度/频率4. 速度(Speed):速度是指电磁波在空间中传播的速度,通常以光速(299,792,458 米/秒)为参考。
5. 幅度(Amplitude):幅度是指电磁波的振幅或强度。
幅度可以通过电磁波的最大电场或磁场强度来表示。
6. 相位(Phase):相位是指电磁波振动的起始点。
相位可以位相角(Phase Angle)来表示,常用弧度或度数来度量。
7. 波速(Wave Velocity):波速是指电磁波在介质中传播的速度,它与介质的折射率有关。
8. 衰减(Attenuation):衰减是指电磁波在传输过程中能量的减弱,通常以分贝(dB)为单位。
衰减可以通过以下公式计算:衰减(dB) = 10 * log10 ( Pi / Pr)其中,Pi是输入功率,Pr是输出功率。
9. 带宽(Bandwidth):带宽是指电磁波在一定频率范围内的宽度。
对于连续信号来说,带宽可以通过最高频率和最低频率之差来确定。
10. 峰值功率(Peak Power):峰值功率是指电磁波的最大功率。
11. 平均功率(Average Power):平均功率是指电磁波在一个周期内的平均功率。
12. 噪声(Noise):噪声是指电磁波中无用信号的干扰,可以通过信噪比(Signal-to-Noise Ratio)来衡量。
射频基本知识目录1. 射频概述 (2)1.1 射频定义与特点 (3)1.2 射频应用领域 (4)1.3 射频技术发展历史 (5)2. 射频信号及其特性 (6)2.1 电磁波与射频波 (7)2.2 频率范围与波长 (8)2.3 电磁波的时域和频域特性 (9)2.4 功率测量与单位 (10)2.5 幅度调制与相位调制 (12)3. 射频电路 (13)3.1 阻抗与反射系数 (14)3.2 匹配电路 (15)3.3 功率放大器 (16)3.4 滤波器与调谐电路 (17)3.5 衰减器与分频器 (19)4. 射频设备与系统 (20)4.1 信号源与检测器 (22)4.2 无线传输系统 (23)4.3 通信系统 (24)4.4 雷达系统 (25)4.5 测试与测量设备 (26)5. 射频技术应用案例 (28)5.1 5G 通信技术 (29)5.2 物联网应用 (30)6. 射频技术未来发展趋势 (31)1. 射频概述射频(Radio Frequency,简称RF)通信技术是现代通信的重要组成部分,它涉及无线电波的传输。
射频技术是通过发射机和接收机之间的无线电波来传输信号的,这些信号用于各种通信应用,如无线广播、移动通信系统、卫星通信和无线网络等。
在射频领域中,电磁波被用来承载信息,从简单的调幅(AM)广播到复杂的数字广播以及移动电话网络的高速数据传输,射频技术无处不在。
射频信号的特征可以从它们的波长和频率来描述,通常情况下,射频波的波长介于几厘米到几米之间,对应的频率范围从大约30 kHz 到300 GHz。
这个宽度频段使得射频技术可以涵盖从低频的无线电广播到高频的微波和无线宽带通信等多个应用领域。
射频系统通常包括调制和解调两个关键步骤,调制是将低频基带信号转换成高频的射频信号,使得信号可以通过无线电波传播。
这个过程涉及将基带信号的特性(如幅度和频率)嵌入到一个更高的射频载波上。
解调则在接收端进行,是将射频信号转换回可识别的低频信号,以便于进一步处理。
电子电路设计中的射频信号处理方法射频信号处理在现代电子通信中起着重要的作用,它涉及到信号的传输、调制、解调、滤波等多个方面。
本文将从射频信号处理的基本概念入手,介绍一些常用的射频信号处理方法。
I. 射频信号处理的基本概念射频(Radio Frequency, RF)信号是指频率范围在3kHz至300GHz之间的电磁波信号。
在电子电路设计中,射频信号处理主要涉及到以下几个关键要点:1. 信号传输:射频信号在电子设备之间的传输中,常常需要克服信号衰减、干扰等问题。
为了保持信号的完整性,需要巧妙地设计传输线路和网络。
2. 调制与解调:射频信号的调制是将信息信号转化为射频信号的过程,而解调则是将射频信号转化为原始的信息信号。
调制与解调过程中,常用的方法有频移键控调制(FSK)、正交振幅调制(QAM)等。
3. 滤波:滤波在射频信号处理中起到非常关键的作用,用以去除不需要的频率成分或抑制干扰信号。
射频滤波器包括低通滤波器、带通滤波器、带阻滤波器等。
II. 射频信号处理方法在电子电路设计中,有多种射频信号处理方法可供选择。
下面将介绍其中一些常用的处理方法:1. 射频前端设计:射频前端是处理射频信号的重要部件,它通常由放大器、滤波器、混频器等部分组成。
在设计射频前端时,需要考虑信号的增益、频率响应等参数,以及与其他电子器件的匹配问题。
2. 射频混频技术:射频混频是将射频信号与本地振荡器产生的信号进行合成,从而得到中频信号。
这种技术可以实现信号的频率转换、解调和滤波等功能。
3. 射频放大器设计:射频放大器用于增强射频信号的强度,在无线通信系统中起到增益信号和抑制噪声的作用。
常见的射频放大器有晶体管放大器、集成电路放大器等。
4. 射频滤波器设计:射频滤波器用于去除多余的频率成分和抑制干扰信号。
常见的射频滤波器设计包括LC滤波器、微带滤波器、SAW滤波器等。
5. 射频调制与解调技术:射频调制与解调是将信息信号转化为射频信号或将射频信号转化为信息信号的过程。
射频耦合器的工作原理一、引言射频耦合器是一种常用的无线电频率电路元件,它可以将高频信号从一个电路传输到另一个电路中,同时保持两个电路的隔离。
本文将详细介绍射频耦合器的工作原理。
二、基本概念1. 射频(Radio Frequency, RF):指在30kHz至300GHz范围内的无线电信号。
2. 耦合器(Coupler):指将一个或多个电路连接在一起的元件。
3. 射频耦合器(RF Coupler):指用于传输高频信号的耦合器。
三、射频耦合器的分类根据传输方式和结构形式,射频耦合器可以分为以下几类:1. 串联耦合器(Series Coupler):将两个电路串联在一起,通过共同的阻抗来传输信号。
2. 并联耦合器(Parallel Coupler):将两个电路并联在一起,通过共同的电感或电容来传输信号。
3. 变压器式耦合器(Transformer Coupler):利用变压器原理来传输信号。
4. 介质波导式耦合器(Dielectric Waveguide Coupler):利用介质波导中的能量传递原理来传输信号。
5. 微带线式耦合器(Microstrip Coupler):利用微带线中的能量传递原理来传输信号。
四、射频耦合器的工作原理1. 串联耦合器的工作原理串联耦合器将两个电路串联在一起,通过共同的阻抗来传输信号。
当高频信号进入串联耦合器时,它会被分成两部分,在两个电路之间形成一个共同的阻抗。
这个共同的阻抗可以是电阻、电感或电容等元件。
在串联耦合器中,高频信号从输入端进入,经过第一个电路后到达第二个电路。
由于两个电路之间存在一个共同的阻抗,所以一部分信号会被传输到第二个电路中。
传输到第二个电路中的信号量取决于共同阻抗大小和两个电路之间的距离。
2. 并联耦合器的工作原理并联耦合器将两个电路并联在一起,通过共同的电感或电容来传输信号。
当高频信号进入并联耦合器时,它会被分成两部分,在两个电路之间形成一个共同的元件(如一个变压器)。