ADS8361使用指南
- 格式:pdf
- 大小:111.84 KB
- 文档页数:11
AD8361
AD8361
1.宽动态范围:AD8361的动态范围高达90dB,能够在高达-65dBm至+25dBm的输入功率范围内提供准确的功率检测。
这种宽动态范围使得
AD8361适用于各种功率水平的应用,从高灵敏度的接收系统到高功率的发射系统。
2.高精度:AD8361具有高达0.25dB的线性度,使其能够提供非常准确的功率检测。
它还具有0.5dB的增益误差和0.5dB的相位误差,确保了传输信号的准确性和稳定性。
3.宽带:AD8361的带宽范围从1MHz到2.5GHz,适用于各种射频信号的检测和测量。
无论是窄带还是宽带信号,AD8361都能够提供高性能的功率检测。
4.低功耗:AD8361的低功耗设计使其适用于便携式和低功耗应用,如移动通信设备。
它只需要2.7V至
5.5V的工作电压,并且在正常工作下的功耗不到100mW,效率高。
5.简单易用:AD8361的接口简单,只需要几个电容和电压源即可完成工作。
它还具有自校准和自适应增益控制功能,可以轻松集成到各种系统中。
6.温度稳定性好:AD8361具有良好的温度稳定性,能够在广泛的温度范围内提供准确的功率检测。
它的温度系数较低,能够在各种环境条件下保持一致的性能。
总结:AD8361是一款功能强大的射频功率检测器,具有宽动态范围、高精度、宽带、低功耗、简单易用和温度稳定性好等特点。
它的出色性能
使其成为各种射频应用中不可或缺的重要组成部分。
无论是在无线通信、
雷达还是卫星通信领域,AD8361都能够提供可靠、精确的射频功率检测。
TDA8362/8361的原理一、TDA8362/8361的内部功能组成菲利浦TDA8362/8361的内部功能方框图如图。
它主要由以下儿部分构成:1、图象中频、AFT及ACG检波电路它们主要是由三级图象中频放大电路、鉴频解调电路、AFC网采样保持检波电路、AGC 及视频检波电路、视频识别电路等组成。
2、伴音中频电路伴音鉴频电路主要由伴音选择开关、限幅器,锁相环鉴频电路、前置放大和静噪电路组成。
3、亮度信号处理电路在TDA8362/TDA8361内,亮度信号处理电路由陷波旁路电路、亮度延迟及勾边(校正)电路、白峰值限幅电路等组成。
4、色度通道TDA8362/TDA8361的色度通道可分为色度开关、色度带通、ACC放大器,色副载波解调(系统处理器)电路、APC检波电路(相位检波器)和消色器,以及彩色制式识别、基色矩阵、输出钳位电路等几部分组成。
5、行场扫描小信号处理电路TDA8362/TDA8361内的鉴相1、鉴相2、分频电路、行场同步分离电路、行振荡器,一致检波器、行场激励输出电路等及其外部元件构成了行场扫描小信号处理电路。
6、A V/TV切换电路和外部R、G、B插入或消隐开关TDA8362/TDA8361的A V/TV切换由其内部视频开关、音频开关完成。
而外部R、G、B信号插入或消隐直接由其(21)脚直流电电平去控制钳位开关和三基色输出级。
二、TDA8362与TDA8361的区别与引脚功能TDA8362与TDA8361相比较,其基本功能和特点基本相同,只是TDA836l缺少SECAM 制式的识别处理功能。
即TDA8361的(32)脚、(27)脚不具备TDA8362相应脚所具有的4.43MHZ基准频率输出和SECAM制式识别信号输出,以及(27)脚的SECAM制式彩色全电视信号输出功能。
TDA8361的(32)是未使用的空脚,(27)脚只作为接收NTSC制式信号时的色调控制输入端。
TDA8362/TDA8361的引脚功能及标准电压值(2970N)如图。
REV.0Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781/329-4700 Fax: 781/326-8703 © 2003 Analog Devices, Inc. All rights reserved.EVAL-AD8361EBAD8361 Evaluation BoardBOARD DESCRIPTIONThe AD8361 evaluation board has been carefully laid out and tested to demonstrate the specified high speed performance of the device. Figures 1 and 4 show the schematics of the AD8361evaluation boards. Note that uninstalled components are drawn in as dashed. The layouts and silkscreens of the component sides are shown in Figures 2, 3, 5, and 6, respectively.The board is powered by a single supply in the range 2.7 V to 5.5 V. The power supply is decoupled by 100 pF and 0.01 m F capacitors. Additional decoupling, in the form of a series resistor or inductor in R6, can also be added. Table I details the various configuration options of the evaluation board. For ordering information, please refer to the Ordering Guide.CAUTIONESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000V readily accumulate on the human body and test equipment and can discharge without detection. Although the EVAL-AD8361EB features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions arerecommended to avoid performance degradation or loss of functionality.ORDERING GUIDEModelPackage DescriptionAD8361-EVALEvaluation Board MSOP AD8361ART-EVAL Evaluation Board SOT23-6LEVAL-AD8361EBTable I.Evaluation Board Configuration OptionsComponent Function Default ConditionTP1, TP2Ground and Supply Vector Pins Not ApplicableSW1Device Enable. When in Position A, the PWDN pin is connected to +V S and SW1 = Bthe AD8361 is in power-down mode. In Position B, the PWDN pin is grounded,putting the device in operating mode.SW2/SW3Operating Mode. Selects either Ground Referenced Mode, Internal Reference SW2 = A, SW3 = B Mode or Supply Reference Mode. See Table I of the AD8361 data sheet for(Ground Reference Mode)more details.C1, R2Input Coupling. The 75 W resistor in position R2 combines with the AD8361’s R2 = 75 W (Size 0402) internal input impedance to give a broadband input impedance of around 50 W.C1 = 100 pF (Size 0402)For more precise matching at a particular frequency, R2 can be replaced by adifferent value (see the Input Coupling and Matching section and Figure 9 of theAD8361 data sheet).Capacitor C1 ac-couples the input signal and creates a high-pass input filterwhose corner frequency is equal to approximately 8 MHz. C1 can be increasedfor operation at lower frequencies. If resistive attenuation is desired at the input,series resistor R1, which is nominally 0 W, can be replaced by an appropriate value.C2, C3, R6Power Supply Decoupling. The nominal supply decoupling of 0.01 m F and C2 = 0.01 m F (Size 0402) 100 pF. A series inductor or small resistor can be placed in R6 for additional C3 = 100 pF (Size 0402)decoupling.R6 = 0 W (Size 0402)C5Filter Capacitor. The internal 50 pF averaging capacitor can be augmented C5 = 1 nF (Size 0603) by placing a capacitance in C5.C4, R5Output Loading. Resistors and capacitors can be placed in C4 and R5 to C4 = R5 = Open load test V rms.(Size 0603)–2–REV. 0REV. 0EVAL-AD8361EB–3–RFINrmsFigure 1.Evaluation Board Schematic, MSOP Figure 2.Layout of Component Side, MSOP Figure 3.Silkscreen of Component Side, MSOP Figure 4.Evaluation Board Schematic, SOT23-6LFigure yout of the Component Side, SOT23-6LFigure 6. Silkscreen of the Component Side, SOT23-6LREV.0C 03309–0–1/03(0)P R I N T E D I N U .S .A .–4–EVAL-AD8361EBProblems caused by impedance mismatch may arise using the evaluation board to examine the AD8361’s performance. One way to reduce these problems is to put a coaxial 3dB attenuator on the RFIN SMA connector. Mismatches at the source, cable,and cable interconnection, as well as those occurring on the evaluation board can cause these problems.A simple (and common) example of such a problem is triple travel due to mismatch at both the source and the evaluation board.Here the signal from the source reaches the evaluation board and mismatch causes a reflection. When that reflection reaches the source mismatch, it causes a new reflection, which travels back to the evaluation board adding to the original signal inci-dent at the board. The resultant voltage will vary with both cable length and frequency dependent upon the relative phase of the initial and reflected signals. Placing the 3dB pad at the input of the board improves the match at the board and thus reduces the sensitivity to mismatches at the source. When such precautions are taken, measurements will be less sensitive to cable length and other fixturing issues. In an actual application when the distance between the AD8361 and source is short and well defined, this 3dB attenuator is not needed.CHARACTERIZATION SETUPS EquipmentThe primary characterization setup is shown in Figure 8. The signal source used was a Rohde & Schwarz SMIQ03B, version 3.90HX. The modulated waveforms used for IS95 reverse link,IS95 nine active channels forward (Forward Link 18 setting),W-CDMA 4- and 15-channel were generated using the default settings coding and filtering. Signal levels were calibrated into a 50 W impedance.AnalysisThe conversion gain and output reference are derived using the coefficients of a linear regression performed on data collected in its central operating range (35 mV rms to 250 mV rms). This range was chosen to avoid areas of operation where offset distorts the linear response. Error is stated in two forms: Error from Linear Response to CW waveform and Output Delta from 25∞C performance .The Error from Linear Response to CW waveform is the difference in output from the ideal output defined by the conversion gain and output reference. This is a measure of the linearity of the device response to both CW and modulated waveforms. The error in dB uses the conversion gain multiplied by the input as its reference. Error from Linear Response to CW waveform is not a measure of absolute accuracy, since it is calculated using the gain and output reference of each device. But it does show the linearity and effect of modulation on the device response.Error from 25∞C performance uses the performance of a given device and waveform type as the reference; it is predomi-nantly a measure of output variation with temperature.RFINIREF PWDNVPOS SREF VRMSFigure 7.Characterization BoardFigure 8.Characterization Setup。
图书基本信息书名:<<数据转换器应用手册>>13位ISBN编号:978712110066610位ISBN编号:7121100665出版时间:2010-1出版时间:电子工业出版社作者:黄争 编页数:221版权说明:本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。
更多资源请访问:前言做为TI中国大学计划部的技术工程师,我经常有机会到学校和老师同学们讨论交流。
有一次,当我和几位同学谈到TI的DSP时,有一位同学很高兴地对我说,他用过很多TI的数字信号处理器,并列举了从C2000,C5000到C6000的多个型号,甚至包括最新的DaVinci,看来他对ARM也很在行。
为了看看他对整个系统的理解能力怎么样,我问他,“你对模拟器件有什么看法?”不出我的意料,做为一位“固执的”DSP爱好者,他开始抨击模拟,并认为模拟将最终消失在我们的生活中,在他看来,C语言,操作系统,数字信号处理技术和各种高速数字接口才是电子界的最终方向。
看他神采奕奕地论述着DSP在他的一个中频数字接收机中的巨大作用,我觉得有必要把他拉回到现实世界,于是我问到,“你的DSP是怎么供电的?被DSP处理的数字信号又是怎么得到的呢?”这个聪明的小伙子马上理解到我的意思:好像电源和数据转换器不能缺少吧?其实和这位同学一样,我们都生活在一个数字信息飞速膨胀的时代里,从经典的密纹唱片到现在的MP3,从堆得满屋的录像带到现在薄薄的DVD,从磁带存储到机械硬盘再到固态硬盘,仿佛一切都能在被数字压缩、编码和传输。
比如在我们每天都离不开的Internet上,信息是以0,1电平传递并处理的。
的确,现在我们用模拟来进行计算和处理的场合越来越少,但我们仍要看到,现实世界还是模拟的,我们人体本身还是模拟的。
在数字技术飞速发展的今天,模拟技术非但没有萎缩,相反在系统中占据到越来越关键的位置:比如为了让电池供电的产品待机时间更长,我们一直在想方设法提高电源供电的效率并降低系统的功耗;现代的数字信号处理技术使接收机越来越向天线端靠拢,这对我们的ADC和RF芯片的速度和灵敏度提出了越来越高的要求;而医学信号处理中为分析和处理细胞活动所产生的微弱电流信号,即使现代的超低噪声的运放和超高精度的ADC也显得力不从心。
AD8361是用于低频到2.5GHZ的功率检测器一:Features(特性):CalibratedRMSResponse(标准化的均方根响应)Excellenttemperaturestability(极好的温度稳定性)UPto30dbinputrangeat2.5GHZ(高达30DB的输入范围在2.5GHZ)700mvRMS,10dbmre50?maximuminput(±0.25dBlinearresponseupto2.5GHZ(正负0.25db线性响应)Singlesupplyoperation:2.7vto5.5v(单工作电压)Lowpower:3.3mwat3vsupply(低功耗)Rapidpower-downtolessthan1UA(快速掉电到小于1UA)二:Applications(应用)1:MeasurementofCDMA,W-CDMA,QAM,(CDMA,W-CDMA,QAM,的测量)2:othercomplexmodulationwaveforms(其他复杂的波形调整)3:RFtransmitterorreceiverpowermeasurement(射频发射器或接收器的功率测量)三:PRODUCTDESCRIPTION(产品描述)TheAD8361isamean-respondingpowerdetectorforuseinhigh-frequencyreceiveran dtransmittersignalchains,upto2.5GHz.(AD8361是一个平均响应的功率检测器当被用于高频接收器和发射器信号链,高达2.5GHZ)Itisveryeasytoapply.Itrequiresonlyasinglesupplybetween2.7Vand5.5V,powers upplydecouplingcapacitor(去耦电容)andaninputcouplingcapacitor(耦合电容)inmostapplications.Theoutputisalinear-respondingdcvoltagewithaconversion gain(转换增益)of7.5V/Vrms.(他应用方便,仅要求一个2.7V到5.5V的单电源,电源的去耦电容和输入的耦合电容,在大多数应用中,输出是一个线性响应直流电压,转换增益为:7.5V/Vrms.)Anexternal?ltercapacitor(滤波电容)canbeaddedtoincreasetheaveragingtimeconstant.(一个外接的滤波电容能有利于提高平均时间常数)CW(continuouswave,连续波)TheAD8361isintendedfortruepowermeasurementofsimpleandcomplexwaveforms.(AD8361被用于简单的和复杂的波形的功率测量)Thedeviceisparticularlyusefulformeasuringhighcrest-factor(highpeak-to-rm sratio)signals,suchasCDMA,W-CDMA.(这个器件特别的被用于高波峰因数crest-factor信号的测量,例如CDMA,W-CDMA)四:工作模式TheAD8361hasthreeoperatingmodestoaccommodate(适应)avarietyofanalog-to-digitalrequirement:(有3中工作模式以适应各种各样的模数转换的需求)1.groundreferencedmode,inwitchtheoriginis0;(接地参考模式下,无信号时输出为0v)2.Internalreferencedmode,inwitchtheoriginis0.35v(在内部参考模式下,无信号时输出为0.35v)3.Supplyreferencedmode,inwitchtheoriginisVs/7.5v(在电源参考模式下,无信号时输出为Vs/7.5V)参考模式IREF SREF OUTPUT OUTPUT由上图Figure35可知,RFIN 的偏压(Bias voltage )范围为0V 到0.8V ,输出电压范围为0V 到4.9V 。
AD8361检波电路原理简介AD8361是一种高性能的射频(RF)检波器,用于测量射频信号的功率。
它可以在射频信号范围内进行精确的功率检测和测量。
AD8361采用了先进的集成电路技术,具有高精度、宽动态范围和低功耗的特点,被广泛应用于无线通信、雷达系统和其他射频应用中。
基本原理AD8361检波电路的基本原理是利用二极管的非线性特性来实现射频信号的检测和测量。
下面将详细介绍AD8361的基本原理。
1. 二极管检波AD8361采用了二极管检波的方法来实现射频信号的检测。
二极管在正向偏置时具有非线性特性,当射频信号通过二极管时,它的非线性特性会导致射频信号的幅度变化被转换为直流电压的变化。
二极管的非线性特性可以通过其伏安特性曲线来表示。
伏安特性曲线描述了二极管的电流与电压之间的关系。
在正向偏置时,当射频信号的幅度变化时,二极管的电流也会发生变化,从而产生一个与射频信号幅度相关的直流电压。
2. 矩阵检波器AD8361采用了矩阵检波器的结构来实现射频信号的检测。
矩阵检波器由多个二极管组成的矩阵网络构成,每个二极管都与一个固定的电阻连接。
矩阵检波器的原理是将射频信号分成多个部分,并通过不同的二极管检测每个部分的幅度变化。
每个二极管检测到的幅度变化会转换为一个与射频信号功率相关的直流电压。
通过将所有二极管检测到的直流电压相加,就可以得到射频信号的总功率。
3. 对数放大器AD8361还包括一个对数放大器,用于将射频信号的幅度变化转换为一个与射频信号功率的对数值成正比的直流电压。
对数放大器可以将射频信号的大动态范围压缩到一个较小的范围内,并提供更好的动态范围和精确度。
对数放大器的工作原理是利用二极管的非线性特性,将射频信号的幅度变化转换为对数电压的变化。
对数放大器通过将射频信号的幅度变化分成多个部分,并将每个部分的幅度变化转换为一个与射频信号功率的对数值成正比的直流电压。
通过将所有部分的直流电压相加,就可以得到射频信号的功率的对数值。
AD8361是用于低频到2.5GHZ的功率检测器一:Features(特性):Calibrated RMS Response(标准化的均方根响应)Excellent temperature stability(极好的温度稳定性)UP to 30db input range at 2.5GHZ(高达30DB的输入范围在2.5GHZ)700 mv RMS,10dbm re 50 Ώ maximum input(±0.25dB linear response up to 2.5GHZ(正负0.25db线性响应)Single supply operation: 2.7v to 5.5v(单工作电压)Low power:3.3mw at 3v supply(低功耗)Rapid power-down to less than 1UA(快速掉电到小于1UA)二:Applications(应用)1:Measurement of CDMA,W-CDMA,QAM,(CDMA,W-CDMA,QAM,的测量)2:other complex modulation waveforms(其他复杂的波形调整)3:RF transmitter or receiver power measurement(射频发射器或接收器的功率测量)三:PRODUCT DESCRIPTION(产品描述)The AD8361 is a mean-responding power detector for use in high-frequency receiver and transmitter signal chains, up to 2.5GHz.(AD8361是一个平均响应的功率检测器当被用于高频接收器和发射器信号链,高达2.5GHZ)It is very easy to apply. It requires only a single supply between 2.7 V and5.5 V, power supply decoupling capacitor(去耦电容)and an input coupling capacitor(耦合电容)in most applications. The output is a linear-responding dc voltage with a conversion gain(转换增益)of 7.5 V/Vrms.(他应用方便,仅要求一个2.7V到5.5V的单电源,电源的去耦电容和输入的耦合电容,在大多数应用中,输出是一个线性响应直流电压,转换增益为:7.5V/Vrms.)An external filter capacitor(滤波电容)can be added to increase the averaging time constant.(一个外接的滤波电容能有利于提高平均时间常数)CW(continuous wave ,连续波)The AD8361 is intended for true power measurement of simple and complex waveforms.(AD8361被用于简单的和复杂的波形的功率测量)The device is particularly useful for measuring high crest-factor(high peak-to-rms ratio) signals,such as CDMA,W-CDMA.(这个器件特别的被用于高波峰因数crest-factor信号的测量,例如CDMA,W-CDMA)四:工作模式The AD8361 has three operating modes to accommodate(适应)a variety of analog-to-digital requirement:(有3中工作模式以适应各种各样的模数转换的需求)1.ground referenced mode, in witch the origin is 0;(接地参考模式下,无信号时输出为0v)2.Internal referenced mode,in witch the origin is 0.35v(在内部参考模式下,无信号时输出为0.35v)3.Supply referenced mode,in witch the origin is Vs/7.5v(在电源参考模式下,无信号时输出为Vs/7.5V)参考模式IREF SREF OUTPUTNOSIGNALOUTPUT接地参考模式接电源接地0 7.5Vin内部参考模式悬空接地0.35v 7.5Vin+0.35V电源参考模式接电源接电源Vs/7.5 7.5Vin+Vs/7.5由上图Figure 35可知,RFIN的偏压(Bias voltage)范围为0V到0.8V,输出电压范围为0V到4.9V。
ADS使⽤指南ADS仿真ADS仿真得具体步骤:1.打开ADS软件会出现如下画⾯:其中左上⽅得Workspaces就是我们得⼯作空间,也就就是我们仿真得例⼦所存放得⽂件夹,在这您可以创建⼀个新得⼯作Workspace,或者打开⼀个存在得Workspace。
Open recentlyused workspace则就是打开您最近使⽤过得仿真例⼦,如10M_wrk或者Modle_wrk,如果有需要,您可以直接点击进⼊相应得仿真实例。
您也可以直接关掉这个画⾯,则直接进⼊了ADS主界⾯:在这您可以通过菜单栏得>new--->workspace 来新建⼀个仿真实例等效于⼯具栏中得也可以选择>open--->workspace 来打开⼀个存在得仿真实例等效于⼯具栏中得2、建⽴⼀个ADS仿真实例通过>new———>workspace来新建⼀个仿真实例并命名为Newworkspace_wrk如下图所⽰:然后完成出现如下界⾯:这时已经出现了Newworkspace_wrk⽂件夹。
接下来我们就可以在这个⽂件夹下建⽴相应得ADS仿真原理图(即Schematic)了。
通过File-->new——>Schematic或者直接点击⼯具栏得则出现如下窗⼝:其中被选中得cell_1就是默认得Schematic名称,我们可以将它更改成10M。
这时会产⽣⼀个新得窗⼝:这就就是我们建⽴仿真原理图与执⾏仿真得窗⼝.在此窗⼝得Lumped—ponents⽬录下我们可以选取原理图所需要得电阻,电容以及电感。
在Sources-Freq Domain⽬录下则可以选中我们需要得直流电压源V_DC。
在Passive-RF Circuit⽬录下选择晶振XTAL2.在元器件放置到原理图中通常位置都不就是我们想要得,因此要对其做相应得调整,选中⼀个元器件并单击⼯具栏中得Rotate By Increment 按钮将它顺时针选中90°,也可以使⽤快捷⽅式Ctrl+R。
ad8361检波电路原理AD8361是一种射频检波电路,具有宽频带、高灵敏度、低功耗等特点,被广泛应用于通信、雷达、无线电和微波领域。
它通过将射频信号转换成可测量的直流电压,实现信号的检测和分析。
AD8361检波电路的工作原理主要基于整流和平滑滤波的原理。
具体来说,它包含一个射频放大器和两级整流电路。
其中,射频放大器用于放大输入射频信号,而整流电路将放大后的射频信号转换为直流电压。
AD8361还包含一些附加的电路和电源,以确保其正常工作。
首先,输入射频信号经过射频放大器放大。
射频放大器通常采用宽带放大器结构,具有高增益和宽频带的特点。
通过放大射频信号,可以增加信号的幅度,从而提高后续整流电路的检测灵敏度。
接下来,放大后的射频信号进入第一级整流电路。
第一级整流电路通常是一个二极管整流器。
当射频信号的幅度超过整流二极管的压降时,整流二极管开始导通,将射频信号转换为半波整流的直流信号。
通过这样的整流过程,射频信号的负半周被移除,只剩下正半周的信号。
然后,这个半波整流的直流信号进入第二级整流电路。
第二级整流电路通常是一个平滑滤波器,用于消除直流信号中的高频噪声和波动。
平滑滤波器一般采用电容器和电阻器的结合,通过滤波电路的RC时间常数,实现对直流信号的平滑。
AD8361还包含了一些额外的功能电路,如温度补偿电路、电源电压监测电路等。
这些电路可用于校正和监测AD8361的温度变化和电源电压的稳定性,以保证其性能的稳定和可靠性。
总之,AD8361检波电路是一种基于整流和平滑滤波的射频信号检测电路。
它通过射频放大器放大输入信号,经过两级整流电路转换为直流信号,并通过附加的功能电路实现校正和监测功能。
AD8361的应用广泛,可以用于射频信号的测量、检测和分析,对于通信、雷达、无线电和微波领域具有很大的价值。
长虹TDA8361/TDA8362机芯彩电维修资料整机电路的工作原理将整机后壳拆开后,映入眼帘的是一块布满密密麻麻元器件和连线的电路板及一只涂抹了石墨层的玻璃锥体。
首先看到正前方涂抹了石墨层的玻璃锥体,是该机的64 cm(25英寸)彩色显像管。
从电路板连接来的红色粗线是高压线,顶端类似于帽子的塑料盖,称之为高压帽,该条线路中,传输着约2.8~3.1万伏的高压,为显像管内红、绿、蓝三阴极发出的电子提供能源。
显像管上从左至右连接的金属编织线,是冷地与石墨层连接的公共地。
四周套有黑色绝缘塑料皮包裹的是消磁线圈,每当开机时,它对显像管四周的剩磁或地球杂散干扰磁场进行消磁,以免造成色纯不良。
管颈上绕有漆包线的组件,称之为行/场偏转线圈(俗称偏转线圈)。
它的作用是:将行/场扫描电路送来的行/场偏转锯齿波功率信号转换成水平(行)和垂直(场)两个方向的偏转磁场,使射向屏幕的电子束实现水平和垂直扫描。
显像管尾部上接有一块单元电路板,称之为视频末级功率放大板(俗称视放板),该板上安装有3只视放管,用来分别放大红(R)、绿(G)、蓝(B)三基色的视频功率,推动和控制红、绿、蓝三阴极发射电子的强弱。
显像管左右两侧固定的是两只扬声器,用来还原原来电视台播放的音频信号。
显像管下边布满元件和连线的大板称为电路板、主板、机心板或电路总线,板上安装有行输出变压器、高频调谐器、AV接口板等,组件和CPU及TDA8362,用来控制图像中放、色解码、行/场扫描等小信号处理及功率放大电路。
机壳前面发光体是彩色显像管的荧光屏,下端的按键是用于人机对话的用户操作键盘,便于用户对彩电实施换台、调节音量和遥控接收。
所有这些部件组装在一个塑料机壳内,便构成了一台彩色电视接收机。
整机电路的基本构成和信号流程如图所示。
该机核心器件采用的是飞利浦公司生产的TDA8 362芯片,本芯片集成有图像中放、伴音中放、视频处理、行/场扫描等诸多单元电路。
可完成图像、彩色伴音、行/场激励的各项任务。
与MSP430 USI端口配合使用ADS8361引言ADS8361 是一款采样速率为500kSPS 的16 位双路模数转换器(ADC),该转换器具有 4 个全差分输入通道,两两一对,以实现同步高速信号采集。
采样保持放大器的输入端是全差分的,此外,ADC 的输入端也保持为全差分。
这使该ADC 具有卓越的共模抑制能力:在50kHz 时为80dB,这在高噪声环境下非常重要。
新型MSP430F2013 等MSP430 器件具有通用串行接口(USI),因而可用于非常简单直接的接口,该接口不需要“粘接逻辑”且需要的软件开销也很少。
有的应用要求对同步数据采集的通道实现精确定时,这时我们就能用这种接口来获取所需的系统结果。
硬件ADS8361EVMADS8361 是德州仪器(TI) 推出的串行ADC 电机控制产品系列产品。
EVM 提供了相关平台,以演示配合不同TI DSP 与微控制器时ADS8361 ADC 的功能,并针对定制的最终用户应用提供了方便地存取所有模拟与数字信号的功能。
图1 硬件接口结构图eZ430-F2013 开发工具eZ430-F2013 是完整的MSP430 开发工具,包括评估MSP430F2013 所需的全部软硬件。
我们用可便利的USB 存储棒提供该硬件。
eZ430-F2013 采用IAR 嵌入式工作台集成开发环境(IDE),以提供完整的仿真功能,该器件提供独立系统设计与可拆卸目标板两种选项,以便于集成至现有设计中。
更多详情,敬请访问:ti/ez430。
硬件接口连接eZ430-F2013 与ADS8361EVM 的最低要求是采用简单的三线接口(见表1)。
硬件连接如图 1 所示。
ADS8361 的CLOCK、(RD + CONVST) 与Serial Data A 引脚分别连接至USI 端口的SCLK、MOSI 与MISO 引脚。
chip select (CS) 引脚接地,因为端口上只放置一个ADC。
Application ReportSLAA167 – February 2003TMS320™ DSP family, and Code Composer Studio™ are trademarks of Texas Instruments. eZdsp TM is a trademark of Spectrum Digital Incorporated.1 Interfacing the ADS8361 to the TMS320F2812 DSPTom Hendrick, Miroslav OljacaData Acquisition ProductsABSTRACTThis application note presents several methods for interfacing the ADS8361 16-bit SARanalog-to-digital converter to the TMS320F2812 DSP. The software developed for thisapplication note uses both the McBSP and SPI port to highlight the flexible digitalinterface of the ADS8361. In an effort to reduce development time, the source code forthis application note can be found on the Texas Instruments web site at .Search for device number ADS8361 from the main page and follow the links to thisapplication note.Contents1 Introduction (2)2 Hardware (2)2.1 eZdsp™ F2812 (2)2.2 ADS8361EVM (2)3 Hardware Interfaces (2)3.1 Communication via McBSP (2)3.1.1 Mode II Using McBSP1 (3)3.1.2 Controlling M0 and M1 (5)3.1.3 Mode IV Using McBSP (5)3.2 Communication via McBSP and SPI (6)3.2.1 Mode I Using McBSP and SPI (6)3.2.2 Mode III Using McBSP and SPI (8)3.3 Communication via SPI (8)3.3.1 Mode II and Mode IV Using SPI1 in Master Mode (8)4 Software Interface (9)4.1 McBSP Setting for Mode II and Mode IV (9)4.2 McBSP and SPI Settings for Mode I and Mode III (9)4.3 SPI Settings for Mode II and Mode IV (9)4.4 Software Flow (10)5 References (10)FiguresFigure 1. Hardware Connections for Mode II and Mode IV via McBSP (3)Figure 2. Mode II Waveforms Using McBSP (4)Figure 3. Expanded Mode II Waveform (4)Figure 4. Synchronizing Data in Mode IV Output Using M0/M1 pins (5)Figure 5. Hardware Connections for Mode I and Mode III via McBSP and SPI (Slave) (6)Figure 6. Mode I Waveforms Using McBSP and SPI (7)Figure 7. Mode III Waveforms Using McBSP and SPI (7)Figure 8. Hardware Connections for Mode II and Mode IV via SPI (Master) (8)Figure 9.Software Flow Chart (10)SLAA1672 Interfacing the ADS8361 to the TMS320F2812 DSP1 IntroductionThe ADS8361 is a 2+2 channel, 16-bit, pin-compatible upgrade to the ADS7861 (12-bit) 2+2 channel analog-to-digital converter. The ADS8361 can gluelessly interface to theTMS320F2812 digital signal processor (F2812 DSP). Hardware used in this example includes the eZdsp™ F2812 for TMS320F2812 from Spectrum Digital Incorporated and the ADS8361 EVM. More information on the eZdsp™ F2812, including ordering information, can be found on the Spectrum Digital website.Software code written for this application note, as well as additional information on theADS8361EVM, is available for download from the Texas Instruments website.2 HardwareThe combination of the eZdsp™ F2812 and the ADS78_8361EVM is a convenient way to experiment with interfacing the TMS320F2812 DSP to the ADS8361.2.1 eZdsp™ F2812The eZdsp™ F2812 not only provides an introduction to F2000 DSP platform technology, but also is powerful enough to use for fast development of optical networking, communications,digital motor control, and other applications like data acquisition. See Spectrum Digital’s website ( ) for more information on the TMS320F2812 development tools.2.2 ADS8361EVMThe ADS8361 is a member of the Motor Control Products family of serial ADCs available from Texas Instruments. The EVM provides a platform to demonstrate the functionality of theADS8361 ADC with various Texas Instruments DSPs and microcontrollers, while allowing easy access to all analog and digital signals for customized end-user applications. For more information on the EVM, search for document number SLAU094 from the main page of the Texas Instruments website at .3 Hardware InterfacesThe TMS320F2812 features a multichannel buffered serial port (McBSP), and a serial peripheral interface (SPI) for communication with serial devices such as the ADS8361. Basicmethodologies for connecting the ADS8361 to both serial interfaces are presented in the following sections. The hardware interfaces presented in this application note show resistors connected between the DSP and the ADS8361. The resistors are shown as a reminder that high-speed signals can cause unwanted ringing in digital systems. This ringing ultimately degrades system performance. Factors such as clock speed, trace length, and physical PCB layout determine if these resistors are required in a particular design.3.1 Communication via McBSPSince the F2812 device has only one McBSP port, communication with both A and B serial outputs of the ADS8361 can be difficult to accomplish without additional glue logic. For this application note, high-speed communication with the ADS8361 via the McBSP only, is limited to modes II and IV.SLAA167 3.1.1 Mode II Using McBSP1The 3.3 V digital interface of the ADS8361 allows for a seamless connection between theeZdsp™ F2812 and the ADS78_8361 EVM. The hardware connections to McBSP1 are shown in Figure 1. The CLOCK, (RD+ CONVST), and SDA pins from the ADS8361 are connected to CLKX1, FSX1, and DRR1 pins of the McBSP respectively. The chip select (CS) pin is grounded because only one A/D converter is communicating with the serial port. If more than one device is on the bus, then chip select should be controlled by any available GPIO on the F2812 DSP.For Mode II operation, transmitting an appropriate data stream via the DX pin of the McBSP to the ADS8361 A0 pin can control channel 0/1 selection. The sample code associated with this application note provides an example of channel selection, additional information can also befound later in this document.+5V+3.3V+3.3VFigure 1. Hardware Connections for Mode II and Mode IV via McBSP As shown in Figure 1, the frame sync transmit (FSX) pulse from the McBSP port is used tocontrol the start of the conversion cycle. FSX high is synchronous with the rising edge of theconversion clock. FSX is programmed as an active high pulse, 3 clock cycles wide, to ensure the conversion begins on the first rising edge of the conversion clock.Figures 2 and 3 provide example waveforms using the hardware and code examples mentioned previously. The received data is delayed by 1 bit to accommodate the CONVST validationtiming. The entire cycle repeats every 21 clock periods.Interfacing the ADS8361 to the TMS320F2812 DSP 3SLAA1674Interfacing the ADS8361 to the TMS320F2812 DSPFigure 2.Mode II Waveforms Using McBSP Figure 3. Expanded Mode II WaveformSLAA167Interfacing the ADS8361 to the TMS320F2812 DSP 53.1.2 Controlling M0 and M1Since the channel information is presented in the output serial stream of the ADS8361, the M0 and M1 lines could be set to fixed states. While this keeps the interface simple, the routine to decode the channel information can cause unwanted software overhead.As an alternative, the M0 and M1 lines can be controlled through GPIO functions. By controlling M0 and M1 through GPIO, it is possible to initialize the ADS8361 in a simple software loop so that data is presented to the serial output sequentially, starting with channel A0.3.1.3 Mode IV Using McBSPThe code example written for this application note controls the M0 and M1 pins through GPIO. The conversion results are then stored in a simple two-dimension array. Data storage begins with the second CONVST cycle after entering Mode IV, as shown in Figure 4.Figure 4. Synchronizing Data in Mode IV Output Using M0/M1 pinsSLAA1673.2 Communication via McBSP and SPICommunication with both A and B serial outputs of the ADS8361 can be accomplished bysetting the McBSP port for SPI or clock stop mode, and configuring the SPI port as a slavedevice. The McBSP is set to provide the conversion clock, CONVST (via FSX) and to receive data from channel A. The SPI port is then configured as a slave to the McBSP controller, with the SIMO pin accepting data from channel B.+5V+3.3V+3.3VFigure 5. Hardware Connections for Mode I and Mode III via McBSP and SPI (Slave)3.2.1 Mode I Using McBSP and SPIWhen using the ADS8361 with an SPI based communication protocol, it is important toremember that the actual conversion starts on the first rising clock edge after CONVST istoggled high. When using the McBSP port in SPI mode, Frame Sync Transmit (FSX) should be programmed as an active high signal (see Figures 6 and 7).In Mode I, a single channel is selected via the address pin A0. As shown in Figure 5, the A0 line is connected to the data transmit (DX) pin of the DSP. Selecting channel 1 is accomplished by loading the DXR2 register with the hex value 0x8. Channel 0 is selected with the hex value 0x0. 6Interfacing the ADS8361 to the TMS320F2812 DSPSLAA167Interfacing the ADS8361 to the TMS320F2812 DSP 7Figure 6. Mode I Waveforms Using McBSP and SPIFigure 7.Mode III Waveforms Using McBSP and SPISLAA1673.2.2 Mode III using McBSP and SPIIn Mode III, the A and B outputs are providing both channel 0 and channel 1 data. Channelinformation can be decoded from the serial data, or by running a simple synchronizing loop. In the code associated with this application note, the process begins by initializing the McBSPclock, running through a synchronizing loop, then enabling the SPI receiver. The return clock to the McBSP port (CLKR) is fed back to the SPI port along with the data from the OUTB pin of the ADS8361. Since this method uses the SPI port in slave mode, the OUTB data is fed to theSIMO pin of the F2812. Please refer to Figures 5 and 7.3.3 Communication via SPIFor applications where only the SPI port is used, any available GPIO can be used to control the CONVST pin. As mentioned previously, when using the ADS8361 with an SPI basedcommunication protocol, it is important to remember that the actual conversion starts on the first rising clock edge after CONVST is toggled high. Through GPIO, CONVST can be toggled high before the start of the SPI transfer, and returned to a low state when the transfer is complete. 3.3.1 Mode II and Mode IV Using SPI1 in Master ModeThe hardware connections to SPI1 are shown in Figure 8. The CLOCK and SDA pins from the ADS8361 are connected to the SPICLK and SOMI pins of SPI1 respectively. As before, the chip select (CS) pin is grounded, because only one A/D converter is placed on the port. With the SPI port, channel selection can be made in a similar fashion as described for the McBSP byconnecting A0 of the ADS8361 to the to SIMO pin.+5V+3.3V+3.3VFigure 8. Hardware Connections for Mode II and Mode IV via SPI (Master)8Interfacing the ADS8361 to the TMS320F2812 DSPSLAA167Interfacing the ADS8361 to the TMS320F2812 DSP 94 Software InterfaceAll of the software was written and compiled using Code Composer Studio™ version 2.12 for the C2000 family of processors. The following sections describe the general setup of the McBSP port for Mode II and Mode IV operation, as well as the setup of clock stop mode for use with both serial outputs from the ADS8361 in Modes I and III. Setup of the SPI port in both master and slave modes, is also discussed.4.1 McBSP Setting for Mode II and Mode IVThe McBSP is programmed as a serial port, in non-stop clock mode (or DSP mode). Frame sync and serial clock signals are output pins. The transmitter and receiver are set for 20-bit transfers with one-bit delay on data receive and transmit. The frame sync (FSX1) is generated by the sample rate generator and is used for both the RD and CONVST signal on the ADS8361 by jumper W2 on the EVM. Frame Sync is held high through 3 clock cycles.In the sample code, the ADS8361 is running with a serial clock of 9.4MHz. The 9.4 MHz clock on CLKX was achieved by setting CLKGDV bit field in the sample rate generator register to 3. The data received in the McBSP receive registers must be modified slightly in order to strip out the address and channel bits that are transferred as the two MSB’s in the output serial stream from the ADS8361. The following lines of code perform this function: {mcbsp_xmit(var1);while(McbspaRegs.MFFRX.bit.ST==0) { } // Check for McBSP FIFO receive ready ADC_Data[idx] = McbspaRegs.DRR1.all<<2; // Strip 1st 2 MSB's from Serial Stream }4.2 McBSP and SPI Settings for Mode I and Mode IIIThe McBSP is programmed as a serial port, in clock stop mode (or SPI mode). Frame sync and serial clock signals are output pins. The transmitter and receiver are set for 32-bit transfers with one-bit delay on data transmit and receive. The frame sync (FSX1) is generated by the sample rate generator and is used for both the RD and CONVST signal on the ADS8361 by jumper W2 on the EVM.The SPI port is set as a slave device with serial data from OUTB clocked on the rising edge of the McBSP receiver clock. CLKR and OUTB are tied back to the SPI port as SPICLK and SIMO respectively. The data received in the McBSP and SPI receive registers needs to be modified as mentioned previously.4.3 SPI Settings for Mode II and Mode IVThe SPI port is set as a master device with serial data from OUTB clocked on the rising edge, read on the falling edge, of the SPI clock. The ADS8361’s OUTA and A0 pins are connected SOMI and SIMO respectively. GPIO functions are used to trigger CONVST. CONVST and RD are connected via jumper W2 on the EVM. The data received in the SPI receive registers needs to be modified as mentioned previously.SLAA1674.4 Software FlowThe software presented in this application report reads 512 samples from one, two or fourchannels. The code is set up in six project files, with six workspaces. The workspaces bring up various waveform viewing windows showing the converted data from the ADS8361.The McBSP, SPI and other DSP registers are configured appropriately before arriving in themain function. As a result, the main function simply enters a forever loop, which samples anarray of 512 data elements. When the data array is full, it posts the conversion results to thegraph in the project manager window and resets the sample index. The program then reenters the sample loop. Figure 9 shows an example flowchart for Mode I operation using the McBSP port.Figure 9. Software Flow Chart5 References1. ADS8361 data sheet (SBAS230)2. TMS320F2812 data sheet (SPRS088)3. TMS320C28x DSP CPU and Instruction Set Reference Guide (SPRU430)4. TMS320F28x DSP Peripherals Reference Guide (SPRU566)5. TMS320F28x Multichannel Buffered Serial Port (McBSP) Peripheral Reference Guide(SPRU061)6. C28x Peripheral Examples in C (SPRC097)10Interfacing the ADS8361 to the TMS320F2812 DSPIMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.Mailing Address:Texas InstrumentsPost Office Box 655303Dallas, Texas 75265Copyright 2003, Texas Instruments Incorporated。