牛吃草问题解析
- 格式:doc
- 大小:27.00 KB
- 文档页数:4
"牛吃草问题就是追及问题,牛吃草问题就是工程问题。
〞英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。
这片青草供应10头牛吃,可以吃22天,或者供应16头牛吃,可以吃10天,如果供应25头牛吃,可以吃几天?解题关键:牛顿问题,俗称"牛吃草问题〞,牛每天吃草,草每天在不断均匀生长。
解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量4、最后求出可吃天数想:这片草地天天以同样的速度生长是分析问题的难点。
把10头牛22天吃的总量与16头牛10天吃的总量相比拟,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到〔22-10〕天里,便知是5头牛一天吃的草,也就是每天新长出的草。
求出了这个条件,把25头牛分成两局部来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。
解:新长出的草供几头牛吃1天:〔10×22-16×1O〕÷(22-1O〕=〔220-160〕÷12 =60÷12 =5〔头〕这片草供25头牛吃的天数:〔10-5〕×22÷〔25-5〕=5×22÷20 =5.5〔天〕答:供25头牛可以吃5.5天。
---------------------------------------------------------------- "一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?〞这道题太简单了,一下就可求出:3×10÷6=5〔天〕。
如果我们把"一堆草〞换成"一片正在生长的草地〞,问题就不则简单了,因为草每天都在生长,草的数量在不断变化。
这类工作总量不固定〔均匀变化〕的问题就是牛吃草问题。
例1 牧场上一片青草,每天牧草都匀速生长。
牛吃草问题的详细解法一、牛吃草问题基础概念。
1. 问题描述。
- 牛吃草问题又称为消长问题或牛顿问题。
典型的牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
2. 基本公式。
- 设每头牛每天的吃草量为1份。
- 草的生长速度=(对应的牛头数×吃的较多天数 - 对应的牛头数×吃的较少天数)÷(吃的较多天数 - 吃的较少天数)- 原有草量 = 牛头数×吃的天数 - 草的生长速度×吃的天数。
- 吃的天数 = 原有草量÷(牛头数 - 草的生长速度)- 牛头数 = 原有草量÷吃的天数+草的生长速度。
二、牛吃草问题示例及解析。
1. 题目1。
- 有一片牧场,草每天都在匀速生长。
如果放养24头牛,6天可以把草吃完;如果放养21头牛,8天可以把草吃完。
问:- 要使草永远吃不完,最多放养多少头牛?- 如果放养36头牛,多少天可以把草吃完?- 解析:- 设每头牛每天吃草量为1份。
- 首先求草的生长速度:(21×8 - 24×6)÷(8 - 6)=(168 - 144)÷2 = 12(份/天)。
要使草永远吃不完,那么牛每天的吃草量不能超过草的生长速度,所以最多放养12头牛。
- 由知草的生长速度为12份/天,先求原有草量:24×6 - 12×6 = 144 - 72 = 72(份)。
- 当放养36头牛时,设可以吃x天,根据原有草量 = 牛头数×吃的天数- 草的生长速度×吃的天数,可得72 = 36x-12x,24x = 72,解得x = 3天。
2. 题目2。
- 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周。
那么这片草地可供21头牛吃几周?- 解析:- 设每头牛每周吃草量为1份。
- 草的生长速度(23×9 - 27×6)÷(9 - 6)=(207 - 162)÷3 = 15(份/周)。
牛吃草问题例题
一、例题
一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天。
如果青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天?
二、题目解析
1. 设每头牛每天的吃草量为1份
对于15头牛吃10天的情况,总草量包括原有草量和10天生长的草量。
因为每头牛每天吃1份草,15头牛10天吃草:15×10 = 150份。
然后,25头牛吃5天,总草量为25×5=125份。
2. 计算每天草的生长量
15头牛吃10天的总草量比25头牛吃5天的总草量多的部分,就是(10 5)天生长出来的草量。
150 125=25份,这25份草是5天生长出来的,所以每天草的生长量为25÷5 = 5份。
3. 计算原有草量
根据15头牛吃10天的情况,原有草量 = 15头牛10天吃的草量-10天生长的草量。
10天生长的草量为5×10 = 50份,所以原有草量为150-50 = 100份。
4. 计算10头牛可以吃的天数
设10头牛可以吃x天。
10头牛x天吃的草量等于原有草量加上x天生长的草量。
10头牛x天吃草10x份,x天生长的草量为5x份,原有草量为100份,则10x=100 + 5x。
移项可得10x-5x=100,即5x = 100,解得x = 20天。
所以这片草地若供10头牛吃,可以吃20天。
牛吃草问题的解析(牛吃草问题的各种解法)很多人还不知道牛吃草问题的分析,以及牛吃草问题的各种解决方案。
今天小刘就为大家解答一下以上问题。
现在让我们来看看!1.牛吃草。
例1牧场上长满了草,每天都在匀速生长。
这草能喂10头牛20天,15头牛10天。
那么,它能喂25头牛多少天呢?解析:首先要明确,这两个量是固定的:草原上原有的草量;草的增长率,但是这两个不变量并没有直接告诉我们,所以找到这两个不变量就是解决问题的关键。
2.一般来说,解决这类应用问题可以分为以下几个步骤:第一步:通过两种情况的对比,找出牧草的生长速度。
3、第一种情况:10头牛吃20天,共吃了10×20=200(头/天)的草量。
4、第二种情况:15头牛吃10天,共吃了15×10=150(头/天)的草量。
5.思考:为什么在两种情况下,同一块草地上吃的草总量不相等?这是因为吃饭的时间不一样。
6、事实上,第一种情况的:200头/天的草量=草地上原有的草量+20天里新长出来的草量;同样,第二种情况的:150头/天的草量=草地上原有的草量+10天里新长出来的草量;通过比较,我们就会发现,两种情况的总草量与“草地上原有的草量”无关,与吃的时间有关系。
7、因此,通过比较,我们就能求出“草的生长速度”这一十分关键的量:(200-150)÷(20-10)=5(头/天)第二步:求出草地上原有的草量。
8、既然牛吃的草可以分成两部分,那么只要用“一共吃的草量”减去“新长出来的草量”就能求出“草地上原有的草量”。
9、 200-5×20=100(头/天)或者150-5×10=100(头/天)第三步:求可以供25头牛吃多少天?(思考:结果会比10天大还是小?)显然,牛越多,吃的天数越少。
10、在这里,我们还是要紧紧抓住“牛吃的草可以分成两部分”来思考。
11.我们可以把25头牛分成两部分:一部分吃新草;另一部分去吃原草。
小学奥数六年级牛吃草的问题(含答案)1、一块草原长满草,每天牧草都均匀生长.这片草原可供10头牛吃20天,可供15头牛吃10天。
问:可供25头牛吃多少天?1.解析:设1头牛1天吃1份牧草,则牧草每天的生长量:(10×20-15×10)÷(20-10)=5(份),原有草量:10×20-5×20=100(份),则可供25头牛吃100÷(25-5)=5天。
2、12头牛28天可以吃完10公亩牧场上全部牧草,21头牛63天可以吃完30公亩牧场上全部牧草。
多少头牛126天可以吃完72公亩牧场上全部牧草(每公亩牧场上原有草量相等,且每公亩牧场上每天生长草量相等)?2.解析:设1头牛1天吃1份牧草,则每公亩牧场上的牧草每天的生长量:(21×63÷30-12×28÷10)÷(63-28)=0.3(份),每公亩牧场上的原有草量:21×63÷30-0.3×63=25.2(份),则72公亩的牧场126天可提供牧草:(25.2+0.3×126)×72=4536(份),可供养4536÷126=36头牛。
3、现欲将一池塘水全部抽干,但同时有水匀速流入池塘。
若用8台抽水机10天可以抽干;用6台抽水机20天能抽干。
问:若要5天抽干水,需多少台同样的抽水机来抽水?3.解析:设1台抽水机1天的抽水量为1单位,则池塘每天的进水速度为:(6×20-8×10)÷(20-10)=4单位,池塘中原有水量:6×20-4×20=40单位。
若要5天内抽干水,需要抽水机40÷5+4=12台。
4、一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?4.解析:设每人每小时的淘水量为“1个单位”,则船内原有水量与3小时内漏水总量之和为:1×3×10=30单位,船内原有水量与8小时漏水量之和为1×5×8=40单位,说明8-3=5小时进水40-30=10单位,即进水速度为每小时10÷5=2单位,而发现漏水时,船内已有30-2×3=24单位的水了。
牛吃草问题牛吃草问题是经典的奥数题型之一,牛吃草问题又称为消长问题。
牛吃草问题是科学家牛顿提出来的,所以也称牛顿牧场。
典型的牛吃草问题的条件是假设不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。
想办法从变化中找到不变的量,草的生长速度固定不变,牧场上原有的草量也是不变的。
为了便于计算,先设定一头牛一天吃草量为“1”。
解决牛吃草问题常用的四个基本公式︰1.草每天的生长量=草量差÷时间差;2.原有草量=牛头数×吃的天数-草的生长速度×吃的天数;3.吃的天数=原有草量÷(牛头数-草的生长速度);4.牛头数=原有草量÷吃的天数+草的生长速度。
这四个公式是解决牛吃草问题的基础。
解决牛吃草问题关键是正确计算草地上原有的草量及每天新长出的草量。
我们假设让一部分牛吃新长草,其余的牛(牛头数-草的生长速度)吃原有的草,从而求出原有的草够这部分牛吃几天。
【例 1】牧场上长满了牧草,牧草每天匀速生长,这片牧草可供10头牛吃20天,可供15头牛吃10天。
问:这片牧草可供25头牛吃多少天?解析:假设1头牛1天吃的草的数量是1份。
草每天的生长量:(10×20-15×10)÷(20-10)=5(份)原有草量:(10-5)×20=100(份)或原有草量:(15-5)×10=100(份)100÷(25-5)=5(天)练习一1.一块牧场长满了草,草每天均匀生长。
这块牧场的草可供10头牛吃40天,供15头牛吃20天。
可供45头牛吃几天?2.牧场上长满了青草,而且每天还在匀速生长,这片牧场上的草可供9头牛吃20天,可供15头牛吃10天,如果要供18头牛吃,可吃几天?3.一个牧场长满青草,牛在吃草而草又在不断生长。
已知27头牛6天把草吃尽,同样一片牧场,23头牛9天把草吃尽。
行测数量关系之牛吃草问题_英国著名的物理学家牛顿曾编过这样一道题目:草原上有一片青草,每天都生长得一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果期间一直有草生长。
如果供给25头牛吃,可以吃多少天?这种类型的题目就叫做牛吃草问题,亦叫做消长问题。
牛吃草问题在数量关系中考察的概率较小,但是这种题型相对简单,如果出现牛吃草问题,也是一道必做题。
下面,我们来解释一下牛吃草的原理以及公式:首先,牛吃草问题的前提是草生长速度和每头牛每天消耗的草料是不变的,我们设草的生长速度为X、每天每头牛吃“1”份草,那么N头牛,每天的消耗量为“N”份;其次,原有的草料为Y,假定经过时间T,草原上的草料消耗完毕,则在时间T内牛吃的草料为N×T,N头牛吃的草料等于原有草料与时间T内草生长的量,即Y+XT,所以我们得到等量关系:NT=Y+XT,化简得:Y=(N-X)T(牛吃草公式)其中:Y:原有草料N:牛的头数X:草的生长速度T:时间典型的牛吃草问题:漏船排水、窗口售票等我们通过几道例题了解一下牛吃草问题如果求解:【例1】(单选题) 某演唱会检票前若干分钟就有观众开始排队等候入场,而每分钟来的观众人数一样多。
从开始检票到等候队伍消失,若同时开4个入场口需50分钟,若同时开6个入场口则需30分钟。
问如果同时开7个入场口需几分钟?A. 18分钟B. 20分钟C. 22分钟D. 25分钟解析第一步,本题考查牛吃草问题。
第二步,设检票口原有观众y人,每分钟到达观众x人,每个检票口每分钟可检1人,根据牛吃草公式可得:y=(4-x)×50,y=(6-x)×30,解得x=1,y=150。
第三步,设同时开7个入场口需T分钟检完,则150=(7-1)×T,解得T=25分钟。
因此,选择D选项。
【例2】(单选题) 某河段中的沉积河沙可供80人连续开采6个月或60人连续开采10个月。
牛吃草问题的解题口诀及详细解题思路【口诀】:每牛每天的吃草量假设是份数1,A头B天的吃草量算出是几?M头N天的吃草量又是几?大的减去小的,除以二者对应的天数的差值,结果就是草的生长速率。
原有的草量依此反推。
公式就是A头B天的吃草量减去B天乘以草的生长速率。
将未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率;用一些草除以剩余的牛的数量,得出所需的天数。
牛吃草问题的例题解析整个牧场上的草长得又密又快。
27头牛6天可以吃草;23头牛可以在9天内吃掉这些草。
问21多少天才能把草吃完。
每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天)结果就是草的生长速率。
所以草的生长速率是45/3=15(牛/天);原有的草量依此反推。
公式就是A头B天的吃草量减去B天乘以草的生长速率。
所以原有的草量=27X6-6X15=72(牛/天)。
将未知吃草量的牛分为两个部分:一小部分先吃新草,个数就是草的比率;这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;剩下的21-15=6去吃原有的草,所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)随着天气越来越冷,牧场上的草每天都在以固定的速度减少。
经过计算,牧场上的草可以喂20头牛5天,或者喂16头牛6天。
那么,11头牛能吃多少天呢?解答:设一头牛一天吃的草量为一份。
牧场每天减少的草量:(20×5-16×6)÷(6-5)=4份,原来的草量:(20+4)×5=120份,可供11头牛吃120÷(11+4)=8天。
总结:试着从变化中找出不变的量。
牧场上原来的草是不变的,新长出的草是变化的,但是因为它是匀速生长的,所以每天新长出的草量也是不变的。
正确计算草原上的原草和每天生长的新草,就能解决问题。
牛吃草问题(例题和解答)1首先,牛吃草问题的数学模型为:有一片牧场,原有草量为W,草匀速生长且每天生长的草量为x,牧场里有N头牛,每头牛每天吃的草量为1,牛吃完所有草的时间为t。
其次,牛吃草问题解题思路是:可以将牛吃草问题类比为追及问题,也就是牛在追草,当牛追上草的时候,也就是草被吃完的时候。
这时,原有草量就等于路程差,N头牛吃草的速度就为N×1=N,草生长的速度为x,结合追及问题的公式:路程差=速度差×时间,就有:W=(N-x)t。
再次,牛吃草问题的基本题型主要有以下三种:基本题型一:求时间。
【例题1】有一片草场,每天草在匀速增长。
这块牧场可供10头牛吃20天,或者供15头牛吃10天。
问:可供25头牛吃多少天?A.4B.5C.6D.7【答案】B【中公解析】根据题意,假设牧场原来有草W,每天生长的草量为x,每头牛每天吃的草量为1,草场能够供25头牛t天。
再结合这块牧场可供10头牛吃20天,或者供15头牛吃10天,可列式:W=(10-x)×20=(15-x)×10=(25-x)t;解方程可得:x=5,W=100,t=5,所以这片草场可供25头牛吃5天,故本题选B。
基本题型二:求数量。
【例题2】有一池泉水,泉底不断涌出泉水且涌出泉水速度不变。
如果用8台抽水机10小时能把水池抽干或用12台抽水机6小时能把水池抽干。
如果想要在5小时内把水池抽干,需要多少台抽水机?A.16B.15C.14D.13【答案】C【中公解析】根据题意,假设原来有泉水W,每小时涌出的泉水为x,用N台抽水机能在5小时内把水。
结合用8台抽水机10小时能把全池水抽干,用12台抽水机6小时能把全池水抽干,可列式:W=(8-x)×10=(12-x)×6=(N-x)×5,解得:x=2,W=60,N=14,所以用14台抽水机可以在5小时内把水池抽干,故本题选C。
基本题型三:极限情况。
小学数学典型应用题17:牛吃草问题(含解析)牛吃草问题【含义】“牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。
这类问题的特点在于要考虑草边吃边长这个因素。
【数量关系】草总量=原有草量+草每天生长量×天数解题思路和方法解这类题的关键是求出草每天的生长量。
例1:这是一片新鲜的牧场,现有400份草,每天都均匀地生长6份草。
若一开始放26头奶牛,每头奶牛每天吃1份草。
这片牧场的草够奶牛吃多少天?解:1、本题考查的是牛吃草的问题。
解决本题的关键是要求出每天新增加的草量,在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草。
2、由题目可知:原有的草量+新长的草量=总的草量。
奶牛除了要吃掉原有的草,也要吃掉新长的草。
原有的草量是不变的,每天新长的草量是匀速的,每天都长6份,每头奶牛每天吃1份,新长的草刚好够6头奶牛吃的量。
那么剩下的20头奶牛吃的就是原有的草,每天吃20份,400÷20=20(天),够吃20天。
例2:一水库原有存水量一定,河水每天均匀入库。
5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干。
若要求6天抽干,需要多少台同样的抽水机?解:设每台抽水机每天可抽1份水。
5台抽水机20天抽水:5×20=100(份)6台抽水机15天抽水:6×15=90(份)每天入库的水量:(100-90)÷(20-15)=2(份)原有的存水量:100-20×2=60(份)需抽水机台数:60÷6+2=12(台)答:要求6天抽干,需要12台同样的抽水机。
例3:某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。
从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟。
如果同时打开7个检票口,那么需多少分钟?解:1、本题考查的是牛吃草的问题,“旅客”相当于“草”,检票口相当于“牛”。
2、由题目可知,旅客总数由两部分组成:一部分是开始检票前已经排队的原有旅客,另一部分是开始检票后新来的旅客。
牛吃草问题经典例题的公式下面是牛吃草问题的经典例题以及它的公式化表示。
例题:有10只牛和100块草地,牛的吃草规则是:每只牛在吃草的时候可以选择吃一块草或者不吃,但要求牛之间至少隔2块草地。
问这10只牛如果各自独立选择吃草的方式,一共有多少种不同的吃草方式?解析:对于每只牛来说,它可以选择吃草或者不吃。
假设吃草用“C”表示,不吃草用“N”表示。
同时,由于牛之间要隔2块草地,可以用“*”表示。
那么,对于一只牛来说,它的可能吃草方式有3种,分别是“C”,“N”和“*”。
假设我们把这10只牛要选择的吃草方式连起来,那么就变成了一个由10个字符组成的序列。
对于每个字符来说,它可以从C、N和*中选择一个。
所以,对于10只牛来说,它们的吃草方式一共有3^10种。
公式化表示:假设有n只牛和m块草地,牛之间要隔k块草地。
那么,计算这n只牛吃草的不同方式的公式可以表示为:总方式数=(3^n)^(m-n(k-1))(1)其中,3^n表示每只牛的吃草方式数,即每只牛可以选择吃草、不吃草或者跳过的方式;m-n(k-1)表示牛在草地上的总数减去牛之间的间隔,即实际上的“C”、“N”和“*”的总数。
公式(1)可以进一步简化为:总方式数=3^(n(m-n(k-1)))(2)这个公式提供了一个简单而有效的计算n只牛吃m块草地的总方式数的方法。
需要注意的是,对于上述公式,假设牛的吃草规则只能是吃草、不吃草或者跳过,而没有其他额外的规则。
如果问题中还存在其他的规则,那么公式需要相应地进行修改。
通过以上的公式化表示,可以计算出在给定条件下,牛吃草的总方式数,这为解决牛吃草问题提供了一个数学上的解决思路。
1.有一牧场长满牧草,每天牧草均速生长,这个牧场可供17头牛吃30天,可供19头牛吃24天,现在若干头牛在吃草,6天后,4头牛死亡,余下的牛吃了2天将草吃完,问原来有多少头牛?【解答】少4头牛吃2天,相当于8天少4×2÷8=1头牛吃。
只要求出8天需要几头牛,然后增加1头牛就行了。
设每头牛每天吃1份草。
17头牛30天吃17×30=510份,19头牛24天吃19×24=456份30-24=6天长了510-456=54份草,每天新长草54÷6=9份,原有草有(19-9)×24=240份,8天吃完每天需要240÷8=30头牛吃原有草。
则原来有30+9+1=40头牛。
2.牛顿问题,因由牛顿提出而得名,也有人称这一类问题叫做牛吃草问题。
英国著名的物理学家学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。
解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量( 牛吃的草量-- 生长的草量= 消耗原有草量);4、最后求出可吃天数想:这片草地天天以匀速生长是分析问题的难点。
把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。
求出了这个条件,把所有头牛分成两部分来研究,用其中一头吃掉新长出的草,用其余头数吃掉原有的草,即可求出全部头牛吃的天数。
设一头牛1天吃的草为一份。
那么10头牛22天吃草为1×10×22=220份,16头牛10天吃草为1×16×10=160份(220-160)÷(22-10)=5份,说明牧场上一天长出新草5份。
牛吃草又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。
很多人觉得牛吃草问题很费解,一边吃草还一边长。
只要记住牛吃草问题的公式这类问题一般就能迎刃而解了。
我们先来看看公式草地原有草量=(牛数-每天长草量)´天数y=(N-X)x T有人觉得括号里的牛数-每天长草量很奇怪,这是因为一个牛吃草问题是假设一头牛一天吃一个单位的草量。
所以严格的说公式应该为y=(N·1-X)x T。
但因为乘以1不影响计算,所以解题时一般省掉。
【例1】有一块草地,每天草生长的速度相同。
现在这片牧草可供16头牛吃20天,或者供80只羊吃12天。
如果一头牛一天的吃草量相当于4只羊一天的吃草量,那么这片草地可供10头牛和60只羊一起吃多少天?( )A.6B.8C.12D.15解析:虽然题目涉及到了牛和羊,但是给出了1头牛相当于4只羊的换算关系,因此可以将羊换算为牛。
即16头牛可以吃20天,20头牛可以吃12天。
题目问25头牛可以吃多少天。
将两个条件分别带入公式y=(N-X)x T,可以得到两个方程:y=(16-X)x 20,y=(20-X)x 12,两个未知数两个方程可以解得x=10,y=120。
将题目的问题根据公式列方程得到:y=(25-X)x T。
将x=10,y=120带入解得T=8。
选B【例2】一片牧场,假设每天的长草量相同。
9头牛吃3天,5头牛吃6天,多少头牛2天吃完?( )A.12B.13C.14D.15解析:题目给了2个条件,将两个条件分别代入公式中,得到两个方程:y=(9-X)x 3;y=(5-X)x 6。
两个未知数两个方程可以解得x=1,y=24。
将题目的问题再列个方程y=(N-X)x 2,将x=1,y=24带入其中可以解得N=13。
“牛吃草”问题简析路瑞亮注解:为什么“牛数”可以减去“每天长草量”呢?因为我们设每头牛每天吃草量不变,为“1”。
而单位面积牧场上每天新增草量不变,为“x ”;所以单位面积牧场上每天新增草量就可以供“x/1”头牛吃一天。
可见,每天长草量“x ”和每天长草量可供牛吃一天的头数“x/1”在数值上是相等的。
【路瑞亮例1】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供25头牛吃多少天?A.3B.4C.5D.6【路瑞亮答案】C【路瑞亮解析】设该牧场每天长草量恰可供x 头牛吃一天,这片草场可供25头牛吃n 天根据核心公式:()()()1020151025x x x n -⨯=-⨯=-⨯ ()()102015105x x x -⨯=-⨯⇒=,代入5n =【路瑞亮例2】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天?A.20B.25C.30D.35【路瑞亮答案】C【路瑞亮解析】设该牧场每天长草量恰可供x 头牛吃一天,根据核心公式:()()()102015104x x n x -⨯=-⨯=-⨯ ()()102015105x x x -⨯=-⨯⇒=,代入30n =【路瑞亮例3】如果22头牛吃33公亩牧场的草,54天后可以吃尽,17头牛吃28公亩牧场的草,84天可以吃尽,那么要在24天内吃尽40公亩牧场的草,需要多少头牛?A.50B.46C.38D.35【路瑞亮答案】D【路瑞亮解析】 设每公亩牧场每天新长出来的草可供x 头牛吃1天,每公亩草场原有牧草量为y ,24天内吃尽40公亩牧场的草,需要n 头牛根据核心公式: ()()3322335423183654y x y x x =-⨯⇒=-⨯=-核心公式: 草场草量=(牛数-每天长草量)×天数基本不变量:单位面积牧场上原有草量不变, 一般用来列方程每头牛每天吃草量不变, 一般设为“1”单位面积牧场上每天新增草量不变, 一般设为“x ”()()28172884172835184y x y x x =-⨯⇒=-⨯=-136********y x x y x y ⎧=-=⎧⎪⇒⎨⎨=-⎩⎪=⎩,因此()409202435n n ⨯=-⨯⇒=,选择D 【路瑞亮注释】这里面牧场的面积发生变化,所以每天长出的草量不再是常量。
高难度牛吃草问题例题摘要:一、牛吃草问题简介二、高难度牛吃草问题解析1.问题概述2.解题思路3.举例说明三、实战应用与拓展1.应用场景2.解题技巧3.注意事项正文:一、牛吃草问题简介牛吃草问题,又称牛顿问题,源于古希腊数学家阿基米德对牛顿的研究。
该问题描述了在一定时间内,牛吃草的速度与草的生长速度之间的关系。
牛吃草问题可分为一般形式和高难度形式。
本文将重点讨论高难度牛吃草问题的解题方法。
二、高难度牛吃草问题解析1.问题概述高难度牛吃草问题通常包括以下几个要素:(1)牛的数量(N):表示吃草的动物数量。
(2)草场初始面积(A):表示草场可供牛食用的面积。
(3)草的生长速度(B):表示草场每小时增长的面积。
(4)牛的吃草速度(C):表示每头牛每小时消耗的草场面积。
(5)时间(t):表示经过一定时间后,草场剩余的面积。
2.解题思路解决高难度牛吃草问题的关键在于找到牛吃草速度与草场剩余面积之间的关系。
根据题目给出的条件,可以得到以下公式:A - (N * C + B) * t = 剩余面积3.举例说明假设有一个草场,初始面积为100公顷。
有3头牛在草场上吃草,每头牛每小时吃掉5公顷的草。
草场每小时增长10公顷。
经过2小时后,草场剩余面积是多少?根据公式,可得:100 - (3 * 5 + 10) * 2 = 剩余面积计算得:剩余面积= 60公顷三、实战应用与拓展1.应用场景高难度牛吃草问题在实际生活中较少出现,但在数学、物理等领域具有较高的研究价值。
掌握高难度牛吃草问题的解题方法,有助于提高解决问题的能力。
2.解题技巧解决高难度牛吃草问题的关键在于正确运用公式,将已知条件代入公式求解。
在实际解题过程中,需要注意单位的统一和公式的正确性。
3.注意事项解答高难度牛吃草问题时,首先要理清题目的条件,确保理解的准确性。
其次,要熟练掌握公式,并能灵活运用。
最后,要注意检查计算过程,确保结果的正确性。
通过以上分析,我们可以发现,高难度牛吃草问题虽然复杂,但只要掌握了正确的解题方法,就能轻松应对。
五年级数学上册《牛吃草问题》常用公式+例题【牛吃草问题常用公式】解决牛吃草问题常用到四个基本公式,分别是:1、草的生长速度=(吃得较多的天数×与之相应的牛头数-吃得较少的天数×与之相应的牛头数)÷(吃得较多的天数-吃得较少的天数)2、原有草量=吃的天数×与之相应的牛头数-吃的天数×草的生长速度=吃的天数×(与之相应的牛头数-草的生长速度)3、吃的天数=原有草量÷(与之相应的牛头数-草的生长速度)4、牛头数=原有草量÷吃的天数+草的生长速度例:一片牧场,如果放牛27头,6天可把草吃光;如果放牛23头,9天可把草吃光;如果放牛21头,几天可把草吃光?解答:根据公式1:草的生长速度=(9×23-6×27)÷(9-6)=15根据公式2:原有草量=6×(27-15)=72根据公式3:吃的天数=72÷(21-15)=12(天)五年级数学上册《牛吃草问题》常用公式+例题1. 牧场上有一片牧草,可供27头牛吃6周,或者供23头牛吃9周。
如果牧草每周匀速生长,可供21头牛吃几周?【解析】27×6=16223×9=207207-162=4545/(9-6)=15每周生长数162-15×6=72(原有量)72/(21-15)=12周2. 有一片牧草,每天以均匀的速度生长,现在派17人去割草,30天才能把草割完,如果派19人去割草,则24天就能割完。
如果需要6天割完,需要派多少人去割草?【解析】17×30=51019×24=456510-456=5454/(30-24)=9每天生长量510-30×9=240原有草量240+6×9=294294/6=49人。
"牛吃草"问题解析
一、问题提出
有这样的问题,如:牧场上有一片均匀生长的牧草,可供27头牛吃6周,或供23头牛吃9周。
那么它可供21头牛吃几周?这类问题统称为"牛吃草"问题,它们的共同特点是由于每个单位时间草的数量在发生变化,从而导致时间不同,草的总量也不相同。
目前小学奥数辅导教材中对此类问题的通用解法是用算术方法求出每个单位时间草的变化量等于多少头牛的吃草量,再求出原有草的量等于多少头牛的吃草量,从而得出答案。
这种方法在数量之间的关系换算上较麻烦,一旦题目增加难度,或与工程问题结合,转成进水排水问题,常常使人找不到解题的正确思路。
如果用方程思想求解此类问题,思路可以清晰,步骤也可以明确,并形成一个通用的方法。
二、方程解题方法
用方程思路解决"牛吃草"问题的步骤可以概括为三步:
1、设定原有草的总量和单位时间草的变化量,一般设原有总量为1,单位时间变化量为X;
2、列出表格,分别表示牛的数量、时间总量、草的总量(原有总量+一定时间内变化的量)、每头牛单位时间吃草数量
3、根据每头牛单位时间吃草数量保持不变这一关系列方程求解X,从而可以求出任意时间的草的总量,也可以求出每头牛单位时间吃草数量。
从而针对题目问题设未知数为Y进行求解。
下面结合几个例题进行分析:
例题1:一牧场上的青草每天都匀速生长。
这片青草可供27头牛吃6周,或供23头牛吃9周。
那么可供21头牛吃几周?
本部分设定了隐藏,您已回复过了,以下是隐藏的内容解:第一步:设牧场原有草量为1,每周新长草X;
第二步:列表格如下:
第三步:根据表格第四行彼此相等列出方程:
(1-5X)/20*5 = (1-6X)/16*6 (1)
(1-5X)/20*5 = (1-YX)/11Y (2)
由(1)得到X=1/30,
代入(2)得到Y=8(天)
"牛吃草"问题常常以进排水或排队等其他的形式出现在考试中,这种问题也可通过方程思想迎刃而解。
例题3:有一水池,池底有泉水不断涌出。
要想把水池的水抽干,10台抽水机需抽 8时,8台抽水机需抽12时。
如果用6台抽水机,那么需抽多少小时?
解:第一步:设水池原有水量为1,每小时泉水涌出X;
第二步:列表格如下:
第三步:根据表格第四行彼此相等列出方程:
(1+90X)/110*90 = (1+210X)/90*210 (1)
(1+90X)/110*90 = X/Y (2)
由(1)得到 X=1/42
代入(2)得到 Y=75(亿人)
例题5:某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。
从开始检票到等候检票的队伍消失,若同时开5个检票口则需30分钟,若同时开6个检票口则需20分钟。
如果要使队伍 10分钟消失,那么需同时开几个检票口?
解:第一步:设开始检票之前人数为1,每分钟来人X;
第二步:列表格如下:
第三步:根据表格第四行彼此相等列出方程:
(1+30X)/5*30 = (1+20X)/6*20 (1)
(1+30X)/5*30 = (1+10X)/10Y (2)
由(1)得到X=1/20,
代入(2)得到Y=9(个)。