解直角三角形复习
- 格式:ppt
- 大小:253.00 KB
- 文档页数:6
中考数学专题复习:解直角三角形【基础知识回顾】一、锐角三角函数定义:在RE△ABC中,∠C=900, ∠A、∠B、∠C的对边分别为a、b、c,则∠A的正弦可表示为:sinA= ,∠A的余弦可表示为CBA= ∠A的正切:tanA= ,它们弦称为∠A的锐角三角函数【名师提醒:1、sinA、∠cosA、tanA表示的是一个整体,是两条线段的比,没有,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】二、特殊角的三角函数值:【名师提醒:1、三个特殊角的三角函数值都是根据定义应用直角三角形性质算出来的,要在理解的基础上结合表格进行记忆2、当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而sin A3、几个特殊关系:⑴sinA+cos2A= ,tanA=⑵若∠A+∠B=900,则sinA= cosA.tanB= 】三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形的依据:RT∠ABC中,∠C900 三边分别为a、b、c⑴三边关系:⑵两锐角关系⑶边角之间的关系:sinA cosA tanAsinB cosB tanB【名师提醒:解直角三角形中已知的两个元素应至少有一个是当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决】3、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在用上标上仰角和俯角⑵坡度坡角:如图:斜坡AB的垂直度H和水平宽度L的比叫做坡度,用i表示,即i=坡面与水平面得夹角为用字母α表示,则i=hl=⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA表示OB表示OC表示(也可称西南方向)3、利用解直角三角形知识解决实际问题的一般步骤:⑴把实际问题抓化为数字问题(画出平面图形,转化为解直角三角形的问题)⑵根据条件特点选取合适的锐角三角函数去解直角三角形⑶解数学问题答案,从而得到实际问题的答案【名师提醒:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解决】【重点考点例析】考点一:锐角三角函数的概念例1 (•内江)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.12B.55C.1010D.255思路分析:利用网格构造直角三角形,根据锐角三角函数的定义解答.解:如图:连接CD交AB于O,根据网格的特点,CD⊥AB,在Rt△AOC中,CO=2211+=2;AC=2213+=10;则sinA=OCAC=25510=.故选B.点评:本题考查了锐角三角函数的定义和勾股定理,作出辅助线CD并利用网格构造直角三角形是解题的关键.对应训练1.(•贵港)在平面直角坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于()A.55B.52C.32D.121.A考点:锐角三角函数的定义;坐标与图形性质;勾股定理.专题:计算题.分析:过A作AC⊥x轴于C,利用A点坐标为(2,1)可得到OC=2,AC=1,利用勾股定理可计算出OA,然后根据正弦的定义即可得到sin∠AOB的值.解答:解:如图过A作AC⊥x轴于C,∵A点坐标为(2,1),∴OC=2,AC=1,∴OA=22OC AC+=5,∴sin∠AOB=1555ACOA==.故选A.点评:本题考查了正弦的定义:在直角三角形中,一个锐角的正弦等于这个角的对边与斜边的比值.也考查了点的坐标与勾股定理.考点二:特殊角的三角函数值例2 (•孝感)计算:cos245°+tan30°•sin60°= .思路分析:将cos45°=22,tan30°=33,sin60°=32代入即可得出答案.解:cos245°+tan30°•sin60°=12+33×32=12+12=1.故答案为:1.点评:此题考查了特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是解答本题的关键.对应训练(•南昌)计算:sin30°+cos30°•tan60°.思路分析:分别把各特殊角的三角函数代入,再根据二次根式混合运算的法则进行计算即可.解:原式=13322+⨯=1322+=2.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.考点三:化斜三角形为直角三角形例3 (•安徽)如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.6.思路分析:过C作CD⊥AB于D,求出∠BCD=∠B,推出BD=CD,根据含30度角的直角三角形求出CD,根据勾股定理求出AD,相加即可求出答案.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=23,∴CD=3,∴BD=CD=3,由勾股定理得:AD=22=3,AC CD∴AB=AD+BD=3+3,答:AB的长是3+3.点评:本题考查了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构造直角三角形,题目具有一定的代表性,是一道比较好的题目.对应训练3.(•重庆)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)3.考点:解直角三角形;三角形内角和定理;等边三角形的性质;勾股定理.专题:计算题.分析:根据等边三角形性质求出∠B=60°,求出∠C=30°,求出BC=4,根据勾股定理求出AC,相加即可求出答案.解答:解:∵△ABD是等边三角形,∴∠B=60°,∵∠BAC=90°,∴∠C=180°-90°-60°=30°,∴BC=2AB=4,在Rt△ABC中,由勾股定理得:AC=2222BC AB-=-=,4223∴△ABC的周长是AC+BC+AB=23+4+2=6+23.答:△ABC的周长是6+23.点评:本题考查了勾股定理,含30度角的直角三角形,等边三角形性质,三角形的内角和定理等知识点的应用,主要培养学生运用性质进行推理和计算的能力,此题综合性比较强,是一道比较好的题目.考点四:解直角三角形的应用例4 (•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=32千米,请据此解答如下问题:(1)求该岛的周长和面积;(结果保留整数,2≈1.41436≈2.45)(2)求∠ACD的余弦值.考点:解直角三角形的应用.分析:(1)连接AC ,根据AB =BC =15千米,∠B =90°得到∠BAC =∠ACB =45° AC =152千米,再根据∠D =90°利用勾股定理求得AD 的长后即可求周长和面积; (2)直接利用余弦的定义求解即可. 解:(1)连接AC∵AB =BC =15千米,∠B =90°∴∠BAC =∠ACB =45° AC =152千米 又∵∠D =90°∴AD =22 -AC CD =22(152)(32)123-=(千米)∴周长=AB +BC +CD +DA =30+32+123=30+4.242+20.784≈55(千米) 面积=S △ABC +18 6 ≈157(平方千米) (2)cos ∠ACD =CD 321==AC 5152点评:本题考查了解直角三角形的应用,与时事相结合提高了同学们解题的兴趣,解题的关键是从实际问题中整理出直角三角形并求解. 对应训练6.(•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC =75°. (1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千米/小时≈16.7米/秒)考点:解直角三角形的应用.专题:计算题.分析:(1)由于A到BC的距离为30米,可见∠C=90°,根据75°角的三角函数值求出BC的距离;(2)根据速度=路程÷时间即可得到汽车的速度,与60千米/小时进行比较即可.解答:解:(1)法一:在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC•tan∠BAC=30×tan75°≈30×3.732≈112(米).法二:在BC上取一点D,连接AD,使∠DAB=∠B,则AD=BD,∵∠BAC=75°,∴∠DAB=∠B=15°,∠CDA=30°,在Rt△ACD中,∠ACD=90°,AC=30,∠CDA=30°,∴AD=60,CD=303,BC=60+303≈112(米)(2)∵此车速度=112÷8=14(米/秒)<16.7 (米/秒)=60(千米/小时)∴此车没有超过限制速度.点评:本题考查了解直角三角形的应用,理解正切函数的意义是解题的关键.【聚焦山东中考】1.(•济南)如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A.13B.12C.22D.31.A考点:锐角三角函数的定义.A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定3考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.分析:首先根据绝对值与偶次幂具有非负性可知cosA-12=0,sinB-22=0,然后根据特殊角的三角函数值得到∠A、∠B的度数,再根据三角形内角和为180°算出∠C的度数即可.解答:解:∵|cosA-12|+(sinB-22)2=0,∴cosA-12=0,sinB-22=0,∴cosA=12,sinB=22,∴∠A=60°,∠B=45°,则∠C=180°-∠A-∠B=180°-60°-45°=75°,故答案为:75°.点评:此题主要考查了非负数的性质,特殊角的三角函数值,三角形内角和定理,关键是要熟练掌握特殊角的三角函数值.5.(•潍坊)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:3=1.73,2=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.5.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.解答:解:(1)由題意得,在Rt△ADC中,AD=CD==21 3tan303=36.33,在Rt△BDC中,BD=CD==7 3tan303=12.11,则AB=AD-BD=36.33-12.11=24.22≈24.2(米)。
第五讲解直角三角形一、【知识梳理】知识点 1、 解直角三角形定义: 由直角三角形中已知元素求出未知元素的过程叫解直角三角形。
知识点 2、解直角三角形的工具:1、直角三角形边、角之间的关系:sinA=cosB=a b a bsinB=cosA=ctanA=cotB=cotA=tanB=cba2、直角三角形三边之间的关系 : a 2 b 2 c 2 (勾股定理)3、直角三角形锐角之间的关系:AB 90 。
(两锐角互为余角)知识点3、解直角三角形的种类:能够概括为以下2 种,(1)、已知一边和一锐角解直角三角形;知识点 4、解直角三角形应用题的几个名词和素语1、方向角:( 2)、已知两边解直角三角形。
在航海的某些问题中,描绘船的航向,或目标对观察点的地点,常用方向角.画方向角时,常以铅直的直线向上的方向指北,而以水平直线向右的方向为东,而以交点为观察点.2、仰角和俯角在利用测角仪察看目标时,视野在水平线上方和水平线的夹角称为仰角,视野在水平线下方和水平线的夹角称为俯角(如图). 在丈量距离、高度时,仰角和俯角常是不行缺乏的数据.3、坡度和坡角:在筑坝、修路时,常把坡面的铅直高度 h 和水平宽度 l 的比叫作坡度(或坡比),用字母i 表示(如图( 1)),则有 ih, 坡面和水平面的夹角叫作坡角.明显有: ih tan,l. l这说明坡度是坡角的正切值,坡角越大,坡度也越大二、【典型题例】考点 1、解直角三角形例 1.、 1、在 ABC 中,C 为直角, A 、B 、C 所对的边分别为 a 、 b 、 c .( 1)已知 b3 , A30 ,求 a 和 c .( 2)已知 a20 , b 20 ,求A .2、如图,已知△ ABC 中∠ B=45 °,∠ C=30°, BC=10 , AD 是 BC 边上的高,求 AD 的长3、已知,如图,△ABC 中,∠ A=30 °, AB=6 , CD ⊥ AB 交C AAB 延伸线于 D ,∠ CBD=60 °。
数学教案-解直角三角形复习二一、教学目标1.巩固直角三角形的定义及性质。
2.熟练掌握直角三角形中的特殊角的计算方法。
3.学会运用直角三角形的知识解决实际问题。
二、教学重难点重点:直角三角形中特殊角的计算方法。
难点:实际问题的解决。
三、教学准备1.教学课件2.练习题四、教学过程一、导入1.复习直角三角形的定义及性质。
2.提问:直角三角形中有哪些特殊角?二、新课讲解1.讲解直角三角形中30°、45°、60°角的计算方法。
1.1.当直角三角形中有一个角是30°时,其他两个角的度数分别是60°和90°。
1.2.当直角三角形中有一个角是45°时,其他两个角的度数分别是45°和90°。
1.3.当直角三角形中有一个角是60°时,其他两个角的度数分别是30°和90°。
2.通过例题演示如何运用这些特殊角的计算方法解决实际问题。
例题1:一个直角三角形的两条直角边分别是3cm和4cm,求斜边的长度。
解:由勾股定理可知,斜边的长度为√(3²+4²)=5cm。
例题2:一个直角三角形的一个锐角是30°,另一个锐角是45°,求第三个角的度数。
解:第三个角的度数为180°-30°-45°=105°。
三、课堂练习1.练习题1:一个直角三角形的两条直角边分别是6cm和8cm,求斜边的长度。
2.练习题2:一个直角三角形的一个锐角是60°,另一个锐角是30°,求第三个角的度数。
3.练习题3:一个直角三角形的斜边长度为10cm,一条直角边长度为6cm,求另一条直角边的长度。
四、拓展延伸1.让学生思考:如何运用直角三角形的性质解决生活中的问题?2.举例说明:在建筑、测量等领域,如何运用直角三角形的知识?五、课堂小结2.鼓励学生在日常生活中发现并运用直角三角形的性质。
中考解直角三角形知识点整理复习解直角三角形知识点复习一、定义直角三角形是指其中一个角是直角的三角形。
直角指的是一个角度为90°的角。
二、性质1.直角三角形的两条直角边的平方和等于斜边的平方,即勾股定理。
设直角三角形的两条直角边分别为a和b,斜边为c,则有a^2+b^2=c^22.直角三角形的斜边是两个直角边中最长的边,而且直角三角形中的直角边是两个锐角的对边。
3.直角三角形中的两个锐角互余。
4.在直角三角形中,两个锐角的正弦、余弦和正切值互为倒数。
三、特殊直角三角形1.等腰直角三角形:定义:顶角为90°的等腰三角形。
性质:两个直角边相等,斜边为直角边的根号2倍。
2.30°-60°-90°直角三角形:定义:一个锐角为30°,一个锐角为60°的直角三角形。
性质:-斜边是短直角边的2倍;-长直角边是短直角边的根号3倍;-高(垂直于短直角边的线段)是短直角边的根号3倍的一半。
3.45°-45°-90°直角三角形:定义:两个锐角都为45°的直角三角形。
性质:-斜边是任意一个直角边的根号2倍;-高(垂直于底边的线段)是底边的一半。
四、解直角三角形问题的步骤1.已知两条边,求第三条边。
a)如果已知两条直角边a和b,可以直接使用勾股定理求解斜边c:c=√(a^2+b^2)。
b)如果已知一条直角边a和斜边c,可以使用勾股定理求解另一条直角边b:b=√(c^2-a^2)。
2.已知一条直角边和一个锐角,求另一条直角边和斜边。
a) 如果已知一条直角边a和一个锐角θ,可以求出另一条直角边b:b = a * tanθ。
b)如果已知一条直角边a和斜边c,可以求出另一条直角边b:b=√(c^2-a^2)。
c) 如果已知一条直角边a和一个锐角θ,可以求出斜边c:c = a / cosθ。
3.已知两条直角边之间的比例,求两个直角边和斜边的长度。
《解直角三角形》复习一、锐角三角函数:1、根据三角函数定义下列函数:正弦: 余弦:α 正切:2、各三角函数之间的关系:⑴sin α=cos ; ⑵sin 2α+cos 2α= ; ⑶tan α= . 3、特殊角三角函数三角函数 30º45º 60º sin cos tan练习:1、在Rt △ABC 中,∠C =900,AC =12,BC =15。
(1)求AB 的长; (2)求sinA 、cosA 的值;(3)求A A 22cos sin +的值; (4)比较sinA 、cosB 的大小。
2、(1)在Rt △ABC 中,∠C =900,5=a ,2=b ,则sinA = 。
(2)在Rt △ABC 中,∠A =900,如果BC =10,sinB =0.6,那么AC = 。
(3)在ABC Rt ∆中,C ∠=90︒,c = 8 , sinA = 41,则b = .3、选择:(1)在Rt △ABC 中,∠C =900,31tan =A ,AC =6,则BC 的长为( )A 、6B 、5C 、4D 、2 (2)Rt ABC ∆中,C ∠=90︒,43AC BC ==,,cos B 的值为 ( )15A 、35B、 43C、 34D、 (3)ABC ∆中,C ∠=90︒,tan 1A =,则sin B 的值是 ( )3A 、 2B、 1C、 22D、4、计算:(1)sin30º+cos45º; (2) sin ²60º+cos ²60º-tan45º.(3)︒∙︒-︒∙+︒60tan 60sin 45cos 230sin()42sin 453(sin 602cos30)tan 30︒-︒-︒+︒5、用计算器求下列余弦值,并用“<”连接:cos27.5°, cos85°, cos63°36’15”, cos54°23’, cos38°39’52” 你从这些能找到什么规律。
【解直角三角形】专题复习考点一、直角三角形的性质 1、直角三角形的两个锐角互余∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°, ∠C=90° ⇒BC=21AB 3、直角三角形斜边上的中线等于斜边的一半 ∠ACB=90°,D 为AB 的中点⇒CD=21AB=BD=AD 4、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 5、射影定理(可利用相似证明):在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项, 每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90°CD ⊥AB ⇒ BD AD CD ∙=2 AB AD AC ∙=2 AB BD BC ∙=2 6、常用关系式:由三角形面积公式可得: AB ∙CD=AC ∙BC考点二、直角三角形的判定1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
考点三、锐角三角函数的概念1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即c asin =∠=斜边的对边A A②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即c bcos =∠=斜边的邻边A A③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即batan =∠∠=的邻边的对边A A A④锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA ,即abcot =∠∠=的对边的邻边A A A2、锐角三角函数的概念:锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数3、一些特殊角的三角函数值三角函数 0° 30°45°60°90° sinα212223 1cos α 123 2221 0tan α 033 13不存在cot α 不存在31 33 04、各锐角三角函数之间的关系 (1)互余关系 sinA=cos(90°—A),cosA=sin(90°—A) ,tanA=cot(90°—A),cotA=tan(90°—A) (2)平方关系 1cos sin 22=+A A (3)倒数关系 tanA ∙tan(90°—A)=1 (4)弦切关系 tanA=AAcos sin 5、锐角三角函数的增减性 当角度在0°~90°之间变化时,(1)正弦(或正切)值随着角度的增大(或减小)而增大(或减小) (2)余弦(或余切)值随着角度的增大(或减小)而减小(或增大)考点四、解直角三角形 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。