5.2 二次根式的乘法和除法(1)
- 格式:ppt
- 大小:2.37 MB
- 文档页数:23
二次根式的运算二次根式是数学中常见的概念,它在代数学、几何学和物理学等领域都得到广泛应用。
本文将为您详细介绍二次根式的运算过程和相关概念。
一、定义与性质二次根式,顾名思义,就是一个数的根号形式,其中根号下是一个有理数。
一般形式为√a,其中a表示一个非负实数。
在二次根式中,根号下的数被称为被开方数。
二次根式的性质如下:1. 二次根式的运算结果是一个实数,要么是有理数,要么是无理数。
2. 二次根式的和差运算只有当根号下的被开方数相同时,才能进行。
3. 二次根式的乘法运算可以进行,即√a × √b= √(a × b)。
4. 二次根式的除法运算可以进行,即√a ÷ √b = √(a ÷ b),其中b不等于零。
二、二次根式的运算法则1. 化简当二次根式出现在分母中时,为了方便计算,我们通常会进行化简。
具体来说,如果根号下的被开方数可以被因式分解,我们就将其进行简化。
例如,对于√12,可以进行因式分解得到√(4 × 3),进而简化成2√3。
2. 相加相减当根号下的被开方数相同时,我们可以进行二次根式的相加与相减。
例如,√5 + √5 = 2√5,√7 - √7 = 0。
3. 乘法二次根式的乘法运算非常简单,只需要将根号下的被开方数相乘即可。
例如,√2 × √3 = √(2 × 3) = √6。
4. 除法二次根式的除法运算也很简单,只需要将根号下的被开方数相除即可。
例如,√8 ÷ √2 = √(8 ÷ 2) = √4 = 2。
三、例题解析为了更好地理解二次根式的运算过程,我们举几个例题进行解析。
例题1:化简下列二次根式。
(1) √72(2) √50 ÷ √2解析:(1) √72 = √(4 × 18) = √4 × √18 = 2√18。
由于18不能再进一步分解,所以2√18为最简形式的答案。
《二次根式的乘除混合运算》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《二次根式的乘除混合运算》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析本节课是人教版八年级下册第十六章《二次根式》中的重要内容。
二次根式的乘除混合运算既是对二次根式乘法和除法法则的综合运用,也是后续学习二次根式的加减运算以及解二次根式方程的基础。
通过本节课的学习,学生将进一步提高对二次根式运算的理解和掌握,为解决更复杂的数学问题打下坚实的基础。
在教材的编排上,先介绍了二次根式的乘法和除法法则,然后通过实例引入二次根式的乘除混合运算,让学生在实际运算中体会法则的应用,逐步掌握运算方法和技巧。
二、学情分析八年级的学生已经掌握了实数的基本运算和整式的乘除运算,具备了一定的运算能力和逻辑思维能力。
但对于二次根式的运算,尤其是乘除混合运算,可能会在运算顺序、化简过程中出现错误。
部分学生可能对法则的理解不够深入,在应用时容易出现混淆。
因此,在教学过程中,要注重引导学生理解法则的本质,加强练习,及时纠正错误。
三、教学目标1、知识与技能目标(1)学生能够熟练掌握二次根式的乘除混合运算的法则和方法。
(2)能够正确进行二次根式的乘除混合运算,并化简结果。
2、过程与方法目标(1)通过观察、类比、归纳等活动,培养学生的运算能力和逻辑思维能力。
(2)在运算过程中,提高学生的分析问题和解决问题的能力。
3、情感态度与价值观目标(1)让学生在自主探究和合作交流中,体验数学学习的乐趣,增强学习数学的自信心。
(2)培养学生严谨的学习态度和良好的运算习惯。
四、教学重难点1、教学重点(1)二次根式的乘除混合运算的法则和顺序。
(2)正确化简二次根式的乘除混合运算结果。
2、教学难点(1)运算过程中符号的确定和根式的化简。
(2)灵活运用二次根式的乘除法则进行混合运算。
五、教法与学法1、教法(1)讲授法:讲解二次根式的乘除混合运算的法则和方法,使学生形成系统的知识体系。
二次根式的乘除运算1、因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.2、有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.一、分母有理化:把分母中的根号化去,叫做分母有理化。
二、有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:1a =b a -与b a -等分别互为有理化因式。
2、两项二次根式:利用平方差公式来确定。
如a与a3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;③最后结果必须化成最简二次根式或有理式。
例、已知x =y =,求下列各式的值:(1)x y x y +-(2)223x xy y -+ 小结:一般常见的互为有理化因式有如下几类: ①与; ②与; ③与; ④与.三、二次根式的乘除1、积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
a≥0,b≥0)2、二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
a≥0,b≥0)注意:1、公式中的非负数的条件;2、在被开方数相乘时,就应该考虑因式分解(或因数分解;3、c=abc( a ≥0,b≥0,c ≥03、商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根a≥0,b>0)4.二次根式的除法法则:两个数的算术平方根的商,等于这两个数的商的算术平方根。
a≥0,b>0)注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.例1.=,且x为偶数,求(1+x的值.解:由题意得9060xx-≥⎧⎨->⎩,即96xx≤⎧⎨>⎩∴6<x≤9∵x为偶数∴x=8∴原式=(1+x=(1+x=(1+x∴当x=8时,原式的值.例2=成立的的x的取值范围是()A 、2x >B 、0x ≥C 、02x ≤≤D 、无解例3、·(m>0,n>0)解: 原式==-22n n m m =-例4、(a>0)解:原式规律公式:1、观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121=-,32=-同理可得:计算代数式(+)的值.解:原式=(……)=() =2002-1=20012、观察下列各式及其验证过程:,验证:;验证:.(1)按照上述两个等式及其验证过程的基本思路,猜想(2)针对上述各式反映的规律,写出用a(a>1的整数)表示的等式,并给出验证过程.(aa>1))。
二次根式的乘除法二. 重点、难点:1. 重点:(1)掌握二次根式乘、除法法则,并会运用法则进行计算;(2)能够利用二次根式乘、除法法则对根式进行化简;(3)能够将二次根式化简成“最简二次根式”。
2. 难点:(1)理解最简二次根式的概念;(2)能够运用积的算术平方根的性质、二次根式的除法法则将二次根式化简成“最简二次根式”。
三. 知识梳理:1. 二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。
说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,、都是非负数;(2)(≥0,≥0)可以推广为(≥0,≥0);(≥0,≥0,≥0,≥0)。
(3)等式(≥0,≥0)也可以倒过来使用,即(≥0,≥0)。
也称“积的算术平方根”。
它与二次根式的乘法结合,可以对一些二次根式进行化简。
2. 二次根式的除法两个二次根式相除,把被开方数相除,根指数不变,即(≥0,>0)。
说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,≥0,在分母中,因此>0;(2)(≥0,>0)可以推广为(≥0,>0,≠0);(3)等式(≥0,>0)也可以倒过来使用,即(≥0,>0)。
也称“商的算术平方根”。
它与二根式的除法结合,可以对一些二次根式进行化简。
3. 最简二次根式一个二次根式如果满足下列两个条件:(1)被开方数中不含能开方开得尽的因数或因式;(2)被开方数中不含分母。
这样的二次根式叫做最简二次根式。
说明:(1)这两个条件必须同时满足,才是最简二次根式;(2)被开方数若是多项式,需利用因式分解法把它们化成乘积式,再进行化简;(3)二次根式化简到最后,二次根式不能出现在分母中,即分母中要不含二次根式。
【典型例题】例1. 求下列式子中有意义的x的取值范围。
(1)(2)分析:此题涉及二次根式的乘法、除法公式的正确应用,特别注意公式应用的范围。
(a≥0,b≥0);==(a≥0,b>0)。
1二次根式的乘除运算 姓 名一 基本概念:1.二次根式的乘法:二次根式相乘,把被开方数相乘,根指数 . 强调:乘法交换律在二次根式中同样适用。
公式:(1)(0,0)a b ab a b ∙=≥≥ (2)()a 0,b 0a b c abc ∙∙=≥≥ 例题1:如果()11x y x y ∙-=-,那么x ,y 例题2:计算23∙=__ 255∙= 3225∙=2.二次根式乘法公式的逆用:例题1: 计算2002100=⨯= (210,102⨯) ,45=⨯=3.二次根式的除法:二次根式相除,把被开方数相除,根指数 . 公式:(1)(0,0)a a a b bb=≥>, (2)公式的逆用:ab=a b(0,0)a b ≥>(3)形式改变:m n ÷=m n ÷(m 0,n 0)例题1.如果33-=-x x x x,则x 的取值范围为 .例题2. 计算7212= ,34= ,21132÷= 。
二.二次根式的化简1.化去分母中的根号:将分子分母同乘这个根式,利用乘法化去分母中的根号。
例题1.化去分母中的根号: 11333⨯==⨯63 322b aa==2.最简二次根式的判定:(1)被开方数不含____(2)被开方数的因数或因式的次数小于____. 例题1.下列式子哪些是最简二次根式:6x22a b + 32ab3a 0.5ab6424x2.利用二次根式乘除法公式化成最简二次根式:要点:分别开方。
三.二次根式乘除混合运算 例题1.化简:122720350.5a b 224836-·二次根式乘除法的混合运算,先定符号,再乘除绝对值。
系数乘除系数,根号乘除根号。
例题321332()322b ab a b a ⨯÷÷⨯-。
二次根式的基本运算二次根式是高中数学中的重要内容,它在数学中发挥着重要的作用。
在这篇文章中,我们将讨论二次根式的基本运算。
对于二次根式的加减乘除,我们将逐一探讨其运算规则和示例。
一、二次根式的加法运算要进行二次根式的加法运算,首先要保证根号下的数相同。
如果根号下的数相同,我们可以直接将系数相加。
例如:√2 + √2 = 2√2√3 + 2√3 = 3√3对于不同的根号下的数相加,我们无法简化,只能保留原样,表达为:√2 + √3二、二次根式的减法运算二次根式的减法运算与加法类似,也要保证根号下的数相同。
如果根号下的数相同,我们可以直接将系数相减。
例如:√5 - √2 = √5 - √22√3 - √3 = √3对于不同的根号下的数相减,我们同样无法简化,保留原样即可,表达为:√5 - √3三、二次根式的乘法运算要进行二次根式的乘法运算,我们可以运用分配律的规则,将系数和根号下的数分别相乘。
例如:√2 * √3 = √62√5 * 3√2 = 6√10对于相同根号下的数相乘,我们可以将系数相乘,根号下的数保持不变。
例如:2√5 * 3√5 = 6 * 5 = 30四、二次根式的除法运算二次根式的除法运算需要运用到有理化的方法。
具体方法是将分母有理化,即乘以分母的共轭式,并利用乘法法则进行运算。
例如:√6 / √2 = (√6 * √2) / (√2 * √2) = √12 / 2 = √12 / 2√2 = √32√10 / √5 = (2√10) / (√5) = (2√10 * √5) / (√5 * √5) = 2√50 / 5 = 2 *√(25 * 2) / 5 = 2 * √50 / 5 = 2 * 5√2 / 5= 2√2综上所述,二次根式的基本运算包括加法、减法、乘法和除法。
对于加法和减法,我们只需保证根号下的数相同,将系数相加或相减即可。
对于乘法和除法,我们要运用分配律和有理化的方法进行计算。
数与代数中的二次根式与其运算二次根式是数学中重要的概念之一,它在数与代数中具有广泛的运用。
本文将探讨二次根式及其运算,并介绍其在实际生活和学术研究中的应用。
一、二次根式的定义与性质二次根式是指形如√a的代数表达式,其中a为非负实数。
二次根式的定义有以下几个重要性质:1. 非负实数的二次根式是唯一存在的,即√a表示的是非负实数。
2. 二次根式可以通过乘法和除法进行运算。
例如,√a * √b = √(ab)。
3. 二次根式可以通过加法和减法进行运算。
例如,√a + √b 和√a - √b 不能进行简化。
4. 二次根式可以与有理数相加减,但无法与有理数相乘除。
例如,√a + b 和√a - b 可以进行简化。
二、二次根式的运算二次根式的运算包括加法、减法、乘法和除法。
下面以具体的例子进行说明:例1:计算√2 + √3。
解:这个二次根式无法进行简化,所以结果为√2 + √3。
例2:计算√5 - √2。
解:这个二次根式也无法进行简化,所以结果为√5 - √2。
例3:计算(√3 + √2) * (√3 - √2)。
解:利用公式(a + b)(a - b) = a^2 - b^2,可将运算式转化为(√3)^2 - (√2)^2,即3 - 2,结果为1。
例4:计算(√5 + √2) / (√5 - √2)。
解:为了简化运算,可将分子和分母同时乘以(√5 + √2),得到(√5 + √2)^2 / (√5 - √2)(√5 + √2)。
利用公式(a + b)^2 = a^2 + 2ab + b^2,将分子展开得到5 + 2√10 + 2,将分母展开得到5 - 2,最终结果为(7 + 2√10) / 3。
三、二次根式的应用领域二次根式在数学和实际生活中有广泛的应用。
以下是几个常见的应用领域:1. 几何学:二次根式在几何学中用于计算图形的周长、面积和体积。
例如,计算一个边长为2的正方形的对角线长度可以使用√2。
2. 物理学:二次根式在物理学中用于描述运动的速度、加速度以及能量的传递和转化。