二次根式的乘除法
- 格式:docx
- 大小:125.96 KB
- 文档页数:6
二次根式的乘除法PPT 课件contents •二次根式基本概念与性质•二次根式乘法运算规则•二次根式除法运算规则•乘除混合运算及简化方法•在实际问题中应用举例•错题集锦与答疑环节目录二次根式基本概念与01性质二次根式定义及表示方法定义形如$sqrt{a}$($a geq0$)的式子叫做二次根式。
表示方法对于非负实数$a$,其算术平方根表示为$sqrt{a}$。
乘法定理$sqrt{a} times sqrt{b} = sqrt{a times b}$($a geq 0$,$bgeq 0$)。
非负性$sqrt{a} geq 0$($a geq 0$)。
除法定理$frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$($a geq 0$,$b > 0$)。
二次根式性质介绍例1解析例3解析例2解析计算$sqrt{8} times sqrt{2}$。
根据乘法定理,$sqrt{8} times sqrt{2} = sqrt{8 times 2} = sqrt{16} = 4$。
计算$frac{sqrt{20}}{sqrt{5}}$。
根据除法定理,$frac{sqrt{20}}{sqrt{5}} = sqrt{frac{20}{5}} = sqrt{4} = 2$。
化简$sqrt{18}$。
首先将18进行质因数分解,得到$18 = 2 times 9 = 2 times 3^2$,然后根据二次根式的性质,$sqrt{18} = sqrt{2 times 3^2} = 3sqrt{2}$。
典型例题解析二次根式乘法运算规02则同类二次根式乘法法则两个同类二次根式相乘,把他们的系数相乘,根式部分不变,再根据根式的乘法法则,化简得到结果。
如:√a ×√a = a (a≥0)同类二次根式相乘,结果仍为同类二次根式。
不同类二次根式乘法法则两个不同类二次根式相乘,先把他们的系数相乘,再根据乘法公式展开,化简得到结果。
全面剖析二次根式的乘除及化简1.二次根式的乘法法则(1)二次根式的乘法法则(性质3): a ·b =ab (a ≥0,b ≥0).观察这个式子的左边和右边,得出等号的左边是两个二次根式相乘,等号右边是得到的积,仍是二次根式.由此得出:二次根式的乘法就是把被开方数的积作为积的被开方数.(2)对于二次根式乘法的法则应注意以下几点:①要满足a ≥0,b ≥0的条件,因为只有a ,b 都是非负数,公式才能成立. ②从运算顺序看,等号左边是先分别求a ,b 两因数的算术平方根,然后再求两个算术平方根的积,等号右边是将非负数a ,b 先做乘法求积,再开方求积的算术平方根.③公式a ·b =ab (a ≥0,b ≥0)可以推广到3个二次根式、4个二次根式等相乘的情况.④根据这个性质可以对二次根式进行恒等变形,或将有的因式适当改变移到根号外边,或将根号外边的非负因式平方后移到根号内.当二次根式根号外都含有数字因数时,可以仿照单项式的乘法法则进行运算:系数之积作为系数,被开方数之积作为被开方数.即m a ·n b =mn ab (a ≥0,b ≥0).【例1】计算:(1)0.4×3.6;(2)545×3223.分析:第(1)小题的被开方数都是小数,先将被开方数进行因数分解,第(2)小题的根号外都含有数字因数,可以仿照单项式的乘法.解:(1)0.4× 3.6=0.4×3.6=0.4×0.4×9=0.4×3=1.2. (2)545×3223=5×32×45×23=152×3×15×23=15230.2.积的算术平方根的性质 (1)ab =a ·b (a ≥0,b ≥0).用语言叙述为:积的算术平方根,等于积中各因式的算术平方根的积.(2)注意事项:①a≥0,b≥0是公式成立的重要条件.如(-4)×(-9)≠-4·-9,实际上公式中的a,b是限制公式右边的,对公式的左边,只要ab≥0即可.②公式中的a,b可以是数,也可以是代数式,但必须是非负的.(3)利用这个公式,同样可以达到化简二次根式的目的.(4)ab=a·b(a≥0,b≥0)可以推广为abc=a·b·c(a≥0,b≥0,c≥0).计算形如(-4)×(-9)的式子时,应先确定符号,原式化为4×9,再化简.【例2】化简:(1)300;(2)21×63;(3)(-50)×(-8);(4)96a3b6(a>0,b>0).分析:根据积的算术平方根的性质:ab=a·b(a≥0,b≥0)进行化简.解:(1)300=102×3=102×3=10 3.(2)21×63=3×7×7×9=3×72×32=3×7×3=21 3.(3)(-50)×(-8)=50×8=202=20.(4)96a3b6=42·6·a2·a·(b3)2=4ab36a.3.二次根式的除法法则对于两个二次根式a,b,如果a≥0,b>0,那么ab=ab.这就是二次根式的除法法则.(1)二次根式的除法法则:①数学表达式:如果a≥0,b>0,则有a b =ab.②语言叙述:两个二次根式相除,将它们的被开方数(式)相除,二次根号不变.(理解并掌握)(2)在二次根式的除法中,条件a≥0,b>0与二次根式乘法的条件a≥0,b≥0是有区别的,因为分母不能为零,所以被除式可以是非负数,而除式必须是正数,否则除法法则不成立.知识点拓展:(1)二次根式的除法法则中的a ,b 既可以代表数,也可以代表式子;(2)m a ÷n b =m a n b =mnab (a ≥0,b >0,n ≠0),即系数与系数相除,被开方数与被开方数相除.点拨:在进行二次根式的除法运算时,应先确定商的符号,然后系数与系数相除,被开方数与被开方数相除,二次根号不变,但应注意的是当被开方数是带分数时,首先要把带分数化为假分数,再进行计算,并且计算的最终结果一定要化为最简形式,此外当数字与字母相乘时,要把数字放在字母的前面,如-26a 不能写成-2a 6.【例3】如果x x -1=x x -1成立,那么( ). A .x ≥0 B .x ≥1C .0≤x ≤1D .以上答案都不对解析:本题考查二次根式的除法法则成立的条件.要求x ≥0,x -1>0,则x >1.故选D.答案:D点拨:(1)逆用二次根式的除法时,一定要满足条件a ≥0,b >0.(2)通常去掉分母中的根号有两种方法:一是运用二次根式的性质和除法运算;二是运用二次根式的性质及乘法运算.4.二次根式除法的逆用 通过计算:(1)1625=(45)2=45,1625=45,显然1625=1625;(2)81121=(911)2=911,81121=911,显然81121=81121,从而我们可以发现:二次根式的除法法则也可以反过来运用,即如果a ≥0,b >0,那么a b =ab,也就是说,商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.名师归纳:二次根式的除法法则的逆用: (1)数学表达式:如果a ≥0,b >0,则有a b =ab;(2)语言叙述:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根;(3)逆用二次根式除法法则,可以把二次根式化为最简形式.(理解并掌握) 【例4】把下列各式中根号外的因数(式)移到根号内. (1)535; (2)-2a 12a ;(3)-a-1a ; (4)xyx (x <0,y <0).分析:将根号外的因数(式)移到根号内时,要将根号外的数(式)改写成完全平方的形式作为被开方数(式),如5=52,实际上是运用了公式a =a 2(a ≥0).同时,此题还运用了公式a ·b =ab (a ≥0,b ≥0).如果根号外有负号,那么负号不能移入根号内,移到根号内的因数(式)必须是正的,但有些字母的取值范围需由隐含条件得出,如(2),(3)小题.解:(1)535=52×35=52×35=15.(2)∵12a >0,∴a >0. ∴-2a 12a =-(2a )2·12a =-(2a )2·12a =-2a .(3)∵-1a >0,∴a <0. ∴-a -1a =(-a )2·-1a=(-a )2·(-1a )=-a .(4)∵x <0,y <0, ∴x y x=-(-x )2y x=-(-x )2·y x =-xy .(1)要将根号外的因数(式)平方后移到根号内,应运用公式a =a 2(a ≥0)及a ·b =ab (a ≥0,b ≥0);(2)根号外的负号不能移到根号内,如果根号外有字母,那么要判断字母的符号,如果符号是负的,那么负号要留在根号外.5.最简二次根式的概念满足下列两个条件的二次根式,叫做最简二次根式. ①被开方数的因数是整数,因式是整式; ②被开方数中不含能开得尽方的因数或因式.对最简二次根式的理解①被开方数中不含分母,即被开方数的因数是整数,因式是整式; ②被开方数中每一个因数或因式的指数都小于根指数2,即每个因数或因式的指数都是1.【例5】若二次根式-33a +b 与2a +bb 是最简同类二次根式,求a ,b 的值.分析:最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.解:由题意,得⎩⎨⎧ a +b =2,3a +b =b ,解得⎩⎨⎧a =0,b =2.所以a ,b 的值分别是0,2.本题考查的是对最简同类二次根式概念的理解.最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.6.二次根式的乘除混合运算 (1)运算顺序:二次根式的乘除混合运算顺序与整式乘除混合运算顺序相同,按照从左到右的顺序计算,有括号的先算括号里面的.(2)公式、法则:整式乘除中的公式、法则在二次根式混合运算中仍然适用. (3)运算律:整式乘法的运算律在二次根式运算中仍然适用.乘法分配律是乘法对加法的分配律,而不是乘法对除法的分配律.在进行二次根式的运算时常见的错误是:①忽略计算公式的条件; ②不注意式子的隐含条件;③除法运算时,分母开方后没写在分母的位置上; ④误认为形如a 2+b 2的式子是能开得尽方的二次根式. 【例6】计算下列各题: (1)9145÷(3235)×12223; (2)2ab a 2b ·3a b ÷(-121a ).分析:二次根式的乘除混合运算顺序与有理数的乘除混合运算的顺序相同,按从左到右的顺序进行运算,不同的是在进行二次根式的乘除运算时,二次根式的系数要与系数相乘除,被开方数与被开方数相乘除.解:(1)9145÷(3235)×12223=(9÷32×12)145÷35×83 =(9×23×12)145×53×83=3881=322×292=3×292=232; (2)2ab a 2b ·3a b ÷(-121a )=[2ab ·3÷(-12)]a 2b ·a b ÷1a=-12aba 2b ·a b·a =-12ab a 4=-12ab ·a 2=-12a 3b .7.二次根式的化简(1)化二次根式为最简二次根式的方法:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后把分母化为有理式.②如果被开方数是整数或整式,先将它分解因数或因式,然后把它开得尽方的因数或因式开出来.(2)口诀“一分、二移、三化”“一分”即利用分解因数或分解因式的方法把被开方数(或式)的分子、分母都化成质因数(或质因式)的幂的积的形式.“二移”即把能开得尽方的因数(或因式)用它的算术平方根代替移到根号外,其中把根号内的分母中的因式移到根号外时,要注意写在分母的位置上.“三化”即化去被开方数的分母.(3)化去分母中的根号①化去分母中的根号,其依据是分式的基本性质,关键是分子、分母同乘以一个式子,使它与分母相乘得整式.②下面几种类型的两个含有二次根式的代数式相乘,它们的积不含有二次根式.a与a;a+b与a-b;a+b与a-b;a b+c d与a b-c d.③化去分母中的根号时,分母要先化简.(4)在进行二次根式的运算时,结果一般都要化为最简二次根式.【例7】(1)当ab<0时,化简ab2,得__________.(2)把代数式x-1x根号外的因式移到根号内,化简的结果为__________.(3)把-x3(x-1)2化成最简二次根式是__________.(4)化简35-2时,甲的解法是:35-2=3(5+2)(5-2)(5+2)=5+2,乙的解法是:35-2=(5+2)(5-2)5-2=5+2,以下判断正确的是().A.甲正确,乙不正确B.甲不正确,乙正确C.甲、乙的解法都正确D.甲、乙的解法都不正确解析:(1)在ab2中,因为ab2≥0,所以ab·b≥0.因为ab<0,b≠0,所以b<0,a>0.原式=b2·a=-b a.(2)因为-1x≥0,又由分式的定义x≠0,得x<0.所以原式=-(-x)-1x=-(-x)2(-1x)=--x.(3)化简时,需知道x,x-1的符号,而它们的符号可由题目的隐含条件推出.∵(x-1)2>0(这里不能等于0),∴-x3≥0,即x≤0,1-x>0.故原式=(-x)2·(-x)(1-x)2=-x1-x-x.(4)甲是将分子和分母同乘以5+2把分母化为整数,乙是利用3=(5+2)(5-2)进行约分,所以二人的解法都是正确的,故选C.答案:(1)-b a(2)--x(3)-x1-x-x(4)C8.二次根式的乘除法的综合应用利用二次根式的乘除法可解决一些综合题目,如:(1)比较大小比较两数的大小的方法有很多种,通常有作差法、作商法等.对于比较含有二次根式的两个数的大小,一种方法是把根号外的数移到根号内,通过比较被开方数的大小来比较原数的大小;二是将要比较的两个数分别平方,比较它们的平方数.(2)化简求值对于此类题目,不应盲目地把变量的值直接代入原式中,一般地说,应先把原式化简,再代入求值.在化简过程中要注意整个化简过程得以进行的条件,如开平方时注意被开方数为非负数,分式的分母不能为零等.再者,有些二次根式的化简,从形式上看是特别麻烦的,让人一看简直无从下手,但仔细分析又是有一定规律和模式的.(3)探索规律适时运用计算器,重视计算器在探索发现数学规律中的作用. 如:借助于计算器可以求得 42+32=__________, 442+332=__________, 4442+3332=__________, 4 4442+3 3332=__________, ……__________.解析:利用计算器我们可以分别求得42+32=25=5, 442+332= 3 025=55, 4442+3332=308 025=555, 4 4442+3 3332 =30 858 025=5 555,2011555个.答案:5 55 555 5 555 2011555个【例8-1】已知9-x x -6=9-xx -6,且x 为偶数,求(1+x )x 2-5x +4x 2-1的值.分析:式子a b =ab ,只有a ≥0,b >0时才能成立.因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x =8.解:由题意,得⎩⎨⎧ 9-x ≥0,x -6>0,即⎩⎨⎧x ≤9,x >6.∴6<x ≤9.∵x 为偶数,∴x =8. ∴原式=(1+x )(x -4)(x -1)(x +1)(x -1)=(1+x )x -4x +1=(1+x )x -4x +1=(1+x )(x -4). ∴当x =8时,原式的值为4×9=6. 【例8-2】观察下列各式: 223=2+23,338=3+38.验证:223=233=23-2+222-1=2(22-1)+222-1=2+222-1=2+23;338=338=33-3+332-1=3(32-1)+332-1=3+332-1=3+38.(1)按照上述两个等式及其验证过程的思路,猜想4415的变形结果并进行验证;(2)针对上述各式反映的规律,写出用n (n 为任意正整数且n ≥2)表示的等式,并给出证明.分析:本题是利用所学过的根式变形,去发现变形的规律,由于这种变形方法比较陌生,必须认真阅读所提供的素材,即学即用.解:(1)4415=4+415. 验证:4415=4315=43-4+442-1=4(42-1)+442-1=4+442-1=4+415.(2)猜想:nnn2-1=n+nn2-1(n≥2,n为正整数).证明:因为nnn2-1=n3n2-1=n3-n+nn2-1=n(n2-1)+nn2-1=n+nn2-1,所以nnn2-1=n+nn2-1.11 / 11。
二次根式运算法则二次根式运算法则是指在进行二次根式的加减、乘除运算时所遵循的一些规则和方法。
掌握了这些规则,可以帮助我们简化和求解二次根式的运算,提高计算的准确性和效率。
一、二次根式的加减法则1. 同类项相加减法则对于同类项的二次根式,可以直接对其系数进行相加或相减。
例如:√2 + √3 = √2 + √32√5 - 3√5 = -√52. 不同类项的相加减法则对于不同类项的二次根式,不能直接进行相加或相减。
需要通过化简的方式将其转化为同类项,然后再进行运算。
例如:√2 + 2√3 = √2 + 2√3(√2 + √3)(√2 - √3) = 2 - √6二、二次根式的乘除法则1. 二次根式的乘法法则二次根式的乘法运算可以通过将根号内的数相乘,并合并同类项的方式进行。
例如:√2 × √3 = √6(√2 + √3)(√2 - √3) = 2 - 3 = -12. 二次根式的除法法则二次根式的除法运算可以通过将根号内的数相除,并合并同类项的方式进行。
例如:√6 ÷ √2 = √3(√6 + √2) ÷ √2 = (√6 + √2) × (√2 ÷ √2) = √3 + 1三、二次根式的化简法则对于复杂的二次根式,可以通过化简的方法将其简化为更简单的形式。
常用的化简法则有以下几种:1. 合并同类项法则将同类项的二次根式合并为一个二次根式。
例如:√2 + √2 = 2√22√3 + 3√3 = 5√32. 提取公因数法则将二次根式中的公因数提取出来,使其成为一个单独的因子。
例如:2√2 + 3√2 = 5√24√5 + 6√5 = 10√53. 有理化分母法则将二次根式的分母有理化,即将分母中的根号消去。
例如:1/√2 = √2/21/√3 = √3/3四、二次根式的运算顺序在进行二次根式的复合运算时,需要注意运算的顺序。
一般按照先乘除后加减的原则进行。
一、知识聚焦:1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
2.二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
3.商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根4.二次根式的除法法则:两个数的算术平方根的商,等于这两个数的商的算术平方根。
5.最简二次根式:符合以下两个条件:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式。
6.分母有理化:把分母的根号去掉的过程称作“分母有理化”二、经典例题:例1.化简(4)0x),0≥≥y例2.计算(2)31525⋅ 32⨯例3.判断下列各式是否正确,不正确的请予以改正:==4 例4.化简:)0,0(≥>b a (3) )0,0(>≥y x )0,0(>≥y x例5.计算:÷ (4)例6.下列各式中哪些是最简二次根式,哪些不是?为什么?(1)b a 23 (2)23ab(3)22y x + (4))(b a b a >- (5)5 (6)xy 8例7. 把下列各式化为最简二次根式:(1)12 (2)b a 245 (3)xy x 2例8. 把下列各式分母有理化(1)4237a b例9. 比较3223和两个实数的大小答案: 例1. (1)12 (2)36 (3)90 (4)3xy (5)3例2. (1 (2)303 (3) (4)6例3. (1)不正确. ×3=6(2) 例4.(1)83 (2)a b 38 (3)y x 83 (4)yx135 例5.(1)2 (2)23 (3)2 (4)22例6.(3),(4),(5)是,其它不是 例7.(1)23, (2) b a 53, (3) xy x例8. (1)21144-(2) ba ba a ++2 例9. 3223> 三、基础演练:1. ②×2.化简:3.把下列各式化为最简二次根式:(1)3)(8y x + (2)2114 (3)mn 382334. 把下列各式分母有理化(1)403 (2)xyy 422(x >0,y >0)5.比较大小(1)76与67 (2)23与32答案:1.①=82 ②=1215 ③=y a 2.25;32;62; 32ab3.(1) )(2)(2y x y x ++ (2) 62 (3) mmnn 6 4.(1)2030 (2) x xy y5.解:(1) 76<67 (2) 23>32四、能力提升:1.,•那么此直角三角形斜边长是( ).A .cmB .3cmC .9cmD .27cm 2.下列各等式成立的是( ).A .B .C .×D .3 ).A .27B .27C D .74.二次根式:①29x -;②))((b a b a -+;③122+-a a ;④x1;⑤75.0中最简二次根式是( )A 、①②B 、③④⑤C 、②③D 、只有④56.分母有理化:(1)=_________; (2)=________ (3) =______.答案:1. B 2. D 3. A 4. A 5.6136.(1)=62 ;(2) = 63 (3) =22五、个性天地:(LJJ00002)(1=_________;(2)=___________;=_________;(2=__________.(SHY00002)已知x=3,y=4,z=5_______.答案:(LJJ00002)(1)4;(2)15;(ZZY00002)57;(2)24x (SHY00002)315。
《二次根式的乘除法》教案设计《二次根式的乘除法》教案设计范文(通用8篇)在教学工作者实际的教学活动中,总不可避免地需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。
那么写教案需要注意哪些问题呢?下面是店铺为大家整理的《二次根式的乘除法》教案设计,欢迎大家借鉴与参考,希望对大家有所帮助。
《二次根式的乘除法》教案设计篇1【教学目标】1.运用法则进行二次根式的乘除运算;2.会用公式化简二次根式。
【教学重点】运用进行化简或计算【教学难点】经历二次根式的乘除法则的探究过程【教学过程】一、情境创设:1.复习旧知:什么是二次根式?已学过二次根式的哪些性质?2.计算:二、探索活动:1.学生计算;2.观察上式及其运算结果,看看其中有什么规律?3.概括:得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。
将上面的公式逆向运用可得:积的算术平方根,等于积中各因式的算术平方根的积。
三、例题讲解:1.计算:2.化简:小结:如何化简二次根式?1.(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;2.P62结果中,被开方数应不含能开得尽方的因数或因式。
四、课堂练习:(一).P62练习1、2其中2中(5)注意:不是积的形式,要因数分解为36×16=242(二).P673计算(2)(4)补充练习:1.(x>0,y>0)2.拓展与提高:化简:1).(a>0,b>0)2).(y2.若,求m的取值范围。
☆3.已知:,求的值。
五、本课小结与作业:小结:二次根式的乘法法则作业:1).课课练P9-102).补充习题《二次根式的乘除法》教案设计篇2教材分析:本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。
本小节重点是二次根式的加减运算,教材从一个实际问题引出二次根式的加减运算,使学生感到研究二次根式的加减运算是解决实际问题的需要。
二次根式的乘除是二次根式的基本运算之一,其规则如下:
1. 二次根式的乘法:将两个二次根式的被开方数相乘,得到的结果再开方即可。
例如,√2 ×√3 = √(2 × 3) = √6。
2. 二次根式的除法:将第一个二次根式的被开方数乘以第二个二次根式的倒数的被开方数,得到的结果再开方即可。
例如,√8 ÷√2 = (√8 ×√2) / √2 = √(8 × 2) / √2 = √4 = 2。
需要注意的是,在进行二次根式的乘除运算时,要保证两个二次根式的被开方数都是非负实数,否则会出现无意义的情况。
此外,在进行二次根式的除法运算时,如果第二个二次根式的值为0,则无法进行计算。
二次根式的乘除法
二. 重点、难点:
1. 重点:
(1)掌握二次根式乘、除法法则,并会运用法则进行计算;
(2)能够利用二次根式乘、除法法则对根式进行化简;
(3)能够将二次根式化简成“最简二次根式”。
2. 难点:
(1)理解最简二次根式的概念;
(2)能够运用积的算术平方根的性质、二次根式的除法法则将二次根式化简成“最简二次根式”。
三. 知识梳理:
1. 二次根式的乘法
两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。
说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,、都是非负数;
(2)(≥0,≥0)可以推广为(≥0,≥0);
(≥0,≥0,≥0,≥0)。
(3)等式(≥0,≥0)也可以倒过来使用,即(≥0,≥0)。
也称“积的算术平方根”。
它与二次根式的乘法结合,可以对一些二次根式进行化简。
2. 二次根式的除法
两个二次根式相除,把被开方数相除,根指数不变,即(≥0,>0)。
说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,≥0,在分母中,因此>0;
(2)(≥0,>0)可以推广为(≥0,>0,≠0);
(3)等式(≥0,>0)也可以倒过来使用,即(≥0,>0)。
也称“商的算术平方根”。
它与二根式的除法结合,可以对一些二次根式进行化简。
3. 最简二次根式
一个二次根式如果满足下列两个条件:
(1)被开方数中不含能开方开得尽的因数或因式;
(2)被开方数中不含分母。
这样的二次根式叫做最简二次根式。
说明:
(1)这两个条件必须同时满足,才是最简二次根式;
(2)被开方数若是多项式,需利用因式分解法把它们化成乘积式,再进行化简;
(3)二次根式化简到最后,二次根式不能出现在分母中,即分母中要不含二次根式。
【典型例题】
例1. 求下列式子中有意义的x的取值范围。
(1)
(2)
分析:此题涉及二次根式的乘法、除法公式的正确应用,特别注意公式应用的范围。
(a≥0,b≥0);==(a≥0,b>0)。
解:(1)+1≥0,2-≥0。
解得≥-1,≤2,即-1≤≤2。
(2)≥0,3->0。
解得≥0,< 3,即0≤<3。
例2. 计算:
(1);(2);(3);(4)。
分析:直接运用二次根式的乘法进行计算,把它们的被开方数相乘,根指数不变,如果积能开方一定要开方。
解:(1)==;
(2)===6;
(3)===;
(4)===。
例3. 化简:
(1);(2);(3);(4)。
分析:直接运用公式(≥0,≥0)化简即可,尽可能将被开方数的因式写成平方的形式。
解:(1)===15;
(2)====6;
(3)======20;
(4)===
=。
例4. 计算:
(1);(2);(3);(4)。
分析:利用(≥0,≥0)对二次根式进行乘法计算,要注意当结果仍然是二次根式时,应尽量化简。
(4)中的隐含条件是≥0,≥0。
解:(1)====;
(2)===;
(3)====-39;
(4)===。
例5. 化简:
(1);(2);(3);(4)。
分析:利用(≥0,≥0)可把被开方数比较复杂的二次根式化简。
方法是先将被开方数进行质因数分解,化为积的形式,如果根号内有开得尽方的因式就移到根号外面来,用它的算术平方根来代替,从而达到化简的目的。
解:(1)====;
(2)===;
(3)==
===504;
(4)=
例6. 化简:
(1)(>0);(2)(>0);
(3)(>0);(4)(>0,>)。
分析:对于被开方数是多项式的二次根式,应把多项式分解因式然后按照被开方数是单项式的方法进行分解。
为使运算简便,应尽量地应用运算律和乘法公式来进行计算,运算得到的结果必须进行化简。
解:(1)===;
(2)=
==;
(3)===
(4)===。
例7. 计算:
(1);(2);(3);(4)。
分析:直接运用(≥0,>0)进行计算,运算后结果要化简。
解:(1)===2;
(2)===3;
(3)===2;
(4)==。
例8. 化简:
(1);(2);(3);(4)。
分析:运用公式(≥0,>0)化简,即商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
要注意的是,当被开方数是带分数时,要先把它化成假分数。
解:(1)===;
(2)==;
(3)==;
(4)===。
例9. 计算:
(1);(2);(3);(4)。
分析:二次根式的除法可以转化为乘法运算。
对于多个二次根式相除的情况,应按照题中指定的顺序进行计算,有括号的先算括号里面的,没有括号的,从左往右依次计算,结果注意化简,数字应放在字母前面。
解:(1)====;
(2)====
(3)===;
(4)====。
例10. 把下列根号外的因式移到根号内
(1);(2)。
分析:把根号外的因式内移到根号内,是指将根号外的非负因数或非负因式平方后移到根号内,并与根号内的因数或因式相乘。
解:(1)=
(2)
点拨:因式内移,最容易发生符号错误。
因此内移时,一定要认准非负因数或因式,保证内移时,不改变根式的大小。
如(1)题中被开放数,根号外面的-x也是非负的,内移后根号外应没有负号;
(2)题因为被开方数>0,所以>0,所以<0要把负号留在根号外面。
例11. 去掉下列各式分母中的根号:
分析:(1)分母=,分子、分母同乘即可去掉分母中的根号;(2)分母,分子、分母同乘即可去掉分母中的根号;(3)分子、分母同乘即可去掉分母中的根号;(4)将分子分解后,直接与分母约分,从而化去分母.
解:(1)
(2)
(3)
=
(4)
点拨:去掉分母中的根号,通常是分母有理化。
分母有理化时,应结合题目的具体特点,选择适当的方法。
当分子或分母可以分解因式,并且分解后的因式能够约分的,最好不要直接分母有理化,待约分后再相机行事。
【模拟试题】(答题时间:30分钟)
一. 填空题:
1. 等式成立的条件是.
2. 计算:(1);(2).
(3);(4).
3. 化简:(1)=;(2).
4. 计算:(1)=;(2).
二. 选择题:
5. 把化简的结果应是()
A. B. C. D.
6. 下列计算中,正确的是()
A.
B.
C.
D.
7. 如果,则实数的取值范围是()
A. B. C. D.
8. 下列二次根式中,最简二次根式是()
A. B. C. D.
三. 解答题:
9. 计算:(1)(2)(3)
(4)(5)(6)
10. 化简:
(1)(2)
(3)(4)
11. 已知:求的值。
【试题答案】
一. 填空题。
1. ;
2. (1)20;(2);(3)2;(4)3;
3. (1);(2);
4.(1);(2);
二. 选择题。
5. B;
6. D;
7. C;
8. B
三. 解答题。
9. (1);(2);(3)10;(4)1;(5);(6)-9.
10. (1);(2);(3);(4)
11. 化简得,代入得2.197。