(完整版)二次根式乘除法(含答案)
- 格式:doc
- 大小:310.01 KB
- 文档页数:4
2.(2022秋·吉林长春·九年级长春市第四十五中学校考期末)计算()()154154-+,结果为( )A .1-B .1C .11-D .113.(2022春·八年级课时练习)计算:(1)818⨯(2)0.10.4⨯(3)322411⨯(4)243题型二:二次根式的除法4.(2022秋·重庆大渡口·九年级校考期末)估计()4233+÷的值应在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间5.(2023春·八年级课时练习)下列各式计算正确的是( )A .2739÷=B .48163÷=C .2044÷=D .413239÷=6.(2023春·全国·八年级专题练习)某直角三角形的面积为55,其中一条直角边长为10,则其中另一直角边长为( )A .25B .52C .55D .210题型三:二次根式的乘除混算7.(2022秋·河南驻马店·八年级校联考期中)计算:(1)()622-÷(2)()16215362-⨯-(3)2421656++(4)()()()2233232-++⨯-8.(2023春·八年级)计算:(1)21437⨯(2)25136÷(3)954312612÷⨯(4)333123b ab a b a ⎛⎫⎛⎫⋅-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭.9.(2023春·八年级)计算:(1)()12712453-+⨯;(2)()()6565-⨯+;(3)148312242÷-⨯+;(4)()()20222723321π---⨯-+-.题型四:最简二次根式的判断10.(2023秋·辽宁葫芦岛·八年级校考期末)下列二次根式中,属于最简二次根式的是( )A .9aB .23a C .12a +D .22a b -11.(2022秋·上海闵行·八年级校考阶段练习)下列根式中,是最简二次根式的是( )A .3ab B .3a b +C .222a b ab+-D .8a12.(2022秋·黑龙江哈尔滨·八年级哈尔滨市虹桥初级中学校校考阶段练习)在二次根式45、32x 、11、52、4x中,最简二次根式的个数是( )个A .2B .3C .4D .5题型五:化为最简二次根式问题13.(2023春·全国·八年级专题练习)将632化为最简二次根式,其结果是( )A .632B .1262C .9142D .314214.(2022春·山东泰安·八年级统考期末)下列二次根式:①50;②12;③32;④40.将它们都化为最简二次根式后,同类二次根式是( )A .①和②B .②和③C .③和④D .①和④15.(2022春·贵州黔南·八年级校考期末)二次根式2221,12,2,5,3x x x y ++中,最简二次根式有( )A .1个B .2个C .3个D .4个题型六:已知最简二次根式求参数三、解答题+ 40.(2022·全国·八年级专题练习)若实数m、n满足2m n 41.(2023春·八年级课时练习)计算:V的面积;(1)如图1,利用秦九韶公式求ABCV的两条角平分线AD,BE交于点O,求点O (2)如图2,ABC(2)解:0.10.4⨯0.10.4=⨯0.04=0.2=;(3)解:322411⨯111241=⨯12=22=;(4)解:243243=8=22=.【点睛】本题考查二次根式的乘法和除法.掌握二次根式的乘法和除法的运算法则是解题关键.4.C【分析】先根据二次根式的除法进行计算()4233+÷,然后估算14的大小即可求解.【详解】解:∵()4233+÷141=+,∵3144<<∴41415<+<故选C【点睛】本题考查了二次根式的除法,无理数的估算,掌握以上知识是解题的关键.5.B【分析】根据二次根式的除法法则进行计算即可.【详解】解:A .27393÷==,选项不正确,不符合题意;B .48163÷=,选项正确,符合题意;C .2045¸=,选项不正确,不符合题意;D .41491223393¸=´==,选项不正确,不符合题意.故选:B .【点睛】本题考查了二次根式的乘除法,二次根式的性质与化简,准确熟练地进行计算是解题的关键.6.B【分析】利用三角形的面积公式列式计算即可.【详解】解:由题意得,其中另一直角边长为:105102551052102⨯÷===,故选:B .【点睛】此题考查二次根式的除法,掌握三角形的面积公式是解决问题的关键.7.(1)31-(2)65-(3)13(4)426-【分析】(1)根据二次根式的除法运算法则,分母有理化计算即可;(2)利用乘法分配律计算()62153-⨯,利用分数的性质和二次根式的性质化简162;(3)根据二次根式除法和运算法则和分母有理化化简242166+,再计算与5的和即可;(4)先利用完全平方公式、平方差公式分别进行计算,再求和即可.【详解】(1)()622-÷6222=÷-÷31=-(2)()16215362-⨯-263215362=⨯-⨯-⨯1842325=--326532=--65=-(3)2421656++(2462166)5=÷+÷+4365=++265=++13=(4)()()()2233232-++⨯-2222(2)223(3)(3)2=-⨯⨯++-226334=-++-426=-【点睛】本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.8.(1)422(2)2(3)36(4)292a b ab -【分析】(1)根据二次根式的乘法运算进行计算即可求解;(2)根据二次根式的除法运算进行计算即可求解;(3)根据二次根式的乘除混合运算进行计算即可求解;(4)根据二次根式的乘除混合运算进行计算即可求解.【详解】(1)2143⨯7=2672⨯42=2;(2)25136÷5536=÷5635=⨯2=(3)954312612÷⨯954312126=÷⨯112=36=;(4)333123b ab a b a ⎛⎫⎛⎫⋅-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭3392a ab a b b=-⋅⋅=292a b ab -.【点睛】本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键.9.(1)115+(2)1(3)46+(4)1【分析】(1)先用乘法分配律,再利用二次根式的乘法法则,最后合并同类二次根式即可;(2)利用平方差公式计算即可;(3)先算二次根式的乘除法,再算加减法即可;(4)先算乘方和绝对值,再化简各个二次根式最后算加减法即可.【详解】(1)解:()12712453-+⨯111271245333=⨯-⨯+⨯9415=-+3215=-+115=+;(2)解:()()6565-⨯+65=-1=;(3)解:148312242÷-⨯+16626=-+4626=-+46=+;(4)解:()()020222723321π---⨯-+-3323311=--⨯+332331=--+1=.【点睛】本题主要考查二次根式的混合运算以及二次根式的性质,掌握二次根式混合运算法则是关键.10.D【分析】直接根据最简二次根式的定义进行判断即可.【详解】A 、93a a =,故不符合题意;B 、233a a =,故不符合题意;C 、12222a a ++=,故不符合题意;D 、22ab -是最简二次根式;故选:D .【点睛】本题考查了最简二次根式的定义,同时满足下列条件的二次根式,叫做最简二次根式(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.熟记最简二次根式的定义是解题的关键.11.B【分析】根据最简二次根式的定义逐个判断即可.【详解】解:A 、3ab b ab =,被开方数中含有能开得尽方的因式,不是最简二次根式,故本选项不符合题意;B 、3a b +是最简二次根式,故本选项符合题意;C 、()2222a b ab a b a b +-=-=-,被开方数中含有能开得尽方的因数,不是最简二次根式,故本选项不符合题意;D 、822a a =,被开方数中含能开得尽方的因式,不是最简二次根式,故本选项不符合题意;故选:B .【点睛】本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解此题的关键.12.A【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,解答即可.【详解】解: 4535=,32x 2x x =,4x 2x =,∴最简二次根式有:11、52共两个.故选:A .【点睛】本题考查二次根,熟练掌握最简二次根的性质是解题关键.13.D【分析】根据二次根式的化简方法即可得.【详解】解:原式6327922242312⨯⨯⨯===⨯,故选:D .【点睛】本题考查了二次根式的化简,熟练掌握化简方法是解题关键.14.A【分析】先将各式化为最简二次根式,再结合同类二次根式的定义解答.【详解】解:①50=52;②12=22;③36=22;④40=21052 与22是同类二次根式,故选:A .【点睛】本题考查最简二次根式、同类二次根式等知识,最简二次根式满足两个条件:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.15.B【分析】根据最简二次根式的定义(被开方数不含有能开得尽方的因式或因数,被开方数不含有分母),判断即可.【详解】解:∵1233=,1223=、255||x x =,∴在2221,12,2,5,3x x x y ++中,最简二次根式有2x +,22x y +,共2个,故选:B .【点睛】本题考查了对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键.16.D【分析】根据最简二次根式的被开方数相同知开方次数相同,被开方数相同,即可列出二元一次方程组,再解出即可.【详解】根据题意可知3102a b a b +=⎧⎨-=⎩,解得:31a b =⎧⎨=⎩,∴314a b +=+=.故选D .【点睛】此题考查最简二次根式的定义,解二元一次方程组,正确理解题意列出方程组是解题的关键.17.B【分析】把a 的值依次代入即可判断求解.【详解】当a=6时,42a -=22,不能与2可以合并,当a=5时,42a -=1832=,能与2可以合并,当a=4时,42a -=14,不能与2可以合并,当a=2时,42a -=6,不能与2可以合并,故选B .【点睛】此题主要考查二次根式的性质,解题的关键是熟知二次根式的化简方法.18.D【分析】先将8化简为最简二次根式,再根据最简二次根式的定义即可得.【详解】解:822=,22 与最简二次根式1m +能合并,12m ∴+=,解得1m =,故选:D .【点睛】本题考查了最简二次根式、二次根式的化简,熟练掌握最简二次根式的概念是解题关键.19.D【分析】根据二次根式性质化简关判定A 、B ;根据二次根式乘法法则计算并判定C ;根据二次根式除法法则计算并判定D .【详解】解:A 、()222-=,原计算错误,故此选项不符合题意;B 、1374=93,原计算错误,故此选项不符合题意;C 、322366⨯=,原计算错误,故此选项不符合题意;D 、4312=2÷,原计算正确,故此选项符合题意;故选:D .【点睛】本题考查二次根式化简及乘除运算,熟练掌握二次根的性质与乘除运算法则是解题的关键.20.A【分析】已知226a b ab +=,变形可得28a b ab +=(),24a b ab -=(),可以得出a b +()和a b -()的值,即可得出答案.【详解】解:∵226a b ab +=,∴28a b ab +=(),24a b ab -=(),∵0a b >>,∴8a b ab +=,4a b ab -=,∴824a b ab a b ab+==-,故选:A .【点睛】本题考查了分式的化简求值问题,完全平方公式的变形求值,二次根式的除法,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.21.C【分析】根据算术平方根、立方根、二次根式的运算可进行排除选项.【详解】解:①497648=,原计算错误,②()3322-=-,原计算正确;③1823÷=,原计算错误;④52535+-=,原计算正确;⑤()()5352510156+-=-+-,原计算错误;∴正确的有2个;故选C .【点睛】本题主要考查算术平方根、立方根、二次根式的运算,熟练掌握算术平方根、立方根、二次根式的运算是解题的关键.22.A【分析】利用二次根式有意义的条件列出不等式即可求解.【详解】解:由题意得:()60060x x x x ⎧-≥⎪≥⎨⎪-≥⎩,解得:6x ≥,故选A .【点睛】本题主要考查二次根式有意义的条件,能够熟练运用二次根式被开方数的非负性列不等式是解题关键.23.A【分析】根据立方根的性质化简、平方根的完全平方公式和性质,即可解答.【详解】解:A 、335050>-<,,故3355≠-,故选项错误.B 、3273=644--,故选项正确.C 、(32)(32)1+-=,故选项正确.D 、(4)(3)43-⨯-=⨯,故选项正确.故选:A .【点睛】本题考查了平方根和立方根的性质,注意:负数开立方还是负数.24.A【分析】根据二次根式的乘法法则ab a b =⋅成立的条件为0a ≥且0b ≥,即可确定答案.【详解】解:根据题意,可得1010x x +≥⎧⎨-≥⎩,解不等式组,得 1x ≥,所以,等式2111x x x -=+⋅-成立的条件是1x ≥.故选:A .【点睛】本题主要考查了二次根式的乘法法则和解一元一次不等式组,理解二次根式有意义的条件是解题关键.25.(1)46(2)32-(3)3a【分析】(1)根据二次根式的除法计算法则求解即可;(2)根据二次根式的除法计算法则求解即可;(3)根据二次根式的除法计算法则求解即可.【详解】(1)解:原式2723=÷224=46=;(2)解:原式55354=-÷55435=-⨯18=-32=-;(3)解:原式33b ab a=÷ 33a ab b=⨯29a =3=a .【点睛】本题主要考查了二次根式的除法,熟知相关计算法则是解题的关键.26.623-【分析】直接将31a =+,31b =-代入2ab b +进行计算即可.【详解】解: 31a =+,31b =-,2ab b ∴+()()()2313131=+-+-()313231=-+-+2423=+-623=-,故答案为:623-.【点睛】本题考查了求代数的值、二次根式的乘法,掌握平方差公式和完全平方公式是解题的关键.27.B【分析】利用二次根式的混合运算将原式化简,再进行无理数的估算即可.【详解】解:2243⨯-2263=⨯-433=-,33=∵252736<<,∴5276<<,即5336<<,∴2243⨯-的值应在5和6之间,故选:B【点睛】本题考查了二次根式的混合运算以及估算无理数的大小,能估算出27的范围是解此题的关键.28.A【分析】先确定出m ,n 的值,再通过计算求解此题.【详解】解:∵2的整数部分是1,∴2的小数部分是21-,即21m -=,∵8的整数部分是2,即2n =,∴()2222211==-+(),故选:A .【点睛】此题考查了实数的估算与计算能力以及乘方,关键是能准确理解并运用相关知识.29.D【分析】通过观察,得出第n 项为:41n -,再根据31199=,得出方程4199n -=,解出即可得出答案.【详解】解:∵数列371115,,,,…,∴通过观察,可得:第n 项为:41n -,∵31191191199=⨯=⨯=,∴4199n -=,解得:25n =,∴311是它的第25项.故选:D【点睛】本题考查了数字规律问题、二次根式的乘法,解本题的关键在正确找出已知数列的规律.30.D【分析】根据二次根式的乘法计算法则求解即可.【详解】解:∵711a b ==,,∴111170.1171001010ab a ⨯=⨯=⨯=,故选D .【点睛】本题主要考查了二次根式的乘法,熟知二次根式的乘法计算法则是解题的关键.31.D【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,进行判断即可.【详解】解:A 、原式22=,不符合题意.B 、原式14x x =,不符合题意.C 、原式32y =,不符合题意.D 、22x xy y ++是最简二次根式,符合题意.故选:D .【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的概念,本题属于基础题型.32.C【分析】根据最简二次根式的定义逐项分析判断即可求解.【详解】A. 1223x x =不是最简二次根式,故该选项不正确,不符合题意;B.()2222x xy y x y x y ++=+=+,不是最简二次根式,故该选项不正确,不符合题意;C.22x y +,是最简二次根式,故该选项正确,符合题意; D. 1=x x x,含有分母,故不是最简二次根式.故选:C .【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.33.5x >##5x<【分析】利用二次根式商的性质,商的算术平方根等于算术平方根的商,其中要满足的条件是分子的被开方数必须大于等于0,分母的被开方数大于0,列出关于x 的一元一次不等式组求解即可.【详解】要使4455x x x x --=--有意义,则4050x x -≥⎧⎨->⎩,解得:5x >,故答案为:5x >.【点睛】本题考查了二次根式商的性质,掌握二次根式商的性质是解题的关键.34.2ab b【分析】根据二次根式的性质进行化简即可.【详解】解:∵0a >,0b >,∴2342a b ab b =.故答案为:2ab b .【点睛】本题考查的是最简二次根式的概念与化简,掌握二次根式的性质是解题关键.35. 2 625- 4 5【分析】(1)根据平方差公式和二次根式的运算法则求解即可;(2)根据完全平方公式和二次根式的运算法则求解即可;(3)根据二次根式的性质和除法运算法则求解即可;(4)根据二次根式的性质和乘法运算法则求解即可.【详解】解:(1)()()3131312-+=-=故答案为:2;(2)()2515251625-=-+=-,故答案为:625-;(3)483164÷==,故答案为:4;(4)1502552⨯==故答案为:5.【点睛】此题考查了二次根式的性质,二次根式的乘法和除法运算法则,平方差公式和完全平方公式等知识,解题的关键是熟练掌握以上运算法则.36.2y-【分析】根据二次根式的乘法运算法则进行计算即可.【详解】解:22212124233y y x x y y x x⋅=⋅==,∵0y <,∴212223y x y y x⋅==-,故答案为:2y -.【点睛】本题考查了二次根式的乘法以及二次根式的性质,熟练掌握相关运算法则是解本题的关键.37.63【分析】设ABC V 底边上的高为h ,根据三角形的面积公式12S ah =列方程求解即可.【详解】解:设ABC V 底边上的高为h ,根据题意,得123182h ⨯=,解得:63h =,故答案为:63.【点睛】本题考查解一元一次方程、二次根式的除法运算、三角形的面积公式,正确计算是解答的关键.38.15【分析】根据二次根式的运算法则即可进行解答.【详解】解:2y y x x xy x x=⋅=,∵35x y ==,,∴原式3515=⨯=.【点睛】本题主要考查了二次根式的运算法则,解题的关键是熟练掌握二次根式的定义,性质和运算法则.39.3【分析】根据题意和图形中的数据,可以发现数字的变化规律,从而可以得到()82,与()100100,表示的两个数,进而()82,与()100100,表示的两个数的积,本题得以解决.【详解】解:由题意可得:每三个数一循环,1,2,3,()82,在数列中是第()1772230+⨯÷+=个,30310÷=,()82,表示的数正好是第10轮的最后一个,即()82,表示的数是3,由题意可得:每三个数一循环,1,2,3,()100100,在数列中是第()1999921005050+⨯÷+=个,5050316831÷=⋯,()100100,表示的数正好是第1684轮的第一个,即()100100,表示的数是1,故(()82,与()100100,表示的两个数的积是:313⨯=.故答案为3.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,求出相应的两个数的乘积.40.1113±【分析】先根据2710m n m n +-+--=求出8353m n ⎧=⎪⎪⎨⎪=⎪⎩,然后求出4m n +的值,即可得出答案.【详解】解:∵2710m n m n +-+--=,∴27010m n m n +-=⎧⎨--=⎩,解得:8353m n ⎧=⎪⎪⎨⎪=⎪⎩,∴853744333m n +=⨯+=,373的平方根为3711133±=±,即4m n +的平方根是1113±.【点睛】本题主要考查了算术平方根的非负性和绝对值的非负性,求代数式的值,求平方根,解题的关键是根据算术平方根的非负性和绝对值的非负性求出m 、n 的值.41.(1)46+(2)2【分析】(1)直接利用二次根式的乘除运算法则、二次根式的性质化简,进而得出答案;(2)将原式用平方差公式化简,再求值即可【详解】(1)解:148318243÷-⨯+148318263=÷-⨯+16626=-+46=+(2)03(51)(51)(2)27+-+--()25113=-+-53=-2=【点睛】本题主要考查了二次根式的混合运算,解题的关键是熟练掌握二次根式的性质和混合运算法则.42.(1)22(2)63(3)62(4)269(5)3(6)0.092(7)32(8)255【详解】(1)()211|11|-+-1111=+,22=;(2)108363=⨯,63=;(3)2382+648=+,72=,362=⨯,62=;(4)82783273⨯=⨯,4681⨯=,269=;(5)333333⨯=⨯,3=;(6)0.060.27⨯0.010.812=⨯⨯,0.10.92=⨯,0.092=;(7)114-34=,32=;(8)41154点O 为ABC V 的角平分线交点,∴点O 到AB ,AC ,BC 的距离相等,长度为设,OF h =,则ABC ACO S S =+V V 111。
二次根式计算及解析一.解答题(共40小题)1.计算:÷×2÷2. 2.计算:()﹣||3.计算:×÷. 4.?(÷2).5.. 6..7.计算:. 8.÷×3÷6.9.计算:÷×. 10.计算:×(﹣)×.11.计算:= .12.12.化简:x2?()(x>0,y≥0).13.计算:×(﹣)2×÷.14.计算:×()﹣1÷.15.计算:÷(x>0,y>0).16.计算:×()÷.18.(1)计算下列各式:①;②;(2)通过上面的计算,你一定有所体会吧?请计算:.19.计算:. 20.计算:?.21.化简:. 22..23.(a>0,b>0)24.已知x=,y=,求x2y+xy2的值.25.已知x1=,x2=,求下列代数式的值:(1)x12+x1﹣1;(2)x1+x2+x1x2+1.26.已知a=,b=,求a2b+ab2的值.27.求a=2+,b=3时,代数式a2+b2﹣4a+4的值.28.(1)计算﹣()2+()0﹣+|| (2)已知a=,求﹣的值.29.计算题(1)(2).30.计算:×(+)﹣. 31.计算:()﹣2﹣|2﹣3|+.32.计算:(2﹣)0+|2﹣|+(﹣1)2017﹣×.计算:33.34.先化简,再求值,5x2﹣(3y2+5x2)+(4y2+7xy),其中x=﹣1,y=1﹣.35.计算:.36.计算:37.计算:.计算:(﹣2)2×﹣4(4﹣)+38.39.计算:+(2﹣)0﹣2﹣1+||40.计算:(﹣)﹣1×+(﹣2)2÷(﹣1)﹣3.计算大礼包-学而思期中考试特别订制版参考答案与试题解析一.解答题(共40小题)1.计算:÷×2÷2.【分析】先把除法变成乘法,再根据二次根式的乘法法则进行计算即可.【解答】解:原式=××2×=1.【点评】本题考查了二次根式的乘除法法则,能灵活运用法则进行化简是解此题的关键.2.计算:()﹣||【分析】直接利用二次根式乘法运算法则化简进而利用绝对值的性质化简,再合并求出答案.【解答】解:原式=3﹣﹣(2﹣)=3﹣﹣2+,=1.【点评】此题主要考查了二次根式的乘法以及绝对值的性质,正确掌握运算法则是解题关键.3.计算:×÷.【分析】先进行二次根式的乘除法运算,再进行二次根式的化简即可.【解答】解:原式=÷=.【点评】本题考查了二次根式的乘除法,解答本题的关键在于熟练掌握该知识点的运算法则和二次根式的化简.4.?(÷2).【分析】根据二次根式的乘除法,可得答案.【解答】解:原式=?=.【点评】本题考查了二次根式的乘除法,熟记法则并根据法则计算是解题关键.5..【分析】利用二次根式的乘除法则计算即可得到结果.【解答】解:原式===.【点评】此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.6..【分析】先把最后一个二次根式根号外的因式移到根号内,转化成乘法,进而把根号外的式子,根号内的式子,分别进行运算即可.【解答】解:原式=×4÷=×4÷=×4×=×4××=1.【点评】考查二次根式的乘除混合运算;注意应先把乘除混合运算统一成乘法运算.7.计算:.【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3××=10.【点评】此题主要考查了二次根式的乘除,正确化简二次根式是解题关键.8.÷×3÷6.【分析】先把除法变成乘法,再根据二次根式的乘法法则进行计算即可.【解答】解:原式=××3×=×3=.【点评】本题考查了二次根式的乘除法法则的应用,能灵活运用法则进行计算是解此题的关键.9.计算:÷×.【分析】直接利用二次根式的乘除运算法则化简求出即可.【解答】解:÷×==.【点评】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.10.计算:×(﹣)×.【分析】根据二次根式的乘法法则进行运算即可.【解答】解:原式=﹣=﹣4.【点评】本题考查了二次根式的乘法运算,属于基础题,注意掌握?=.11.计算:= .【分析】根据二次根式的乘法法则=,求解即可.【解答】解:原式==.故答案为:.【点评】本题考查了二次根式的乘除法,解答本题的关键是掌握二次根式的乘法法则=.12.化简:x2?()(x>0,y≥0).【分析】根据二次根式的乘法及二次根式的化简,进行运算即可.【解答】解:原式=x=2xy2.【点评】本题考查了二次根式的乘法运算,属于基础题,解答本题的关键是掌握二次根式的乘法法则.13.计算:×(﹣)2×÷.【分析】先开方及乘方,再从左向右运算即可.【解答】解:×(﹣)2×÷=(﹣1)×3×÷,=(9﹣3),=9﹣3.【点评】本题主要考查了二次根式的乘除法,解题的关键是熟记二次根式的乘除法的法则.14.计算:×()﹣1÷.【分析】先算负指数幂,再从左向右的顺序运算即可.【解答】解:×()﹣1÷=×÷,=3÷,=3.【点评】本题主要考查了二次根式的乘除法,解题的关键是熟记二次根式的乘除法的法则.15.计算:÷(x>0,y>0).【分析】根据二次根式的除法:=,可得答案.【解答】解:原式==.【点评】本题考查了二次根式的乘除法,利用了二次根式的除法,注意要化简二次根式.16.计算:×()÷.【分析】根据二次根式乘除法及分母有理化的知识解答即可.【解答】解:原式=b2×(﹣a)÷3=2b×(﹣a)×=﹣a2b.【点评】此题考查了二次根式的乘除法,熟悉二次根式乘除法的法则是解题的关键.17.【分析】运用平方差公式将二次根式展开即可.【解答】解:原式=(+)(﹣)=﹣=3﹣5=﹣2.【点评】此题比较简单,只要熟知平方差公式便可直接解答.18.(1)计算下列各式:①;②;(2)通过上面的计算,你一定有所体会吧?请计算:.【分析】(1)先将各二次根式化为最简二次根式,然后再进行计算;(2)可逆用二次根式的乘法法则:?=,再将所求的二次根式进行化简即可.【解答】解:(1)①原式=2×3=6,(2分)②原式=×4=;(2分)(2)原式===.(2分)【点评】此题主要考查了二次根式的乘法运算,有时先将二次根式化简比较简单(如(1)题),有时运用乘法法则进行计算比较简便(如(2)题),要针对不同题型灵活对待.19.计算:.【分析】先将二次根式化为最简,然后从左至右依次运算即可.【解答】解:原式=4×÷=3÷=.【点评】本题考查了二次根式的乘除法,解答本题的关键是掌握二次根式的乘除运算法则.20.计算:?.【分析】从左至右依次进行运算即可得出答案.【解答】解:原式=÷==.【点评】本题考查了二次根式的乘除运算,属于基础题,掌握二次根式的乘除法则是解答本题的关键.21.化简:.【分析】先进行二次根式的乘法运算,然后将二次根式化为最简,最后合并即可.【解答】解:原式=﹣5=6﹣5=1.【点评】本题考查了二次根式的乘法运算,属于基础题,掌握二次根式的乘法法则及二次根式的化简是关键.22..【分析】根据二次根式的乘除法则,从左至右依次进行运算即可.【解答】解:原式=6÷15=×=×5=2.【点评】本题考查了二次根式的乘除法则,属于基础题,解答本题的关键是掌握二次根式的乘除法则.23.(a>0,b>0)【分析】先将二次根式化为最简二次根式,然后再进行乘除法的运算.【解答】解:原式=2b?(﹣a)÷3,=﹣3a2b2÷3,=﹣a2b.【点评】本题考查二次根式的乘除法运算,难度不大,注意先将二次根式化为最简再计算.24.已知x=,y=,求x2y+xy2的值.【分析】首先将原式提取公因式xy,进而分解因式求出答案.【解答】解:∵x═2﹣,y=,∴x2y+xy2=xy(x+y)=[(2﹣)+(2+)]×1=4.【点评】此题主要考查了二次根式的化简求值,正确掌握乘法公式是解题关键.25.已知x1=,x2=,求下列代数式的值:(1)x12+x1﹣1;(2)x1+x2+x1x2+1.【分析】(1)把x1的值代入,先利用完全平方公式求解,然后进行加减计算即可;(2)把x1和x2的值代入求解即可.【解答】解:(1))x12+x1﹣1=()2+﹣1=+﹣1=+﹣1=0;(2)原式=++×+1=﹣1++1=﹣1.【点评】本题考查了二次根式的化简求值,正确理解完全平方公式和平方差公式的结构是关键.26.已知a=,b=,求a2b+ab2的值.【分析】先化简a、b的值,然后代入所求的式子中,即可解答本题.【解答】解:∵a=,b=,∴a=,b=,∴a2b+ab2=ab(a+b)===.【点评】本题考查二次根式的化简求值的方法,解题的关键是明确二次根式化简求值的方法.27.求a=2+,b=3时,代数式a2+b2﹣4a+4的值.【分析】可用完全平方公式对代数式进行整理即:a2+b2﹣4a+4=(a﹣2)2+b2,然后再代入求值.【解答】解:a2+b2﹣4a+4=(a﹣2)2+b2,当a=2+,b=3时,得原式=(2+﹣2)2+(3)2=29.【点评】本题考查了二次根式的化简求值,在计算时,巧用公式能化繁为简,起到简化计算得作用.28.(1)计算﹣()2+()0﹣+||(2)已知a=,求﹣的值.【分析】(1)利用二次根式的化简,零指数幂,绝对值的性质,算术平方根的性质运算即可;(2)首先将原式化简,在将a的值分母有理化,代入可得结果.【解答】解:(1)﹣()2+()0﹣+||=+1+2=﹣3;(2)﹣=﹣=(a﹣1)﹣,∵a==2﹣,∴a﹣1=2﹣﹣1=1﹣<0,∴原式=(a﹣1)﹣=a﹣1,把a=2﹣代入上式得,a﹣1=1﹣=3.【点评】本题主要考查了二次根式的化简求值,零指数幂的运算等,先化简再代入求值是解答此题的关键.29.计算题(1)(2).【分析】(1)先把各个二次根式进行化简,再合并同类二次根式即可;(2)根据二次根式的乘除混合运算法则计算.【解答】解:(1)=3﹣2+﹣3=﹣;(2)=4××=.【点评】本题考查的是二次根式的混合运算,掌握二次根式乘法、除法及加减法运算法则是解题的关键.30.计算:×(+)﹣.【分析】先把括号内的各二次根式化为最简二次根式,然后合并后进行二次根式的乘除法运算.【解答】解:原式=(+)﹣=?﹣=3﹣1=2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.31.计算:()﹣2﹣|2﹣3|+.【分析】根据负整数指数幂的意义和分母有理化得到原式=4+2﹣3+,然后合并同类二次根式即可.【解答】解:原式=4+2﹣3+=1+.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数指数幂.32.计算:(2﹣)0+|2﹣|+(﹣1)2017﹣×.【分析】根据零指数幂的意义和绝对值的意义进行计算.【解答】解:原式=1+﹣2﹣1﹣=﹣2.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.33.计算:【分析】根据实数的运算法则依次进行计算即可.【解答】解:原式=﹣4×2+9﹣12﹣+1=﹣8+9﹣11﹣=﹣11.【点评】熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并,相乘的时候,被开方数简单的直接让被开方数相乘,再化简,较大的也可先化简,再相乘,灵活对待.34.先化简,再求值,5x2﹣(3y2+5x2)+(4y2+7xy),其中x=﹣1,y=1﹣.【分析】去括号,合并同类项,化为最简式,再代入数据计算求值.【解答】解:5x2﹣(3y2+5x2)+(4y2+7xy),=5x2﹣3y2﹣5x2+4y2+7xy,=y2+7xy,当x=﹣1,y=1﹣时原式=(1﹣)2+7×(﹣1)×(1﹣)=1﹣2+2﹣7+7=﹣4+5.【点评】本题考查了去括号法则,熟练掌握法则是解本题的关键.35.计算:.【分析】先化简二次根式,能合并的合并,再做乘法.【解答】解:====.【点评】此题考查二次根式的运算,注意运算顺序.36.计算:【分析】先把根式化为最简二次根式,再根据实数的运算法则进行计算.【解答】解:原式=(3+1﹣2)+=4﹣2+4+2=8.【点评】二次根式的混合运算,一般应先化简成最简二次根式,再进行计算,比较简单.37.计算:.【分析】先做乘法、分母有理化,再合并同类二次根式.【解答】解:原式=3++2﹣=5.【点评】此题考查二次根式的运算,注意正确确定有理化因式.38.计算:(﹣2)2×﹣4(4﹣)+【分析】先将各式化为最简二次根式,分母中含有根式的要分母有理化,然后再进行计算.【解答】解:原式=4×2﹣16+12+16+8=28.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.39.计算:+(2﹣)0﹣2﹣1+||【分析】零指数幂、负整数指数幂以及分母有理化得到原式=﹣﹣1+1﹣+﹣,然后合并同类二次根式.【解答】解:原式=﹣﹣1+1﹣+﹣=﹣.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.40.计算:(﹣)﹣1×+(﹣2)2÷(﹣1)﹣3.【分析】先根据负整数指数幂的意义得到原式=×+4÷(﹣1),再分母有理化得到原式=(+)×﹣4,然后进行二次根式的乘法后合并即可.【解答】解:原式=×+4÷(﹣1)=(+)×﹣4=3+﹣4=﹣1.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数指数幂.。
冀教版初中数学八年级上册第十五章二次根式15.2《二次根式的乘除》教学设计说明在设计本课时教案时,引导学生通过计算发现规律,从而由特殊到一般地给出二次根式的乘法法则、除法法则.注意引导学生类比积的算术平方根的性质,让学生把握两者的关系.通过例题的讲解,及时对解题方法和规律进行概括,有利于发展学生的思维能力.重视课本例题,适当地对立体进行引申,引发学生自主探寻与思考,突出例题在巩固强化中的作用,有利于学生对知识的串联、积累、加工,从而起到举一反三的效果.在学习过程中,采用小组学习方式,组间竞争,按各组表现评出最优小组,激发学生学习积极性和兴趣.(1)教材分析《二次根式的乘除》是是初中数学的重要内容之一,是《课程标准》“数与代数”的重要内容,是对“实数”、“代数式”等内容的延伸和补充.(2)学情分析本节课的内容是在理解二次根式的定义及相关概念的基础上,进一步研究二次根式的运算,是对二次根式的简便运算.二次根式的乘除这一节的知识构造较为简单,并且是在学生学习了平方根,立方根等内容的基础上进行的.由于学生对算术平方根等概念已经有了初步认识,这为学生学习打下了基础,在和学生一起学习的过程中,我们要创造条件和机会,让学生发表自己的见解,发挥学生学习的主动性和积极性.一、教学目标(1a≥0,b≥0)(a≥0,b≥0),并利用它们进行计算和化简.(2)理解ab=ab(a≥0,b>0),ab=ab(a≥0,b>0)及利用它们进行计算和化简.(3a b ab a≥0,b≥0)ababa≥0,b>0)并运用它们进行计算;•利用逆向思维,ab a b a≥0,b≥0),a baba≥0,b>0)并运用它们进行解题和化简.(4)培养学生对于事物规律的观察,发现能力,激发学生的学习激情.二、教学重点、难点a b ab a≥0,b≥0)ab a b a≥0,b≥0)abab(a≥0,b>0)ababa≥0,b>0)及运用,最简二次根式的概念.难点:二次根式的乘除法法则的逆用ab=a·b(a≥0,b≥0),a bab(0,0)a b≥>.课时设计两课时教学策略由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此,要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要注意逐步有序的展开,在讲解二次根式的乘除时可以结合积的算术平方根的性质,让学生把握两者的关系.积的算术平方根的性质及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算具体的例子,引导他们做出一般的结论.由于归纳法是通过一些个别的,特殊的例子的研究,从表象到本质,进而猜想出一般的结论.因此,本文采用从特殊到一般总结归纳的方法,类比的方法,讲授与练习相结合的方法.这种思维过程,对于初中生认识,研究和发现事物的规律有着重要作用,对于培养思维品质也有重要意义.三、教学过程情境导入,这个长方形的面积是多少?2.【问题探究】这个结果能否化简?如何化简?【设计意图】由实际问题入手,设置情境问题,激发学生的兴趣,体会数学来源于生活,又应用于生活,让学生初步感受二次根式的乘除.探索新知探究一1.填空=______;(1(2(3.(4,2.利用计算器计算填空,(2(1(32.(1)=,(2)=,(3)=,(4)=.师:提出问题:观察上面的结果,你发现他们有什么特点吗?小组讨论、抢答.生:(1)被开方数都是正数;(2)两个二次根式相乘等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.【归纳总结】反过来【设计意图】由特殊例子出发,由特殊到一般给出二次根式的乘法法则.例1.计算;(2(3(4.(1解析:(1(2=(3(4a≥0,b≥0)计算即可.点评:例2.化简(2(3;(1(4(5×4=12;解析:(1(2(3(4=3xy;(5.(a ≥0,b ≥0)直接化简即可.例3.计算解析:⨯⨯==点评:在(1)中要注意,在被开方数相乘的时候可以考虑因数分解或因式分解,在(2)中0,0)a b =≥≥,即根号外的系数与系数相乘,积为结果的系数;在(3)中要注意x ,y 的符号.【设计意图】通过例题的讲解,让学生体会二次根式的乘法法则.探究二(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空;(2=________.(13.利用计算器计算填空:(1答案:1.反过来2.3344(1),;(2),;==.规律:,44663.(1)=(2)=.;【归纳总结】【设计意图】由特殊例子出发,由特殊到一般给出二次根式的乘法法则.例4.计算:(1(2(3(4).解析:(1=2 ;(2==(3==2;(4.点评:上面4a≥0,b>0)便可直接得出答案.例5.化简:(1(2(3(4解析:(1=;(283ba =;(38y =;(413y .a ≥0,b >0)就可以达到化简之目的. 【设计意图】通过例题的讲解,让学生体会二次根式的除法法则.例6.计算:(1;(2;(3. 解析:(15;(2=3;(3=a . 观察上面例6的最后结果,可以发现这些式子中的二次根式有如下两个特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.现在我们来看本章引言中的问题:如果两个电视塔的高分别是12km,km h h ,那么它们的传播半径的比是_________..那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式.(学生分组讨论,到黑板上板书).2==.【设计意图】巩固二次根式的除法法则,通过观察总结归纳出最简二次根式的特点.例7.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.AC解:因为222AB AC BC=+所以AB=132====6.5(cm),因此AB的长为6.5cm.点评:学生掌握最简二次根式概念之后,通过两个例题让学生先尝试的去应用所学的知识,初步体验成功,树立学习的自信心.【设计意图】学生掌握最简二次根式概念之后,通过实际问题的例题讲解,激发学生的兴趣,引导学生体会数学来源于生活,又应用于生活.巩固练习教材对应习题.【设计意图】为学生提供演练机会,加强对二次根式加减运算的理解及掌握.应用拓展1.判断下列各式是否正确,不正确的请予以改正:(1=(2=4解:(1)不正确.×3=6;(2)不正确.4.a、b的取值范围分别是a≥0,b>0.带分数作为被开放数化简时必须先把带分数化成假分数再化简.2=,且x为偶数,求(1+)x解析:由题意得9060xx-≥⎧⎨->⎩,即96xx≤⎧⎨>⎩.∴6<x≤9.∵x为偶数,∴x=8.∴原式=(1+)x(1+)x=(1+)x 4(1)x x -+=(1)(4)x x +-. ∴当x =8时,原式的值=49⨯=6.点评:式子a b =a b,只有a ≥0,b >0时才能成立. 因此得到9-x ≥0且x -6>0,即6<x ≤9,又因为x 为偶数,所以x =8.3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式: 121+=1(21)2121(21)(21)⨯--=-+-=2-1,132+=1(32)3232(32)(32)⨯--=-+-=3-2, 同理可得:143+=4-3,……从计算结果中找出规律,并利用这一规律计算(121++132++143++……120122013+)()的值.解析:原式=(2-1+3-2+4-3+…+2013-2012)×(20131+) =(20131+)()=2013-1=2012.点评:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的.四、课堂小结(学生小组总结展示,师补充)1a≥0,b≥0)a≥0,b≥0)及其运用.2.二次根式的除法法则a≥0,b>0(a≥0,b>0)及其运用.3.最简二次根式的概念及其运用.【设计意图】梳理本节课的主要知识点,让学生明确重难点.课后作业一、选择题1(y>0)是二次根式,那么它化为最简二次根式是()A(y>0) By>0) C(y>0) D.以上都不对2.把(a-1a-1)移入根号内得()A..3.在下列各式中,化简正确的是()A=±12C 2D .4的结果是( )A .-3 B ..-3 D .5.阅读下列运算过程:3==5==数学上将这种把分母的根号去掉的过程称作“分母有理化”) A .2 B .6 C .13 D二、填空题6.(x ≥0)7._________. 三、综合提高题8,•现用直径为的一种圆木做原料加工这种房梁,那么加工后的房梁的最大截面积是多少?9.已知a为实数,-阅读下面的解答过程,请判断是否正确?若不正确,•请写出正确的解答过程:-a·1a=(a-110.若x、y为实数,且y答案:一、1.C 2.D 3.C 4.C 5.C二、6.7.三、8.设:矩形房梁的宽为x(cm)cm,依题意,得:2222);)x x cm x cm+==⋅=.9.不正确,正确解答:因为301aa⎧->⎪⎨->⎪⎩,所以a<0,aa=(1-a10.∵224040xx⎧-≥⎪⎨-≥⎪⎩∴x-4=0,∴x=±2,但∵x+2≠0,∴x=2,y=14∴4====.教学反思本节内容是在前一节二次根式的学习基础上,要求学生能熟练运用乘法法则和除法法则进行化简和计算.在教学过程中,通过一些特殊的例子让学生归纳出乘法法则和除法法则,学生比较容易接受.但是在具体进行化简和计算的过程中,学生对二次根式乘法法则和除法法则理解上问题不大,但常常忘记计算结果需要化简,此外被开方数是多项式的乘除法运算上容易出现错误,对分母有理化还不够熟练.因此还要加强训练,否则,在下一节二次根式的加减和混合运算时出现的错误会更多.总之,二次根式的乘除运算法则的学习和应用的过程中,渗透分析、概括、类比等数学思想方法,提高学生的思维品质和学习兴趣,鼓励学生大胆猜想,积极探索,运用类比、归纳和从特殊到一般的思考方法激发学生创造性的思维.。
全面剖析二次根式的乘除及化简1.二次根式的乘法法则(1)二次根式的乘法法则(性质3): a ·b =ab (a ≥0,b ≥0).观察这个式子的左边和右边,得出等号的左边是两个二次根式相乘,等号右边是得到的积,仍是二次根式.由此得出:二次根式的乘法就是把被开方数的积作为积的被开方数.(2)对于二次根式乘法的法则应注意以下几点:①要满足a ≥0,b ≥0的条件,因为只有a ,b 都是非负数,公式才能成立. ②从运算顺序看,等号左边是先分别求a ,b 两因数的算术平方根,然后再求两个算术平方根的积,等号右边是将非负数a ,b 先做乘法求积,再开方求积的算术平方根.③公式a ·b =ab (a ≥0,b ≥0)可以推广到3个二次根式、4个二次根式等相乘的情况.④根据这个性质可以对二次根式进行恒等变形,或将有的因式适当改变移到根号外边,或将根号外边的非负因式平方后移到根号内.当二次根式根号外都含有数字因数时,可以仿照单项式的乘法法则进行运算:系数之积作为系数,被开方数之积作为被开方数.即m a ·n b =mn ab (a ≥0,b ≥0).【例1】计算:(1)0.4×3.6;(2)545×3223.分析:第(1)小题的被开方数都是小数,先将被开方数进行因数分解,第(2)小题的根号外都含有数字因数,可以仿照单项式的乘法.解:(1)0.4× 3.6=0.4×3.6=0.4×0.4×9=0.4×3=1.2. (2)545×3223=5×32×45×23=152×3×15×23=15230.2.积的算术平方根的性质 (1)ab =a ·b (a ≥0,b ≥0).用语言叙述为:积的算术平方根,等于积中各因式的算术平方根的积.(2)注意事项:①a≥0,b≥0是公式成立的重要条件.如(-4)×(-9)≠-4·-9,实际上公式中的a,b是限制公式右边的,对公式的左边,只要ab≥0即可.②公式中的a,b可以是数,也可以是代数式,但必须是非负的.(3)利用这个公式,同样可以达到化简二次根式的目的.(4)ab=a·b(a≥0,b≥0)可以推广为abc=a·b·c(a≥0,b≥0,c≥0).计算形如(-4)×(-9)的式子时,应先确定符号,原式化为4×9,再化简.【例2】化简:(1)300;(2)21×63;(3)(-50)×(-8);(4)96a3b6(a>0,b>0).分析:根据积的算术平方根的性质:ab=a·b(a≥0,b≥0)进行化简.解:(1)300=102×3=102×3=10 3.(2)21×63=3×7×7×9=3×72×32=3×7×3=21 3.(3)(-50)×(-8)=50×8=202=20.(4)96a3b6=42·6·a2·a·(b3)2=4ab36a.3.二次根式的除法法则对于两个二次根式a,b,如果a≥0,b>0,那么ab=ab.这就是二次根式的除法法则.(1)二次根式的除法法则:①数学表达式:如果a≥0,b>0,则有a b =ab.②语言叙述:两个二次根式相除,将它们的被开方数(式)相除,二次根号不变.(理解并掌握)(2)在二次根式的除法中,条件a≥0,b>0与二次根式乘法的条件a≥0,b≥0是有区别的,因为分母不能为零,所以被除式可以是非负数,而除式必须是正数,否则除法法则不成立.知识点拓展:(1)二次根式的除法法则中的a ,b 既可以代表数,也可以代表式子;(2)m a ÷n b =m a n b =mnab (a ≥0,b >0,n ≠0),即系数与系数相除,被开方数与被开方数相除.点拨:在进行二次根式的除法运算时,应先确定商的符号,然后系数与系数相除,被开方数与被开方数相除,二次根号不变,但应注意的是当被开方数是带分数时,首先要把带分数化为假分数,再进行计算,并且计算的最终结果一定要化为最简形式,此外当数字与字母相乘时,要把数字放在字母的前面,如-26a 不能写成-2a 6.【例3】如果x x -1=x x -1成立,那么( ). A .x ≥0 B .x ≥1C .0≤x ≤1D .以上答案都不对解析:本题考查二次根式的除法法则成立的条件.要求x ≥0,x -1>0,则x >1.故选D.答案:D点拨:(1)逆用二次根式的除法时,一定要满足条件a ≥0,b >0.(2)通常去掉分母中的根号有两种方法:一是运用二次根式的性质和除法运算;二是运用二次根式的性质及乘法运算.4.二次根式除法的逆用 通过计算:(1)1625=(45)2=45,1625=45,显然1625=1625;(2)81121=(911)2=911,81121=911,显然81121=81121,从而我们可以发现:二次根式的除法法则也可以反过来运用,即如果a ≥0,b >0,那么a b =ab,也就是说,商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.名师归纳:二次根式的除法法则的逆用: (1)数学表达式:如果a ≥0,b >0,则有a b =ab;(2)语言叙述:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根;(3)逆用二次根式除法法则,可以把二次根式化为最简形式.(理解并掌握) 【例4】把下列各式中根号外的因数(式)移到根号内. (1)535; (2)-2a 12a ;(3)-a-1a ; (4)xyx (x <0,y <0).分析:将根号外的因数(式)移到根号内时,要将根号外的数(式)改写成完全平方的形式作为被开方数(式),如5=52,实际上是运用了公式a =a 2(a ≥0).同时,此题还运用了公式a ·b =ab (a ≥0,b ≥0).如果根号外有负号,那么负号不能移入根号内,移到根号内的因数(式)必须是正的,但有些字母的取值范围需由隐含条件得出,如(2),(3)小题.解:(1)535=52×35=52×35=15.(2)∵12a >0,∴a >0. ∴-2a 12a =-(2a )2·12a =-(2a )2·12a =-2a .(3)∵-1a >0,∴a <0. ∴-a -1a =(-a )2·-1a=(-a )2·(-1a )=-a .(4)∵x <0,y <0, ∴x y x=-(-x )2y x=-(-x )2·y x =-xy .(1)要将根号外的因数(式)平方后移到根号内,应运用公式a =a 2(a ≥0)及a ·b =ab (a ≥0,b ≥0);(2)根号外的负号不能移到根号内,如果根号外有字母,那么要判断字母的符号,如果符号是负的,那么负号要留在根号外.5.最简二次根式的概念满足下列两个条件的二次根式,叫做最简二次根式. ①被开方数的因数是整数,因式是整式; ②被开方数中不含能开得尽方的因数或因式.对最简二次根式的理解①被开方数中不含分母,即被开方数的因数是整数,因式是整式; ②被开方数中每一个因数或因式的指数都小于根指数2,即每个因数或因式的指数都是1.【例5】若二次根式-33a +b 与2a +bb 是最简同类二次根式,求a ,b 的值.分析:最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.解:由题意,得⎩⎨⎧ a +b =2,3a +b =b ,解得⎩⎨⎧a =0,b =2.所以a ,b 的值分别是0,2.本题考查的是对最简同类二次根式概念的理解.最简同类二次根式是指根指数相同,根号内的因式相同且不能开方的二次根式.6.二次根式的乘除混合运算 (1)运算顺序:二次根式的乘除混合运算顺序与整式乘除混合运算顺序相同,按照从左到右的顺序计算,有括号的先算括号里面的.(2)公式、法则:整式乘除中的公式、法则在二次根式混合运算中仍然适用. (3)运算律:整式乘法的运算律在二次根式运算中仍然适用.乘法分配律是乘法对加法的分配律,而不是乘法对除法的分配律.在进行二次根式的运算时常见的错误是:①忽略计算公式的条件; ②不注意式子的隐含条件;③除法运算时,分母开方后没写在分母的位置上; ④误认为形如a 2+b 2的式子是能开得尽方的二次根式. 【例6】计算下列各题: (1)9145÷(3235)×12223; (2)2ab a 2b ·3a b ÷(-121a ).分析:二次根式的乘除混合运算顺序与有理数的乘除混合运算的顺序相同,按从左到右的顺序进行运算,不同的是在进行二次根式的乘除运算时,二次根式的系数要与系数相乘除,被开方数与被开方数相乘除.解:(1)9145÷(3235)×12223=(9÷32×12)145÷35×83 =(9×23×12)145×53×83=3881=322×292=3×292=232; (2)2ab a 2b ·3a b ÷(-121a )=[2ab ·3÷(-12)]a 2b ·a b ÷1a=-12aba 2b ·a b·a =-12ab a 4=-12ab ·a 2=-12a 3b .7.二次根式的化简(1)化二次根式为最简二次根式的方法:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后把分母化为有理式.②如果被开方数是整数或整式,先将它分解因数或因式,然后把它开得尽方的因数或因式开出来.(2)口诀“一分、二移、三化”“一分”即利用分解因数或分解因式的方法把被开方数(或式)的分子、分母都化成质因数(或质因式)的幂的积的形式.“二移”即把能开得尽方的因数(或因式)用它的算术平方根代替移到根号外,其中把根号内的分母中的因式移到根号外时,要注意写在分母的位置上.“三化”即化去被开方数的分母.(3)化去分母中的根号①化去分母中的根号,其依据是分式的基本性质,关键是分子、分母同乘以一个式子,使它与分母相乘得整式.②下面几种类型的两个含有二次根式的代数式相乘,它们的积不含有二次根式.a与a;a+b与a-b;a+b与a-b;a b+c d与a b-c d.③化去分母中的根号时,分母要先化简.(4)在进行二次根式的运算时,结果一般都要化为最简二次根式.【例7】(1)当ab<0时,化简ab2,得__________.(2)把代数式x-1x根号外的因式移到根号内,化简的结果为__________.(3)把-x3(x-1)2化成最简二次根式是__________.(4)化简35-2时,甲的解法是:35-2=3(5+2)(5-2)(5+2)=5+2,乙的解法是:35-2=(5+2)(5-2)5-2=5+2,以下判断正确的是().A.甲正确,乙不正确B.甲不正确,乙正确C.甲、乙的解法都正确D.甲、乙的解法都不正确解析:(1)在ab2中,因为ab2≥0,所以ab·b≥0.因为ab<0,b≠0,所以b<0,a>0.原式=b2·a=-b a.(2)因为-1x≥0,又由分式的定义x≠0,得x<0.所以原式=-(-x)-1x=-(-x)2(-1x)=--x.(3)化简时,需知道x,x-1的符号,而它们的符号可由题目的隐含条件推出.∵(x-1)2>0(这里不能等于0),∴-x3≥0,即x≤0,1-x>0.故原式=(-x)2·(-x)(1-x)2=-x1-x-x.(4)甲是将分子和分母同乘以5+2把分母化为整数,乙是利用3=(5+2)(5-2)进行约分,所以二人的解法都是正确的,故选C.答案:(1)-b a(2)--x(3)-x1-x-x(4)C8.二次根式的乘除法的综合应用利用二次根式的乘除法可解决一些综合题目,如:(1)比较大小比较两数的大小的方法有很多种,通常有作差法、作商法等.对于比较含有二次根式的两个数的大小,一种方法是把根号外的数移到根号内,通过比较被开方数的大小来比较原数的大小;二是将要比较的两个数分别平方,比较它们的平方数.(2)化简求值对于此类题目,不应盲目地把变量的值直接代入原式中,一般地说,应先把原式化简,再代入求值.在化简过程中要注意整个化简过程得以进行的条件,如开平方时注意被开方数为非负数,分式的分母不能为零等.再者,有些二次根式的化简,从形式上看是特别麻烦的,让人一看简直无从下手,但仔细分析又是有一定规律和模式的.(3)探索规律适时运用计算器,重视计算器在探索发现数学规律中的作用. 如:借助于计算器可以求得 42+32=__________, 442+332=__________, 4442+3332=__________, 4 4442+3 3332=__________, ……__________.解析:利用计算器我们可以分别求得42+32=25=5, 442+332= 3 025=55, 4442+3332=308 025=555, 4 4442+3 3332 =30 858 025=5 555,2011555个.答案:5 55 555 5 555 2011555个【例8-1】已知9-x x -6=9-xx -6,且x 为偶数,求(1+x )x 2-5x +4x 2-1的值.分析:式子a b =ab ,只有a ≥0,b >0时才能成立.因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x =8.解:由题意,得⎩⎨⎧ 9-x ≥0,x -6>0,即⎩⎨⎧x ≤9,x >6.∴6<x ≤9.∵x 为偶数,∴x =8. ∴原式=(1+x )(x -4)(x -1)(x +1)(x -1)=(1+x )x -4x +1=(1+x )x -4x +1=(1+x )(x -4). ∴当x =8时,原式的值为4×9=6. 【例8-2】观察下列各式: 223=2+23,338=3+38.验证:223=233=23-2+222-1=2(22-1)+222-1=2+222-1=2+23;338=338=33-3+332-1=3(32-1)+332-1=3+332-1=3+38.(1)按照上述两个等式及其验证过程的思路,猜想4415的变形结果并进行验证;(2)针对上述各式反映的规律,写出用n (n 为任意正整数且n ≥2)表示的等式,并给出证明.分析:本题是利用所学过的根式变形,去发现变形的规律,由于这种变形方法比较陌生,必须认真阅读所提供的素材,即学即用.解:(1)4415=4+415. 验证:4415=4315=43-4+442-1=4(42-1)+442-1=4+442-1=4+415.(2)猜想:nnn2-1=n+nn2-1(n≥2,n为正整数).证明:因为nnn2-1=n3n2-1=n3-n+nn2-1=n(n2-1)+nn2-1=n+nn2-1,所以nnn2-1=n+nn2-1.11 / 11。
专题21.2二次根式的乘除【九大题型】【华东师大版】【题型1求字母的取值范围】 (1)【题型2二次根式乘除的运算】 (2)【题型3二次根式的符号化简】 (3)【题型4最简二次根式的判断】 (5)【题型5化为最简二次根式】 (6)【题型6已知最简二次根式求参数】 (7)【题型7分母有理化】 (8)【题型8比较二次根式的大小】 (9)【题型9分母有理化的应用】 (10)【例1】(2022=x的取值范围是x>8.【分析】直接利用二次根式的性质进而得出关于x的不等式组求出答案.=∴≥0−8>0,则x的取值范围是:x>8.故答案为:x>8.【变式1-1】(2022秋•犍为县校级月考)已知(−3)⋅(−−2)=3−⋅+2,使等式成立的x的取值范围是﹣2≤x≤3.【分析】根据二次根式的性质得出关于x的不等式组,进而求出答案.【解答】解:∵(−3)⋅(−−2)=3−⋅+2,∴3−≥0+2≥0,解得:﹣2≤x≤3.故答案为:﹣2≤x≤3.【变式1-2】(2022=x的取值范围是()A.x>0B.x≥0C.x>2D.x≥2【分析】根据二次根式和分式有意义的条件进行解答即可.【解答】解:由题意得:−2≥0>0,解得:x≥2,故选:D.【变式1-3】(2022•宝山区校级月考)已知实数x满足22−3=x•2−,则x的取值范围是0≤x≤2.【分析】依据二次根式被开方数大于等于0和2=a(a≥0)列不等式组求解即可.【解答】解:∵原式=(2−p2=x•2−,∴x≥0且2﹣x≥0.解得:0≤x≤2.故答案为:0≤x≤2.【题型2二次根式乘除的运算】【例2】(2022•长宁区期中)计算:(1)354;(2)12.【分析】(1)利用二次根式的乘法法则计算即可.(2)根据二次根式的混合运算法则计算即可.【解答】解:(1)原式=5×8×36=(2)原式=2×15×=【变式2-1】(2022•长宁区期中)计算:83.【分析】直接利用二次根式的乘除运算法则化简求出答案.【解答】解:原式=2×=9=82.【变式2-2】(2022÷(⋅(−(x>0).【分析】根据二次根式的乘除法运算法则进行计算.【解答】解:∵x>0,xy3≥0,∴y≥0,∴原式=−=−46=−94xy•(−56x B)=1582B.【变式2-3】(2022−÷b<0).【分析】直接利用二次根式的性质化简进而得出答案.【解答】解:∵由二次根式的性质可得a<0,b<0,∴原式=2•(﹣b)B•(32a B)÷=﹣3a2b÷=﹣3a2b×(−=a2b2×=ab B.【题型3二次根式的符号化简】【例3】(2022•安达市校级月考)已知xy>0,将式子x移到根号内的正确结果为()A.B.−C.−D.−−【分析】根据被开方数大于等于0求出y<0,再根据同号得正判断出x<0,【解答】解:∵−2>0,∴y<0,∵xy>0,∴x<0,∴=−=−−.故选:D.【变式3-1】(2022•自贡期中)把二次根式)A B C.−D.−【分析】根据二次根式的性质先判断a的符号,然后再进行计算.【解答】解:由题意可知−13>0,∴a<0,∴=a=−故选:D.【变式3-2】(2022•张家港市校级期末)将(2﹣x()A.−2B.2−C.﹣22−D.−−2【分析】根据二次根式的性质得出x﹣2的符号,进而化简二次根式得出即可.【解答】解:由题意可得:x﹣2>0,则原式=−−2.故选:D.【变式3-3】(2022春•龙口市期中)把(a﹣b根号外的因式移到根号内结果为【分析】先根据二次根式成立的条件得到−1K>0,则a﹣b<0,所以原式变形为﹣(b﹣a−(−p2•法得到−⋅【解答】解:∵−1K>0,∵a﹣b<0,∴原式=﹣(b﹣a=−(−p2•=−=−−.故答案为−−.【知识点2最简二次根式】我们把满足①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.这两个条件的二次根式,叫做最简二次根式.【例4】(2022、18、2−1、0.6中,最简二次根【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.、2−1是最简二次根式,、2−1.【变式4-1】(2022春•曲靖期末)下列二次根式中属于最简二次根式的是()A.48B.14C D.4+4【分析】根据最简二次根式的定义:被开方数中不含能开得尽方的因数或因式,被开方数中不含分母,即可解答.【解答】解:A、48=43,故A不符合题意;B、14是最简二次根式,故B符合题意;C=C不符合题意;D、4+4=2+1,故D不符合题意;故选:B.【变式4-2】(2022②2+1③④0.1是最简二次根式的是②③(填序号).【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【解答】解:②2+1③是最简二次根式,故答案为:②③.【变式4-3】(2022、12、30、+2,402,2+2中,是最简二次根式的共有3个.【分析】结合选项根据最简二次根式的概念求解即可.2、12、30、+2,402,2+2中,是最简二次根式的是30、+2,2+2,故答案为:3【例5】(2022春•安阳期末)下列二次根式化成最简二次根式后,被开方数与另外三个不同的是()A.2B.58C.28D【分析】先把B、C、D化成最简二次根式,再找被开方数不同的项.【解答】解:∵2是最简二次根式,58=102,28=27,=∴化成最简二次根式后,被开方数相同的是A、B、D.故选:C.【变式5-1】(2022春•番禺区期末)把下列二次根式化成最简二次根式(1100(2)32(3【分析】(1)直接利用二次根式的除法运算法则性质化简得出答案;(2)直接利用二次根式的性质化简得出答案;(3)直接利用二次根式的除法运算法则性质化简得出答案.【解答】解:(1=(2)32=42;(3==【变式5-2】(2022秋•合浦县月考)把下列各式化成最简二次根式:(1(2)−【分析】本题需先将二次根式分母有理化,分子的被开方数中,能开方的也要移到根号外.【解答】解:(1)原式==275×53×33;(2)当b,c同为正数时,原式=−B2×2×=−当b,c同为负数时,原式=−B2×(−2)×=−当c=0时,原式=0.【变式5-3】(2022化成最简二次根式是±or1).【分析】对被开方数的分母进行因式分解,然后约分;最后将二次根式的被开方数的分母有理化,化简求解.【解答】解:原式==①当y>0时,上式=②当y<0时,上式=−【题型6已知最简二次根式求参数】【例6】(2022春•浉河区校级期末)若二次根式5+3是最简二次根式,则最小的正整数a为2.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:若二次根式5+3是最简二次根式,则最小的正整数a为2,故答案为:2.【变式6-1】(2022春•武江区校级期末)若是最简二次根式,则a的值可能是()A.﹣4B.32C.2D.8【分析】根据二次根式有意义的条件判断A选项;根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式判断B,C,D选项.【解答】解:A选项,二次根式的被开方数不能是负数,故该选项不符合题意;B2=C选项,2是最简二次根式,故该选项符合题意;D选项,8=22,故该选项不符合题意;故选:C.【变式6-2】(2022秋•崇川区校级期末)若2rK2和33K2r2都是最简二次根式,则m =1,n=2.【分析】利用最简二次根式定义列出方程组,求出方程组的解即可得到m与n的值.【解答】解:∵若2rK2和33K2r2都是最简二次根式,∴+−2=13−2+2=1,解得:m=1,n=2,故答案为:1;2.【变式6-3】(2022春•宁都县期中)已知:最简二次根式4+与K23的被开方数相同,则a+b=8.【分析】已知两个最简二次根式的被开方数相同,因此它们是同类二次根式,即:它们的根指数和被开方数相同,列出方程组求解即可.【解答】解:由题意,得:−=24+=23解得:=5=3,∴a+b=8.【知识点3分母有理化】①分母有理化是指把分母中的根号化去:分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式;②两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.一个二次根式的有理化因式不止一个.【题型7分母有理化】【例7】(2022)A.4b B.2CD【解答】解:∵a>0,ab>0,即a>0,b>0;===【变式7-1】(2022•沂源县校级开学)分母有理化:=2;(2=3;(3=2.(1=【解答】解:(1==(2(3=【变式7-2】(2022春•海淀区校级期末)下列各式互为有理化因式的是()A.+和−B.−和C.5−2和−5+2D.+和+【分析】根据有理化因式定义:如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式,结合各个选项中两个代数式特征作出判断即可.【解答】解:A.+•−=(+p(−p,因此+和−不是有理化因式,故选项A不符合题意;B.−•=−a,所以−和是有理化因式,因此选项B符合题意;C.(5−2)(−5+2)=﹣(5−2)2,所以5−2和−5+2)不是有理化因式,因此选项C不符合题意;D.(x+y)•(x+y)=(x+y)2,因此x+y和x+y不是有理化因式,所以选项D不符合题意;故选:B.【变式7-3】(2022【分析】根据二次根式的性质以及运算法则即可求出答案.【解答】解:原式======【题型8比较二次根式的大小】【例8】(2022春•海淀区校级期末)设a=22−3,b=1,则a、b大小关系是()A.a=b B.a>b C.a<b D.a>﹣b【分析】本题考查二次根式,先求出b的值,再与a比较得出结果.【解答】解:∵a=22−3==−(22+3)∴b=1故选:B.【变式8-1】(2022春•金乡县期中)已知a=b=2+5,则a,b的关系是()A.相等B.互为相反数C.互为倒数D.互为有理化因式【分析】求出a与b的值即可求出答案.=5+2,b=2+5,【解答】解:∵a=故选:A.)【变式8-2】(2022B C DA【解答】解:将三个二次根式化成同分母分数比较:==故选:C.【变式8-3】(2022秋•雨城区校级期中)利用作商法比较大小【分析】根据作商比较法,看最后的比值与1的大小关系,从而可以解答本题.=1,【题型9分母有理化的应用】【例9】(2022春•大连月考)阅读材料:黑白双雄、纵横江湖;双剑合璧、天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”.如:(2+3)(2−3)=1,(5+2)(5−2)=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法====7+43.像这样,通过分子、(1)4+7的有理化因式可以是4−分母有理化得2.(2)计算:+②已知:x =y =x 2+y 2的值.【分析】(1)找出各式的分母有理化因式即可;(2)①原式各项分母有理化,合并即可得到结果;②将x 与y 分母有理化后代入原式计算即可得到结果.【解答】解:(1)4+7的有理化因式可以是4−7,故答案为:4−7;(2)①原式=2−1+3−2+⋯+2000−1999=2000−1=205−1;②∵x ==2−3,y ==2+3,∴x 2+y 2=7﹣43+7+43=14.【变式9-1】(2022=3)=7+43;除此之外,还可以用先平方再开方的方法化简一些有特点的无理数,如要化简4+7−4−7,可以先设x =4+7−4−7,再两边平方得x 2=(4+7−4−7)2=4+7+4−7−2(4+7)(4−7)=2,又因为4+7>4−7,故x >0,解得x =2,4+7−4−7=2,根据以上方法,+8+43−8−43的结果是()A .3﹣22B .C .42D .3【分析】直接利用有理化因式以及二次根式的性质、完全平方公式分别化简得出答案.【解答】解:设x =8+43−8−43,两边平方得x 2=(8+43−8−43)2=8+43+8−43−2(8+43)(8−43)=8,∵8+43>8−43,∴x >0,∴x =22,原式=22=6−22=+22=3﹣22+22=3.故选:D.【变式9-2】(2022•普定县模拟)阅读以下材料:将分母中的根号化去,叫做分母有理化.分母有理化的方法,一般是把分子分母都乘以同一个适当的代数式,使分母不含根号.例==−1;(1(2)关于x的方程3x−12=++⋯+的解是11.【分析】(1)根据材料进行分母有理化即可;(2)先分母有理化,再根据式子的规律即可求解.==2−1【解答】解:(1(2)3x−13x−12=3x−12=(3+1)(+(5+3)(5−3)+(7+7−5)+⋯+(3x−12=12(3−1+5−3+7−5+⋯+99−97),6x﹣1=﹣1+99,6x=311,x=【变式9-3】.(2022春•九龙坡区校级月考)材料一:有这样一类题目:将±2化简,如果你能找到两个数m、n,使m2+n2=a且mm=,则将a±2将变成m2+n2±2n,即变成(m±n)2开方,从而使得±2化简.例如,5±26=3+2±26=(3)2+(2)2±22×3=(3±2)2,所以5±26= (3±2)2=3±2;=======3(三).以上这种化简的步骤叫做分母有理化.====3−1(四);请根据材料解答下列问题:(1)3−22−1;4+23+1.+⋯+(2【分析】(1)根据材料一和完全平方公式即可得出答案;(2)根据材料二将每一个式子分母有理化,并合并同类二次根式可得出答案.【解答】解:(1)∵3﹣22=2+1﹣22=(2−1)2,∴3−22=(2−1)2=2−1,∵4+23=3+1+23=(3+1)2,∴4+23=(3+1)2=3+1,故答案为:2−1,3+1;(2=(3+1)(3−1)+(5+3)(5−3)+•••2r1+2K1)(2r1−=3−1+5−3+7−5+•••+2+1−2−1=﹣1+2+1.。
二次根式乘除法(含答案)一、知识聚焦:1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
2.二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
3.商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根4.二次根式的除法法则:两个数的算术平方根的商,等于这两个数的商的算术平方根。
5.最简二次根式:符合以下两个条件:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式。
6.分母有理化:把分母的根号去掉的过程称作“分母有理化”二、经典例题: 例1.化简(0,0≥≥y x例2.计算(2)31525⋅32⨯例3.判断下列各式是否正确,不正确的请予以改正:=例4.化简:)0,0(≥>b a )0,0(>≥y x )0,0(>≥y x例5.计算:(4例6.下列各式中哪些是最简二次根式,哪些不是?为什么? (1)b a 23 (2)23ab (3)22y x + (4))(b a b a >- (5)5 (6)xy 8例7. 把下列各式化为最简二次根式: (1)12 (2)b a 245 (3)x yx 2例8. 把下列各式分母有理化 (1)4237 (2)a b例9. 比较3223和两个实数的大小答案: 例例2. (1(2)303 (3) (4)6例3. (1)不正确. ×3=6(2) 例4.(1)83 (2)a b 38 (3)y x 83 (4)y x135例5.(1)2 (2)23 (3)2 (4)22例6.(3),(4),(5)是,其它不是例7.(1)23, (2) b a 53, (3) xy x例8. (1)21144- (2) b a ba a ++2 例9. 3223>三、基础演练:1. ②×2.化简3.把下列各式化为最简二次根式: (1)3)(8y x + (2)2114 (3)m n 382334. 把下列各式分母有理化(1)403 (2)xy y 422(x >0,y >0)5.比较大小 (1)76与67 (2)23与32答案:1.①=82 ②=1215 ③=y a 2.25;32;62; 32ab3.(1) )(2)(2y x y x ++ (2) 62 (3) mmn n 6 4.(1)2030 (2) x xy y 5.解:(1) 76<67 (2) 23>32四、能力提升:1,•那么此直角三角形斜边长是( ).A ..3.9cm D .27cm2.下列各等式成立的是( ).A ..C .D .×3 ).A .27.27C .7 4.二次根式:①29x -;②))((b a b a -+;③122+-a a ;④x 1;⑤75.0中最简二次根式是( )A 、①②B 、③④⑤C 、②③D 、只有④56.分母有理化=______.答案:1. B 2. D 3. A 4. A 5.6136.=6263=22五、个性天地:(LJJ00002)(1=_________;(2)=___________;=_________;(2=__________.(SHY00002)已知x=3,y=4,z=5_______.答案:(LJJ00002)(1)4;(2)15;(ZZY00002)57;(2)24x (SHY00002)315。
二次根式的乘除二次根式是数学中重要的概念之一,它是数学中的一类代数式子。
简单来说,二次根式就是一个数学式子,它在根号内含有一个二次式,即一个含有二次幂的多项式。
在计算二次根式的乘除时,需要使用一些基本的数学运算规则和方法,本文将对这些知识进行详细介绍。
首先,我们来了解一些基本概念。
在代数式中,如果一个式子中含有根号,则这个式子被称为根式。
而如果在根式中,根号下面的表达式是一个二次式,即一个多项式中含有二次幂,则这种类型的根式就被称为二次根式。
例如,$\sqrt{2x^2+5x-1}$就是一个二次根式。
接下来,我们来看二次根式的乘法规则。
假设有两个二次根式$\sqrt{a}$和$\sqrt{b}$,则它们的乘积可以表示为$\sqrt{ab}$,即$\sqrt{a}\times\sqrt{b}=\sqrt{ab}$。
例如,$\sqrt{2x^2+5x-1}\times\sqrt{3x^2-7x+2}=\sqrt{(2x^2+5x-1)\times(3x^2-7x+2)}$。
在进行二次根式的乘法时,需要注意以下两点:1. 如果两个二次根式的根号下面的表达式相同,则可以将它们合并为一个二次根式。
例如,$\sqrt{a}\times\sqrt{a}=\sqrt{a^2}=a$。
2. 如果两个二次根式的根号下面的表达式不同,则需要化简后再进行计算。
化简的方法如下:先将两个二次根式中的根号下面的式子相乘,然后再将根号下面的式子分解成两个因数的积,如$ab=(\sqrt{a}\times\sqrt{b})^2$,最后将这两个二次根式合并。
例如,计算$\sqrt{3x^2-7}\times\sqrt{2x^2+5x-1}$。
首先将两个根式中的根号下面的式子相乘,得到$(3x^2-7)\times(2x^2+5x-1)$。
再将这个式子拆分成两个因数的积,即$(3x^2-7)\times(2x^2+5x-1)=(3x^2)\times(2x^2)+(3x^2)\times(5x)-7\times(2x^2)-7\times(5x)+7=6x^4+8x^3-29x^2+7$。
八年级数学下册《二次根式的乘除》练习题及答案(人教版)一单选题1.估计√3×√6的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间2.下列为最简二次根式的是()A.√26B.√32C.√0.5D.√123.如图在长方形ABCD中无重叠放人面积分别为16cm2和12cm2的两张正方形纸片则图中空白部分的面积为()A.(−12+8√3)cm2B.(16−8√3)cm2C.(8−4√3)cm2D.(4−2√3)cm24.如果√12⋅√x是一个正整数那么x可取的最小正整数值为()A.2B.4C.3D.125.计算1√2−1的结果是()A.√2B.√22C.√2−1D.√2+16.在√16x3√23−√0.5√a x√253中最简二次根式的个数是()A.1B.2C.3D.4 7.计算√2×√8+√−273的结果为()A.﹣1B.1C.4−3√3D.7 8.√2+1的倒数是()A.√2B.√2+1C.√2﹣1D.√22+19.已知a=1√2+1b=1√2−1则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方值相等10.下列计算中错误的是()A.√14×√7=7√2B.√60÷√30=√2C.√3×√6=9√2D.√8√2a=2√a a二 填空题11.当a =﹣1时 二次根式 √2−7a 的值为 . 12.记1√5−2的整数部分是a 小数部分是b 则a b 的值为 . 13.分母有理化 √2= . 14.一个长方形相邻两边的长分别为 √2 √8 则它的周长和面积分别是15.计算 4√ab 3·12√a 3b = 三 解答题16.先化简 再求值 a √b a −2b √ab 3+3√ab 其中b= √a −2+√2−a +3 . 17.如图所示 在Rt△ABC 中 △ACB=90° CD△AB 于点D .若S△ABC =3 √2 cm 2 BC= √3 cm 求AC 和CD 的长.18.交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度 所用的经验公式是 v =16√df其中 v 表示车速(单位 km/h ) d 表示刹车后车轮滑过的距离(单位 m ) f 表示摩擦因数.在某次交通事故调查中 测得 d =20 m f =1.2 该路段限速60km/h 该汽车超速了吗?请说明理由(已知 √2≈1.4,√3≈1.7 ) 19.计算 2√ab 3×34√a 3b ÷3√1a 20.已知 1√2+2√1 + 2√3+3√2 + 3√4+4√3 +…+ n √n+1+(n+1)√n = 4950 求n 的值. 21.习题集上有一道题为 “先化简 再求值 2a −√a 2−4a +4 其中a= √3 小刚的解法如下 2a −√a 2−4a +4 = 2a −√(a −2)2 =2a -a+2=a+2 当a= √3 时 原式= √3 +2 小刚的解法正确吗?若不正确 请写出正确的解法。
一、知识聚焦:
1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
2.二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
3.商的算术平方根的性质:商的算术平方根等于被除式的算术平方根除以除式的算术平方根
4.二次根式的除法法则:两个数的算术平方根的商,等于这两个数的商的算术平方根。
5.最简二次根式:
符合以下两个条件:(1)被开方数不含分母;
(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式。
6.分母有理化:把分母的根号去掉的过程称作“分母有理化”
二、经典例题:
例1.化简
(0
x
≥y
,0≥
例2.计算
2
5⋅3
15
⨯
2
例3.判断下列各式是否正确,不正确的请予以改正:
=
例4.化简:
,0
x)0
≥y
x
≥y
(>
>b
)0
(>
(≥
,0
,0
a)0
(4
例5.计算:
例6.下列各式中哪些是最简二次根式,哪些不是?为什么?
(1)b a 23 (2)
2
3ab
(3)22y x + (4))(b a b a >- (5)5 (6)xy 8
例7. 把下列各式化为最简二次根式:
(1)12 (2)b a 245 (3)x
y
x 2
例8. 把下列各式分母有理化
例9. 比较3223和两个实数的大小
答案: 例
例2. (1(2)303 (3) (4)6
例3. (1)不正确. ×3=6
(2) 例4.(1)
83 (2)a b 38 (3)y x 83 (4)y
x 135 例5.(1)2 (2)23 (3)2 (4)22 例6.(3),(4),(5)是,其它不是
例7.(1)23, (2) b a 53, (3) xy x 例8. (1)21
14
4-
(2) b a b a a ++2 例9. 3223>
三、基础演练:
1. ②×
2.化简
3.把下列各式化为最简二次根式:
(1)3
)(8y x + (2)2114 (3)m
n 38233
4. 把下列各式分母有理化 (1)
40
3 (2)
xy
y 422(x >0,y >0)
5.比较大小
(1)76与67 (2)--
答案:1.①=82 ②=1215 ③=y a 2.25;32;62; 32ab 3.(1) )(2)(2y x y x ++ (2) 62 (3)
m mn n 6 4.(1)20
30
(2) x xy y
5.解:(1) 76<67 (2) --四、能力提升:
1,•那么此直角三角形斜边长是( ).
A ..3.9cm D .27cm 2.下列各等式成立的是( ).
A ..
C ..×
3 ).
A .
27
.
2
7
C .7
4.二次根式:①29x -;②))((b a b a -+;③122+-a a ;④
x
1
;⑤75.0中最简二次根式是( ) A 、①② B 、③④⑤ C 、②③ D 、只有④
5=
6.分母有理化
=______.
答案:
1. B 2. D 3. A 4. A 5.613
6.
=
6263=2
2
五、个性天地:
(LJJ00002)(1
=_________;(2)=___________;
=_________;(2=__________.
(SHY00002)已知x=3,y=4,z=5_______.
答案:(LJJ00002)(1)4;(2)15;
(ZZY00002)5
7;(2)24x (SHY00002)3
15。