2018中考数学试题模拟6 精品
- 格式:doc
- 大小:388.05 KB
- 文档页数:12
2018年中考数学模拟题(一)一、选择题(本大题共10小题,每题只有一项是符合题答案,每小题3分,满分30分.)1.资料显示,“五·一”全国实现旅游收入约463亿元,用科学记数法表示463亿这个数是( )810463.⨯A 81063.4.⨯B101063.4.⨯C 1110463.0.⨯D2.下列运算正确的是( )532.a a a A =+ 623).(a a B =-222233.b a b a ab C =⋅ 32622.a a a D -=÷-3.下列方程没有实数根的是( )104.2=+x x A0383.2=-+x x B032.2=+-x x C12)3)(2(=--⋅x x D4.若关于x 的方程1242+-=-x x ax无解,则a 的值为( )A. 1B.2C. 1或2D.0或25.如图是一个正方体被截去一个角后得到的几何体,它的俯视图是()A B C D6.正六边形内切圆面积与外接圆面积之比为( )23.A 21.B41.C 43.D7.下列说法不正确的是( ) A .某种彩票中奖的概率是,100001买1000张该种彩票一定会中奖. B .了解一批电视机的使用寿命适合用抽样调查.C .若甲组数据的标准差31.0=甲S ,乙组数据的标准差25.0=乙S ,则乙组数据比甲组数据稳定D .在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件.8.有一根长40mm.的金属棒,欲将其截成x 根7mm 长的小段和y 根9mm 长的小段,剩余部分作废料处理,若使废料最少,则正整数x ,y 应分别为 ( )A .x=1,y=3B .x=3,y=2C .x=4,y=1D .x=2,y=39.若二次函数)0(2=/++=a c bx ax y 的图象与x 轴有两个交点,交点坐标分别为),0,(),0,(21x x 且21x x <,图象上有一点M ),(00y x 在x 轴下方,则下列判断正确的是 ( )0.>a A 04.2≥-ac b B201.x x x C << .0))((.2010<--x x x x a D10.古希腊著名的毕达哥拉斯学派把1、3、6、lO…这样的数称为“三角形数”,而把1,4、9、16…这 样的数称为“正方形数”,从图中可以发现,任何一个大于l 的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是 ( )A.13 = 3+10B.25 = 9+16C.36 = 15+21D.49 = 18 +31二、填空题(本大题共8小题,每小题3分,共24分)11.函数312+-=x y 中自变量x 的取值范围是______________.12.当x ≤0时,化简21x x --的结果是__________________.13.已知21,x x 是方程.0322=--x x 的两实数根,则21x x -的值为__________.14.将△ABC 绕点B 逆时针旋转到C B A '''∆,使A 、B 、C '在同一条直线上,若∠BAC=o30,AB=4cm 则图中阴影部分的面积为______________2cm15.一组数据1,4,6,x 的中位数和平均数相等,则x 的值是_____________.16.如图,已知28m S ABC =∆,AD 平分∠BAC ,且AD ⊥BD 于点D ,则=∆ADC S _______.2m17.菱形ABCD 在直角坐标系中的位置如图所示,其中点A 的坐标为(1,O),点B 的坐标为)3,0(,动点P 从点A 出发,沿 →→→→→→B A D C B A 的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2015秒时,点P 的坐标为__________________________.18.如图,△ABC 的三个顶点和它内部的点1P ,把△ABC 分成3个互不重叠的小三角形;△ABC 的三个顶点和它内部的点21,P P ,把△ABC 分成5个互不重叠的小三角形;△ABC 的三个顶点和它内部的点321,,P P P ,把△ABC 分成7个互不重叠的小三角形;…△ABC 的三个顶点和它内部的点n P P P P 321,,,把把△ABC 分成__________个互不重叠的小三角形.三、解答题(本大题共有10小题,共66分.)19.(4分)计算: .30tan )31()12(|132|10o ---+--20.(4分)先化简,再求值:31x ,11)121(122=++---+÷其中x x x x x x21.(5分)已知反比例函数xm y 5-= (m 为常数,且).5=/m (1)若在其图象的每个分支上,y 随x 的增大而增大,求m 的取值范围;(2)若其图象与一次函数y=-x+1图像的一个交点的纵坐标是3,求m 的值。
2018年中考数学模拟试题(全卷满分为150分,考试时间为120分钟)一、 选择题(1-5 题每题3分,6-15题每题4分,共55分) 1.在-9、π、722、23、3.14、0这六个数中,无理数的个数是( ) A. 4个 B. 3个 C. 2个 D. 1个2.下列运算正确的是( )A.3332a a a =+B.a a a =-23C.6332a a a =⋅D.326a a a =÷3.一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色的概率是 ( )A.12 B. 13 C. 14D. 164.据测算,我国每天因土地沙漠化造成的经济损失平均为150000000元,若不加治理,一年按365天计,我国一年中因土地沙漠化造成的经济损失(用科学记数法表示)为( ) A.5.475×107 B.5.475×109 C.5.475×1010 D.5.475×1011 5.下列二次根式中,最简二次根式是( )A. 22x B. 12+b C. a 4 D.x1 6.如果直角三角形的三边为2,4,a ,那么a 取值可以有( ) A. 0个 B. 1个 C. 2个 D. 3个 7.如图,将矩形ABCD 沿着对角线BD 折叠,使点C 落在C ‘ 处,BC ‘交AD 于E ,下列结论不一定成立的是( )A. AD =BC ‘B. ∠EBD =∠EDBC. ΔABE ∽ΔCBDD. sin ∠ABE=EDAE8.关于x 的不等式组⎪⎩⎪⎨⎧>+>-ax x x 23221 无解,则实数a 的取值范围是( )A. a<-2B. a =-2C. a>-2D. a ≥-29.用F 牛顿的力作15焦耳的功,则力F 与物体在力的作用下移动的距离s 之间的函数关系的图象是( )10.把x 2-1+2xy+y 2的分解因式的结果是( )A.(x+1)(x -1)+y(2x+y)B.(x+y+1)(x -y -1)C.(x -y+1)(x -y -1)D.(x+y+1)(x+y -1)11.刚刚喜迁新居的小华同学为估计今年六月份(30天)的家庭用电量,在六月上旬连续7你预计小华同学家六月份用电总量约是( )A. 1080度B. 124度C. 103度D. 120度12.宿迁市进行旧城区人行道的路面翻新,准备对地面密铺彩色地砖, 有人提出了4种地砖的形状供设计选用:①正三角形,②正四边形,③正五边形,④正六边形.其中不能进行密铺的地砖的形状是( ).A. ①B. ②C. ③D. ④13.某物体的三视图如下,那么该物体形状可能是()A. 长方体B. 圆锥体C. 立方体D. 圆柱体14.如图,在山坡上种树,已知∠A=30°,AC=3米,则相邻两株树的坡面距离AB=( ) A.6米15.如图,□ABCD 的周长为16cm ,AC 、BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为( )A .4 cmB .6cmC .8cmD .10cmA B C D _( 第 16 题 )_2 _1_O _D _C _B_A正视图左视图俯视图CAB (第14题)二、填空题(每题4分,共36分)16.如图,直线AB 、CD 相交于点O ,若∠1=28°,则∠2= . 17.若a =3,b =2且ab <0,则a -b =____18.观察下列等式:9–1=8 16–4=12 25–9=16 36–16=20 ……这些等式反映出自然数间的某种规律。
中考模拟试卷数学试题卷考生须知:1. 本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟。
2. 所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。
试题卷一. 仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内。
注意可以用多种不同的方法来选取正确答案。
1.-的倒数是( )A. 12007-B.C. -D.12007 2. 下列运算正确的是( ) A .23a a ⋅=6aB .33()y y x x=C .55a a a ÷=D .326()a a =3. 下图中几何体的俯视图是 ( )4.在昆明“世博会”期间,为方便游客参观,铁道部门临时加开了南宁至昆明的直达列车.已知南宁至昆明的路程为828km ,普快列车与直快列车由昆明到南宁时,直快列车平均速度是普快的1.5倍,若直快列车比普快列车晚出发2 h 而先到4h ,求两列车的平均速度分别是多少?设普快列车的速度为x km/h ,则直快列车的速度为1.5xkm /h .依题意,所列方程正确的是( )828828.24 1.5A x x ++= 828828.24 1.5B x x +-=; 828828.24 1.5C x x --=; 828828.24 1.5D x x-+=5. 若⊙O 1和⊙O 2相切,且两圆的圆心距为9,则两圆的半径不可能...是( ) A .4和5 B .7和9 C .10和1 D .9和186.菱形的两条对角线长分别为6㎝、8㎝,则它的面积为( )2cm . (A)6 (B)12 (C)24 (D)487、从两副拿掉大、小王的扑克牌中,各抽取一张,两张牌都是红桃的概率是( )A .12B . 14C .18D .1168.如图为了测量某建筑物AB 的高度,在平地上C 处测得建筑物顶端A 仰角为30°,沿CB 方向前进12m 到达D 处,在D 处测得建筑物顶端A 的仰角为45°,则建筑物AB 的高度等于( )A .6(3+1)mB . 6 (3—1) mC . 12 (3+1) mD .12(3-1)m9.若二次函数2y ax c =+(0a ≠),当x 分别取x 1、x 2(x 1≠x 2)时,函数值相等;则当x 取x 1+x 2时,函数值为( ). (A)a +c (B)a -c (C)-c (D)c 10. 如图,已知△ABC 中,BC =8,BC 边上的高h=4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为( )二. 认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案。
2018年中考数学模拟试卷及答案2018年中考数学模拟试卷一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)-3的相反数是()A.-1 B.3 C.1 D.-32.(3分)下列运算中,正确的是()A.2x+2y=2xyB.(xy)2÷(xy)3=x-yC.D.2xy-3yx=xy(x2y3)2=x4y53.(3分)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥 B.四棱柱 C.三棱锥 D.三棱柱4.(3分)口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是()A.随机摸出1个球,是白球B.随机摸出1个球,是红球C.随机摸出1个球,是红球或黄球D.随机摸出2个球,都是黄球5.(3分)如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移36.(3分)如果多项式p=a2+2b2+2a+4b+5,则p的最小值是()A.1二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相应位置上)7.(3分)9的平方根是38.(3分)若∠α=32°22′,则∠α的余角的度数为57°38′9.(3分)化简:-3的结果是310.(3分)一组数据2、-2、4、1、的方差是5.511.(3分)若关于x的一元二次方程ax2-bx+2=0(a≠0)的一个解是x=1,则3-a+b的值是412.(3分)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=140°13.(3分)圆锥的母线长为6cm,底面圆半径为4cm,则这个圆锥的侧面积为40√5 cm2.14.(3分)如图,⊙O的内接四边形ABCD中,∠A=105°,则∠BOD等于75°15.(3分)如图,Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,若AD=BC,则sin∠A=3/516.(3分)抛物线y=mx2-2mx+m-3(m>0)在-1<x<3位于x轴下方,在3<x<4位于x轴上方,则m的值为2三、解答题17.1) $-2+|3\tan30^\circ-1|-(\pi-3)^\circ$2+|\frac{3}{\sqrt{3}}-1|-(\pi-3)^\circ$2+|\sqrt{3}-1|-(\pi-3)^\circ$2+\sqrt{3}-1-(\pi-3)^\circ$2-\sqrt{3}-\pi^\circ$2) $x^2-3x+2=0$x=1$或$x=2$所以方程的解为$x=1$或$x=2$。
2018年中考数学模拟试卷(一)姓名--------座号--------成绩-------一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( ) A. ×10B. ×108C. ×109D. ×10104. 估计8-1的值在( ) A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形B. 矩形C. 正方形D. 菱形6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2= 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2+ 2x-1=(x - 1)2B. - x 2 +(-2)2=(x - 2)(x + 2)C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2+ 2x + 1圆弧 角 扇形 菱形 等腰梯形 A. B. C. D.(第9题图)(第7题图)11. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A. 3B. 23C.23D. 112. 如图,△ABC 中,∠ C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3)+(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°. 小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF的水平距离CF = 1米,从E处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……(第21题图)(第23题图)(参考数值:sin20°≈,cos20°≈,tan20°≈)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案哪种方案的总费用最低26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x (第24题图)轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ; (2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形若存在,求出所有点P 的坐标;若不存在,请说明理由.2018年初三适应性检测参考答案与评分意见一、选择题说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x %)201(2400+ = 8;17. (16,1+3); 18. (或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =, …………1分∴这组样本数据的平均数是. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是,∴估计全校1200人参加活动次数的总体平均数是,有×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°,∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°,∴BG = CG ·tan20° …………………5分 =10×=, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - = .答:树AB 的高度约为米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分 在Rt △MNP 中,有x 2= 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2018年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、选择题1、数2-中最大的数是( ) A 、1- B、0 D 、22、9的立方根是( )A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=(A 、4B 、3C 、-4D 、-34、如图是某几何题的三视图,下列判断正确的是( )A、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( ) A 、0a b +> B 、0a b -> C 、0ab > D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( ) A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、 C 、 D 、BDE左视图俯视图二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
初三第六次模拟考试数学试卷一、 选择题(本大题共16小题,1~10小题每题3分;11~16小题每题2分,共42分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 4的平方根是( )A.2B. 2C. ±2D. ±22. 函数11+=x y 的自变量x 的取值范围是( ) A. 1->x B. 1-<x C. 1-≠xD. 1≠x3. 一个几何体的主视图、左视图、俯视图的图形完全相同,它可能是( )A. 三棱锥B. 长方体C. 球体D. 三棱柱4. H7N9病毒直径为30纳米(1纳米=10﹣9米),用科学记数法表示这个病毒直径的大小,正确的是( )A. 91030-⨯米B. 8100.3-⨯米C. 10100.3-⨯米D. 9103.0-⨯米5. 下列计算正确的是( )A. 4222a a a =+ B. a a 4)2(2=C.333=⨯D.2312=÷6. 如图,点A 的坐标为(﹣1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为( )A.(0,0)B.(22,22) C.(21-,21-) D. (22-,22-)7. 如图,在⊙O 中,AC ∥OB ,∠BAO =25°,则∠BOC 的度数为( ) A. 25° B. 50° C. 60° D. 80°8. 如图所示,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知AB =6,AD =10,则tan ∠EFC =( )A.43B.34 C.53 D.54 9. 如图,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶点的影子恰好落在地面的同一点。
此时,竹竿与这一点相距8m 、与旗杆相距22m ,则旗杆的高为( )A. 12mB. 10mC. 8mD. 7m10.用直尺和圆规作一个以线段AB 为边的菱形,作图痕迹如图所示,能得到四边形ABCD 是菱形的依据是( ) A.一组邻边相等的四边形是菱形 B.四边相等的四边形是菱形 C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形 11.如图,已知直线AB ∥CD ,∠GEB 的平分线EF 交CD 于点F ,∠1=42°,则∠2=( ) A. 138° B. 142° C. 148° D. 159° 12.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E =( ) A. 70° B. 50° C. 40° D. 20°13.已知点P (a -1,a +2)在平面直角坐标系的第二象限内,则a 的取值范围在数轴上可表示为( )A. B.C. D.14. 化简:444)2(22+--⋅-a a a a 的结果是( )A. a -2B. a +2C.22-+a a D.22+-a a 15. 如图,圆O 与直线m 相切于点A ,P 、Q 两点同时从A 点以相同的速度出发,点P 沿直线向右运动,点Q 沿圆O 逆时针方向运动,连结OP 、OQ ,图中阴影部分面积分别为S 1,S 2,则S 1,S 2之间的关系是( ) A. S 1> S 2 B. S 1< S 2 C. S 1= S 2 D. 不能确定16. 平面直角坐标系中,有线段MN ,M (1,1),N (2,2),若抛物线2ax y =与线段MN 没有公共点,则a 的取值范围是( ) A.0<aB.1>a 或210<<a C. 0<a 或1>a 或210<<a D.121<<a二、 填空题(本大题共4小题,每小题3分,共12分)17. 计算=-+0)12(9___________。
专题检测6 分式方程及其应用(时间60分钟满分100分)一、选择题(每小题3分,共36分)1.在方程=7,-=2,+x=,=+4,=1中,分式方程有(B)A.1个B.2个C.3个D.4个2.已知方程=1的根为x=1,则k=(B)A.4B.-4C.1D.-13.解分式方程+=3时,去分母后变形正确的是(D)A.2+(x+2)=3(x-1)B.2-x+2=3(x-1)C.2-(x+2)=3D.2-(x+2)=3(x-1)4.解分式方程+=,下列四步中,错误的一步是(D)A.方程两边分式的最简公分母是x2-1B.方程两边都乘(x2-1),得整式方程2(x-1)+3(x+1)=6C.解B项中的整式方程得x=1D.原方程的解为x=15.分式方程=的解为(D)A.x=0B.x=3C.x=5D.x=96.关于x的分式方程=1,下列说法正确的是(C)A.方程的解是x=m+5B.m>-5时,方程的解是正数C.m<-5时,方程的解为负数D.无法确定7.若分式方程=有增根,则增根为(B)A.x=-1B.x=1C.x=±1D.x=08.已知关于x的方程=3的解是正数,则实数m的取值范围为(C)A.m>-6B.m<-6C.m>-6,且m≠-4D.m>-6,且m≠29.对于非零的两个实数a,b,规定a*b=-,若5*(3x-1)=2,则x的值为(B)A. B. C. D.-10.“五一”期间,东方中学“动感数学”活动小组的全体同学租一辆面包车前去某景点游览,面包车的车费为180元.出发时又增加了2名同学,结果每个同学比原来少摊了3元车费.若设“动感数学”活动小组有x人,则所列方程为(B)A.-=3B.-=3C.-=3D.-=311.某市为解决部分市民冬季集中取暖问题需铺设一条长3 000 m的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x m,则可得方程-=15,根据此情景,题中用“…”表示的缺失的条件应补为(C)A.每天比原计划多铺设10 m,结果延期15天才完成B.每天比原计划少铺设10 m,结果延期15天才完成C.每天比原计划多铺设10 m,结果提前15天完成D.每天比原计划少铺设10 m,结果提前15天完成12.如图所示的电路的总电阻为10 Ω,若R1=2R2,则R1,R2的值分别是(A)A.R1=30 Ω,R2=15 ΩB.R1=Ω,R2=ΩC.R1=15 Ω,R2=30 ΩD.R1=Ω,R2=Ω二、填空题(每小题3分,共24分)13.当x=1时,分式的值为-1.14.同学解分式方程=0,得出原方程的解为x=2或x=-2.你认为他的解答对吗?请你作出判断:不对,并说明理由:因为当x=2时,分母为零,无意义,所以x=2是原方程的增根.15.请选择一组a,b的值,写出一个关于x的形如=b的分式方程,使它的解是x=0,这样的分式方程可以是=1(答案不唯一).16.为改善生态环境,防止水土流失,某村准备在荒坡上植树960棵,由于青年志愿者的支持,每天比原计划多植20棵,结果提前4天完成任务,原计划每天植树多少棵?设原计划每天植树x棵,由题意得方程-=4.17.若分式无意义,当-=0时,m=.18.规定a·b=-,若x·(x+2)=,则x为-1.19.研究10,12,15这三个数的倒数发现:-=-,我们称15,12,10这三个数为一组调和数.现有一组调和数:3,5,x(x>5),则x的值是15.20.观察分析下列方程:①x+=3,②x+=5,③x+=7.请利用它们所蕴含的规律,求关于x的方程x+=2n+4(n为正整数)的根,你的答案是:x=n+3或x=n+4.三、解答题(共40分)21.(每小题5分,共10分)解方程:(1)=-3;(2)+=.=-3,两边同乘(x-2),得1=x-1-3(x-2),解得x=2,经检验x=2是增根,所以原方程无解.(2)+=,两边同乘x(x-1),得3(x-1)+6x=7,9x=10,x=,经检验x=是原方程的根,所以原方程的根是x=.解方程=去分母,得4(2x-1)去括号,得8x-=1-3x-x=-(1)小明的解答有错吗?如果有错,请指出错在第几步?(写出序号即可)解方程x-=.小明的解答有错,错在第①步;(2)去分母,得x2+x-2=2x,即(x-2)(x+1)=0,解得x=2或x=-1,经检验x=-1是增根,故分式方程的解为x=2.23.(7分)“”称为二阶行列式,已知它的运算法则为=ad-bc,请你根据上述规定求出下列等式中x的值.=1.=1整理,得2×-=1,即+=1,得x=4.经检验x=4是原方程的解.〚导学号92034152〛24.(8分)某文化用品商店用2 000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6 300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?设第一批购进书包的单价是x元,则第二批购进书包的单价是(x+4)元.由题意得×3=,解得x=80,经检验x=80是原方程的根.答:第一批购进书包的单价是80元.(2)×(120-80)+×(120-84)=3 700(元).答:商店共盈利3 700元.25.(9分)阅读下面的材料:例:用换元法解分式方程:已知+=7.解:设y=,则原方程可化为y+=7,即y2-7y+10=0,解这个方程得y1=5,y2=2,由y1==5,得方程x2-5x=0,解得x1=0,x2=5;由y2==2,得方程x2-2x-3=0,解得x3=-1,x4=3;经检验x1=0,x2=5,x3=-1,x4=3都是原方程的解.学习例题的方法,请你用换元法解下面的分式方程:-5-6=0.=y,则原方程化为y2-5y-6=0,解得y1=6,y2=-1.当y1=6时,=6,解得x1=;当y2=-1时,=-1,解得x2=;经检验x1=,x2=都是原方程的根,即原方程的根是x1=,x2=.。
2 2 2 2 2一、选择题(共 40 分)2018 年中考模拟卷(2018.05.31)1. 下列各式中,计算结果为 1 的是( ). A .-2-1B .1 ÷ 1⨯ 22C . -12D .1-12. 如果和互为余角,那么下列表示的补角的式子中,错误的是( ).A.0o -B . 90o +C .2+D .+ 23. 如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图是( ).从正面看ABCD4. 下列式子中,可以表示为 2—3 的是( ).A .22÷25B .25÷22C .22×25D .(-2)×(-2)×(-2)5. △ABC 中,∠A ,∠B ,∠C 的度数之比为 2:1:1,则下列直线一定是△ABC 的对称轴的是( ).A. △ABC 的边 AB 的垂直平分线B .∠BAC 的角平分线所在的直线C .△ABC 的 AB 边上的中线所在的直线D .△ABC 的 AC 边上的高所在的直线6. 已知( -1)n = m ,若 m 是整数,则 n 的值可能是( ).A.B . -1C .1-D . +17. 如图,正方形网格中,每个小正方形的边长均为 1 个单位长度,A 、B 在格点上,现将线段 AB 向下平移 m 个单位长度,再向左平移 n 个单位长 度,得到线段 A ' B ',连接 A A ',B A ',若四边形 A A ' B ' B 是正方形, 则 m +n 的值是().A .3B .4C .5D .6第 7 题8. 若 A (x 1,y 1) 、B (x 2,y 2 ) 是某函数图象上的不同两点,且(x 1 - x 2 )( y 1 - y 2 ) < 0 .则该函数可能是( ).A . y = x 2 ( x > 0)B . y = 1 ( x < 0) xC . y = - 2 (x > 0) xD . y = x9. 若 x 1,x 2(x 1 <x 2)是方程(x -a )(x -b ) = 1(a < b )的两个根,则实数 x 1,x 2,a,b 的大小关系为( ).A .x 1<x 2<a <bB .x 1<a <x 2<bC .x 1<a <b <x 2D .a <x 1<b <x 210. 已知数据 x 1, x 2 , , x n 的平均数为 x ,数据 y 1, y 2 , , y m 的平均数为 y .( x ≠ y ).若数据x , x , , x , y , y , , y 的平均数 z = ax + (1- a ) y ,其中0 < a < 1.则 m ,n 的大小关系为( 1 2 n 1 2 m2). A. n = mB. n ≥ mC. n < mD. n > m二、填空题(共 24 分) 11.16 的算术平方根为.yAa212.截至 2016 年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600 亿美元。
2018年中考数学模拟试卷(六)一、选择题(共6小题,每小题3分,满分18分)1.﹣0.5的倒数为()A.2 B.0.5 C.﹣2 D.2.函数y=中,自变量x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x≠2 D.x≤﹣23.下列运算正确的有()A.5ab﹣ab=4 B.3﹣=3 C. +=D.a6÷a3=a34.图中几何体的左视图是()A.B.C.D.5.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20° B.25° C.40° D.50°6.若不等式组无解,则实数a的取值范围是()A.a≥﹣1 B.a<﹣1 C.a≤1 D.a≤﹣1二、填空题(每小题3分,共18分)7.计算:25的平方根是.8.已知a﹣b=1,则代数式2a﹣2b﹣3的值是.9.如图,P(12,a)在反比例函数图象上,PH⊥x轴于H,则tan∠POH的值为.10.如图,已知△ABC是一个水平放置圆锥的主视图,cos∠ACB=,AB=AC=5cm,则圆锥的侧面积为cm2.11.如图,直线l切⊙O于点A,点B是l上的点,连结BO并延长,交⊙O于点C,连结AC,若∠C=25°,则∠ABC等于°.12.已知抛物线y=2x2+bx+c与直线y=﹣1只有一个公共点,且经过A(m﹣1,n)和B(m+3,n),过点A,B分别作x轴的垂线,垂足记为M,N,则四边形AMNB的周长为.三、解答题13.计算:()﹣3÷﹣sin60°÷(π﹣10)0.14.解方程: +2=.15.已知:如图所示,在网格中建立平面直角坐标系,每个小正方形的边长都是1个单位长度,四边形ABCD 的各顶点均在格点上.(1)将四边形ABCD绕坐标原点O按顺时针方向旋转180°后得四边形A1B1C1D1;(2)将四边形A1B1C1D1平移,得到四边形A2B2C2D2,若D2(2,3),画出平移后的图形.16.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.17.如图,从点A看一山坡上的电线杆PQ,观测点P的仰角是45°,向前走6m到达B点,测得顶端点P 和杆底端点Q的仰角分别是60°和30°,求该电线杆PQ的高度.18.某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵,共花费265元(两次购进的A、B两种花草价格均分别相同).(1)A、B两种花草每棵的价格分别是多少元?(2)若购买A、B两种花草共31棵,且B种花草的数量少于A种花草的数量的2倍,请你设计一种费用最省的方案,并求出该方案所需费用.19.如图,在四边形ABCD中,AB∥CD,点E、F在对角线AC上,且∠ABF=∠CDE,AE=CF.(1)求证:△ABF≌△CDE;(2)当四边形ABCD满足什么条件时,四边形BFDE是菱形?为什么?20.“低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)21.如图,△ABC内接于⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC,交AC于点E,交PC于点F,连接AF.(1)求证:AF是⊙O的切线;(2)已知⊙O的半径为4,AF=3,求线段AC的长.22.如图,点A(1,6)和点M(m,n)都在反比例函数y=(x>0)的图象上,(1)k的值为;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM 的位置关系,并说明理由.23.已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.2018年中考数学模拟试卷(六)参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.﹣0.5的倒数为()A.2 B.0.5 C.﹣2 D.【考点】倒数.【分析】根据倒数的定义,互为倒数的两数乘积为1,﹣0.5×(﹣2)=1即可解答.【解答】解:根据倒数的定义得:﹣0.5×(﹣2)=1,因此﹣0.5的倒数是﹣2.故选C.【点评】本题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.函数y=中,自变量x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x≠2 D.x≤﹣2【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x+2≥0,解得x≥﹣2.故选:B.【点评】本题考查的知识点为:二次根式的被开方数是非负数.3.下列运算正确的有()A.5ab﹣ab=4 B.3﹣=3 C. +=D.a6÷a3=a3【考点】二次根式的加减法;合并同类项;同底数幂的除法;分式的加减法.【分析】根据合并同类项系数相加字母及指数不变;合并同类二次根式;分式的加减:先通分再加减,同底数幂的除法底数不变指数相减,可得答案.【解答】解:A、5ab﹣ab=4ab,故A错误;B、同类二次根式相加减,故B错误;C、+=,故C错误;D、同底数幂的除法底数不变指数相减,故D正确;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.4.图中几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从物体左面看,第一层3个正方形,第二层左上角1个正方形.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图,解答时学生易将三种视图混淆而错误地选其它选项.5.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20° B.25° C.40° D.50°【考点】切线的性质;圆心角、弧、弦的关系.【专题】几何图形问题.【分析】连接OA,根据切线的性质,即可求得∠C的度数.【解答】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故选:C.【点评】本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.6.若不等式组无解,则实数a的取值范围是()A.a≥﹣1 B.a<﹣1 C.a≤1 D.a≤﹣1【考点】解一元一次不等式组.【专题】计算题.【分析】分别求出各不等式的解集,再与已知不等式组无解相比较即可得出a的取值范围.【解答】解:,由①得,x≥﹣a,由②得,x<1,∵不等式组无解,∴﹣a≥1,解得:a≤﹣1.故选:D.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题(每小题3分,共18分)7.计算:25的平方根是±5 .【考点】平方根.【专题】计算题.【分析】根据平方根的定义,结合(±5)2=25即可得出答案.【解答】解:∵(±5)2=25∴25的平方根±5.故答案为:±5.【点评】本题考查了平方根的知识,属于基础题,解答本题的关键是掌握平方根的定义,注意一个正数的平方根有两个且互为相反数.8.已知a﹣b=1,则代数式2a﹣2b﹣3的值是﹣1 .【考点】代数式求值.【专题】计算题.【分析】将代数式2a﹣2b﹣3化为2(a﹣b)﹣3,然后代入(a﹣b)的值即可得出答案.【解答】解:2a﹣2b﹣3=2(a﹣b)﹣3,∵a﹣b=1,∴原式=2×1﹣3=﹣1.故答案为:﹣1.【点评】此题考查了代数式求值的知识,属于基础题,解答本题的关键是整体代入思想的运用.9.如图,P(12,a)在反比例函数图象上,PH⊥x轴于H,则tan∠POH的值为.【考点】锐角三角函数的定义;反比例函数图象上点的坐标特征.【分析】利用锐角三角函数的定义求解,tan∠POH为∠POH的对边比邻边,求出即可.【解答】解:∵P(12,a)在反比例函数图象上,∴a==5,∵PH⊥x轴于H,∴PH=5,OH=12,∴tan∠POH=,故答案为:.【点评】此题主要考查了反比例函数图象上点的坐标特征,锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.10.如图,已知△ABC是一个水平放置圆锥的主视图,cos∠ACB=,AB=AC=5cm,则圆锥的侧面积为15πcm2.【考点】圆锥的计算;解直角三角形;由三视图判断几何体.【分析】根据余弦函数的定义求出底面圆的半径,然后利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算此圆锥的侧面积.【解答】解:∵cos∠ACB=,AB=5cm,∴圆锥底面圆的半径=5×=3(cm),所以此圆锥的侧面积=•2π•3•5=15π(cm2).故答案为:15π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.11.如图,直线l切⊙O于点A,点B是l上的点,连结BO并延长,交⊙O于点C,连结AC,若∠C=25°,则∠ABC等于40 °.【考点】切线的性质.【分析】连接OA,由切线的性质可知∠BOA=90°,再根据三角形外角和定理可求出∠BOA的度数,进而可求出∠ABC的大小.【解答】解:∵直线l切⊙O于点A,∴OA⊥AB,∴∠BOA=90°,∵OA=OC,∴∠AOC=∠C=25°,∴∠BOA=50°,∴∠ABC=90°﹣50°=40°,故答案为:40.【点评】本题考查了圆的切线性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.12.已知抛物线y=2x2+bx+c与直线y=﹣1只有一个公共点,且经过A(m﹣1,n)和B(m+3,n),过点A,B分别作x轴的垂线,垂足记为M,N,则四边形AMNB的周长为22 .【考点】二次函数的性质.【专题】推理填空题.【分析】根据抛物线y=2x2+bx+c与直线y=﹣1只有一个公共点,可知该抛物线顶点的纵坐标是﹣1,由A(m ﹣1,n)和B(m+3,n),可得抛物线的对称轴和AB的长度,从而可以得到关于b,c的关系式,通过转化即可求得n的值,从而可以求得四边形AMNB的周长.【解答】解:y=2x2+bx+c=,∵抛物线y=2x2+bx+c与直线y=﹣1只有一个公共点,∴,得,∵抛物线y=2x2+bx+c经过A(m﹣1,n)和B(m+3,n),∴该抛物线的对称轴为:直线x==,∴b=﹣4(m+1),∴=2m2+4m+1,∴y=2x2+bx+c=2x2﹣4(m+1)x+2m2+4m+1,∴n=2×(m﹣1)2﹣4(m+1)(m﹣1)+2m2+4m+1=7,即AM=BN=7,∵A(m﹣1,n),B(m+3,n),∴AB=(m+3)﹣(m﹣1)=4,∴四边形AMNB的周长为是:AM+MN+NB+BA=7+4+7+4=22,故答案为:22.【点评】本题考查二次函数的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题13.计算:()﹣3÷﹣sin60°÷(π﹣10)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式利用零指数幂、负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=8÷2﹣3×÷1=4﹣=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.解方程: +2=.【考点】解分式方程.【分析】解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【解答】解: +2=去分母,得1+2(x﹣1)=﹣3解得x=﹣1检验:当x=﹣1时,x﹣1=﹣2≠0∴x=﹣1是原方程的解【点评】本题主要考查了解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以解分式方程一定要检验.15.已知:如图所示,在网格中建立平面直角坐标系,每个小正方形的边长都是1个单位长度,四边形ABCD 的各顶点均在格点上.(1)将四边形ABCD绕坐标原点O按顺时针方向旋转180°后得四边形A1B1C1D1;(2)将四边形A1B1C1D1平移,得到四边形A2B2C2D2,若D2(2,3),画出平移后的图形.【考点】作图-旋转变换;作图-平移变换.【专题】作图题.【分析】(1)根据网格结构找出点A、B、C、D绕点O顺时针旋转180°后的对应点A1、B1、C1、D1的位置,然后顺次连接即可;(2)根据网格结构找出点A1、B1、C1、D1平移后A2、B2、C2、D2的位置,然后顺次连接即可.【解答】解:(1)四边形A1B1C1D1如图所示;(2)四边形A2B2C2D2如图所示.【点评】本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.16.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为40 ,并把条形统计图补充完整;(2)扇形统计图中m= 10 ,n= 20 ,表示“足球”的扇形的圆心角是72 度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.【考点】条形统计图;扇形统计图;列表法与树状图法.【分析】(1)根据喜欢篮球的人数与所占的百分比列式计算即可求出学生的总人数,再求出喜欢足球的人数,然后补全统计图即可;(2)分别求出喜欢排球、喜欢足球的百分比即可得到m、n的值,用喜欢足球的人数所占的百分比乘以360°即可;(3)画出树状图,然后根据概率公式列式计算即可得解.【解答】解:(1)九(1)班的学生人数为:12÷30%=40(人),喜欢足球的人数为:40﹣4﹣12﹣16=40﹣32=8(人),补全统计图如图所示;(2)∵×100%=10%,×100%=20%,∴m=10,n=20,表示“足球”的扇形的圆心角是20%×360°=72°;故答案为:(1)40;(2)10;20;72;(3)根据题意画出树状图如下:一共有12种情况,恰好是1男1女的情况有6种,∴P(恰好是1男1女)==.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.17.如图,从点A看一山坡上的电线杆PQ,观测点P的仰角是45°,向前走6m到达B点,测得顶端点P 和杆底端点Q的仰角分别是60°和30°,求该电线杆PQ的高度.【考点】解直角三角形的应用-仰角俯角问题.【分析】延长PQ交直线AB于点E,设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE﹣BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ 的长度即可求解.【解答】解:延长PQ交直线AB于点E,设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BPE=30°在直角△BPE中,BE=PE=x米,∵AB=AE﹣BE=6米,则x﹣x=6,解得:x=9+3.则BE=(3+3)米.在直角△BEQ中,QE=BE=(3+3)=(3+)米.∴PQ=PE﹣QE=9+3﹣(3+)=6+2(米).答:电线杆PQ的高度是6+2米.【点评】本题考查了仰角的定义,以及三角函数,正确求得PE的长度是关键.18.某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵,共花费265元(两次购进的A、B两种花草价格均分别相同).(1)A、B两种花草每棵的价格分别是多少元?(2)若购买A、B两种花草共31棵,且B种花草的数量少于A种花草的数量的2倍,请你设计一种费用最省的方案,并求出该方案所需费用.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设A种花草每棵的价格x元,B种花草每棵的价格y元,根据第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵,共花费265元;列出方程组,即可解答.(2)设A种花草的数量为m棵,则B种花草的数量为(31﹣m)棵,根据B种花草的数量少于A种花草的数量的2倍,得出m的范围,设总费用为W元,根据总费用=两种花草的费用之和建立函数关系式,由一次函数的性质就可以求出结论.【解答】解:(1)设A种花草每棵的价格x元,B种花草每棵的价格y元,根据题意得:,解得:,∴A种花草每棵的价格是20元,B种花草每棵的价格是5元.(2)设A种花草的数量为m棵,则B种花草的数量为(31﹣m)棵,∵B种花草的数量少于A种花草的数量的2倍,∴31﹣m<2m,解得:m>,∵m是正整数,∴m最小值=11,设购买树苗总费用为W=20m+5(31﹣m)=15m+155,∵k>0,∴W随x的减小而减小,当m=11时,W最小值=15×11+155=320(元).答:购进A种花草的数量为11棵、B种20棵,费用最省;最省费用是320元.【点评】本题考查了列二元一次方程组,一元一次不等式解实际问题的运用,一次函数的解析式的运用,一次函数的性质的运用,解答时根据总费用=两种花草的费用之和建立函数关系式是关键.19.如图,在四边形ABCD中,AB∥CD,点E、F在对角线AC上,且∠ABF=∠CDE,AE=CF.(1)求证:△ABF≌△CDE;(2)当四边形ABCD满足什么条件时,四边形BFDE是菱形?为什么?【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)由平行线的性质得出∠BAC=∠DCA.证出AF=CE.由AAS证明△ABF≌△CDE即可;(2)先证明四边形ABCD是菱形,得出BD⊥AC,再证明四边形BFDE是平行四边形,即可得出结论.【解答】(1)证明:∵AB∥CD,∴∠BAC=∠DCA.∵AE=CF,∴AE+EF=CF+EF,即AF=CE.在△ABF和△CDE中,,又∵∠ABF=∠CDE,∴△ABF≌△CDE(AAS);(2)解:当四边形ABCD满足AB=AD时,四边形BEDF是菱形.理由如下:连接BD交AC于点O,如图所示:由(1)得:△ABF≌△CDE,∴AB=CD,BF=DE,∠AFB=∠CED,∴BF∥DE.∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形.又∵AB=AD,∴平行四边形ABCD是菱形.∴BD⊥AC.∵BF=DE,BF∥DE,∴四边形BEDF是平行四边形,∴四边形BEDF是菱形.【点评】本题考查了平行线的性质、平行四边形的判定、菱形的判定与性质、全等三角形的判定与性质;熟练掌握菱形的判定与性质,证明三角形全等是解决问题的关键.20.“低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)【考点】解直角三角形的应用.【分析】(1)根据勾股定理求出AD的长;(2)作EH⊥AB于H,求出AE的长,根据正弦的概念求出点E到车架AB的距离.【解答】解:(1)在Rt△ADF中,由勾股定理得,AD===15(cm;(2)AE=AD+CD+EC=15+30+15=60(cm),如图②,过点E作EH⊥AB于H,在Rt△AEH中,sin∠EAH=,则EH=AE•sin∠EAH=AB•sin75°≈60×0.97=58.2(cm).答:点E到AB的距离为58.2 cm.【点评】本题考查的是解直角三角形的知识,正确找出辅助线、掌握锐角三角函数的概念是解题的关键.21.如图,△ABC内接于⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC,交AC于点E,交PC于点F,连接AF.(1)求证:AF是⊙O的切线;(2)已知⊙O的半径为4,AF=3,求线段AC的长.【考点】切线的判定与性质;勾股定理;相似三角形的判定与性质.【分析】(1)连接OC,先证出∠3=∠2,由SAS证明△OAF≌△OCF,得对应角相等∠OAF=∠OCF,再根据切线的性质得出∠OCF=90°,证出∠OAF=90°,即可得出结论;(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE.【解答】(1)证明:连接OC,如图所示:∵AB是⊙O直径,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切线,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切线;(2)∵⊙O的半径为4,AF=3,∠OAF=90°,∴OF===5∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面积=AF•OA=OF•AE,∴3×4=5×AE,解得:AE=,∴AC=2AE=.【点评】本题考查了切线的判定、全等三角形的判定与性质、勾股定理、垂径定理以及三角形面积的计算;熟练掌握切线的判定,并能进行推理计算是解决问题的关键.22.如图,点A(1,6)和点M(m,n)都在反比例函数y=(x>0)的图象上,(1)k的值为 6 ;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM 的位置关系,并说明理由.【考点】反比例函数综合题.【专题】计算题;压轴题;数形结合.【分析】(1)将A坐标代入反比例解析式求出k的值即可;(2)由k的值确定出反比例解析式,将x=3代入反比例解析式求出y的值,确定出M坐标,设直线AM解析式为y=ax+b,将A与M坐标代入求出a与b的值,即可确定出直线AM解析式;(3)由MP垂直于x轴,AB垂直于y轴,得到M与P横坐标相同,A与B纵坐标相同,表示出B与P坐标,分别求出直线AM与直线BP斜率,由两直线斜率相等,得到两直线平行.【解答】解:(1)将A(1,6)代入反比例解析式得:k=6;故答案为:6;(2)将x=3代入反比例解析式y=得:y=2,即M(3,2),设直线AM解析式为y=ax+b,把A与M代入得:,解得:a=﹣2,b=8,∴直线AM解析式为y=﹣2x+8;(3)直线BP与直线AM的位置关系为平行,理由为:当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,∵A(1,6),M(m,n),且mn=6,即n=,∴B(0,6),P(m,0),∴k直线AM====﹣=﹣,k直线BP==﹣,即k直线AM=k直线BP,则BP∥AM.【点评】此题属于反比例函数综合题,涉及的知识有:待定系数法确定函数解析式,以及两直线平行与斜率之间的关系,熟练掌握待定系数法是解本题第二问的关键.23.已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.【考点】四边形综合题.【专题】压轴题.【分析】(1)由四边形ABCD为正方形,CE=DF,易证得△ADF≌△DCE(SAS),即可证得AF=DE,∠DAF=∠CDE,又由∠ADG+∠EDC=90°,即可证得AF⊥DE;(2)由四边形ABCD为正方形,CE=DF,易证得△ADF≌△DCE(SAS),即可证得AF=DE,∠E=∠F,又由∠ADG+∠EDC=90°,即可证得AF⊥DE;(3)首先设MQ,DE分别交AF于点G,O,PQ交DE于点H,由点M,N,P,Q分别为AE,EF,FD,AD的中点,即可得MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,然后由AF=DE,可证得四边形MNPQ是菱形,又由AF⊥DE即可证得四边形MNPQ是正方形.【解答】解:(1)上述结论①,②仍然成立,理由为:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(2)上述结论①,②仍然成立,理由为:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠CDE=∠DAF,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(3)四边形MNPQ是正方形.理由为:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,∴四边形OHQG是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ是菱形,∵AF⊥DE,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ是正方形.【点评】此题属于四边形的综合题,考查了正方形的判定与性质、全等三角形的判定与性质以及三角形中位线的性质.注意证得△ADF≌△DCE(SAS),掌握三角形中位线的性质是关键.。
2018年河北省初中毕业生升学考试数学模拟试卷(六)本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)注意事项:1.答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效. 一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的) ⒈) A .5-B .0C .3D⒉ 若点A (2,n )在x 轴上,则 点B (n -2 ,n +1)在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限⒊ 人的大脑每天能记录大约8600万条信息,数据8600用科学计数法表示为( )A . 40.8610⨯ B . 28.610⨯ C . 38.610⨯ D . 28610⨯ ⒋ 如图1,由四个棱长为“1”的立方块组成的几何体的左视图是( )⒌ 一只口袋里有红、绿、白三种颜色的小球,它们除颜色不同外其余都相同,已知其中有2 个绿球,5个白球.若从中任意摸出一个球是绿球的概率是51,则从中任意摸出一个球是红球的概率是( )图1 A . B . C . D .A.103B.C.101D.51⒍一次函数y kx b=+(k b,是常数,0k≠)的图象如图2所示,则不等式0kx b+>的解集是()A.2x>-B.0x>C.2x<-D.0x<⒎矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于()A.73757375...881616B C D⒏如图3,在反比例函数y=2x(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3=______.A.21B.1C.23D.2⒐如图4,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连结AO,如果AB=4,AO=26,那么AC的长等于()A.12B.16C. D.⒑如图5,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC,若∠ABC=45°,则下列结论正确的是()A. AC>ABB. AC=ABC. AC<ABD. AC=12BC图2xb+图3ABO图545°ABCEFO图42009年河北省初中毕业生升学考试数学模拟试卷(六)卷II (非选择题,共100分)注意事项:1.答卷II 前,将密封线左侧的项目填写清楚.2.答卷II 时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)11.计算:(1-2a )(2a -1)= . 12.比较大小:215- 21(填>,<,=).13.如图,l 1∥l 2, ∠α=__________度.14.一个角的补角比这个角的余角大 . 15.已知y =31x – 1,那么31x 2 – 2xy + 3y 2 – 2的值是 . 16.为了估计一个口袋中所装白球的个数,现将10个与白球除颜色不同外其余都相同的黑球装入袋中,搅匀,从中随机摸出一个球,记下颜色放回,共摸了200次,摸到黑球的次数是60次,则估计这个口袋中所装白球的个数大约为 个. 17.PA ,PB 分别是⊙O 的切线,A B ,为切点,AC 是⊙O 的直径,已知35BAC ∠=,P ∠的度数为( )18.观察下列各式: (x -1)(x+1)=x 2-1, (x -1)(x 2+x+1)= x 3-1, (x -1)(x 3+x 2+x+1)= x 4-1, …… 猜想:(x -1)(x 5+x 4+x 3+x 2+x+1)= . 图7图625° αl 1 l 2120°三、解答题(本大题共8个小题;共76分)19.(本小题满分7分)化简求值:222161816416x xx x x x⎛⎫-+÷⎪++--⎝⎭,其中1x=.20.(本小题满分7分)在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树的高度,设计的方案及测量数据如下:(1)如图8,在大树前的平地上选择一点A,测得由点A看大树顶端C的仰角为35°;(2)在点A和大树之间选择一点B(A、B、D在同一直线上),测得由点B看大树顶端C的仰角恰好为45°;(3)量出A、B两点间的距离为4.5米.请你根据以上数据求出大树CD的高度.(可能用到的参考数据:sin35°≈0.57 cos35°≈0.82 tan35°≈0.70)试试基本功解答应写出文字说明、证明过程或演算步骤.请你一定要注意噢!ABCD图821.(本小题满分8分)某商场对今年端午节这天销售A 、B 、C 三种品牌粽子的情况进行了统计,绘制如图9-1和图9-2所示的统计图.根据图中信息解答下列问题:(1)哪一种品牌粽子的销售量最大? (2)补全图9-1中的条形统计图.(3)写出A 品牌粽子在图9-2中所对应的圆心角的度数. (4)根据上述统计信息,明年端午节期间该商场对A 、B 、C 三种品牌的粽子如何进货? 请你提一条合理化的建议.22.(本小题满分10分)某市的一家报刊摊点从报社买进一种晚报,其价格为每份0.5元,卖出的价格为每份0.9元,卖不掉的报纸可以以每份0.2元的价格退回报社.在一个月内(以30天计算)有10天每天可卖出100份,其余时间每天只能卖出70份,但每天从报社买进的报纸的份数必须相同,设这家报刊摊点每天从报社买进晚报x 份,每月所获得的利润为y 元. (1)求y 关于x 的函数关系式,并写出x 的取值范围;(2)当x 为何值时,报刊摊点每月所获得的利润最大?是多少元? 判断与决策图 7图 6图9-1图9-223.(本小题满分10分)正方形ABCD 中,点O 是对角线AC 的中点,P 是对角线AC 上一动点,过点P 作PF ⊥CD 于点F 。
如图10-1,当点P 与点O 重合时,显然有DF =CF . ⑴如图10-2,若点P 在线段AO 上(不与点A 、O 重合),PE ⊥PB 且PE 交CD 于点E 。
①求证:DF =EF ;②写出线段PC 、PA 、CE 之间的一个等量关系,并证明你的结论; ⑵若点P 在线段OC 上(不与点O 、C 重合),PE ⊥PB 且PE 交直线CD 于点E 。
请完成图10-3并判断⑴中的结论①、②是否分别成立?若不成立,写出相应的结论(所写结论均不必证明)猜想与推理图10-1图10-2 图10-324.(本小题满分10分)已知,图11—1是一个边长为8cm 的正方形ABCD ,线段AG ,EF 将正方形ABCD 分为三部分:Rt △ADG ,Rt △AEF 和五边形BEFGC ,且AE =CG =1.动手操作:(1)小明将一张边长为8cm 的正方形纸片,分成了符合上述要求的三部分,并重新进行了拼合,得到了如图11—2的一个宽为7的长方形,你能拼接成这样的长方形吗?如果能,请你在图2—17中画出拼接方式,(拼接痕迹用虚线表示);如果不能,请说明理由.(2)小明将自己拼合的长方形和正方形比较后,得出下面结论:长方形的面积比正方形的面积小1cm 2,你认为小明的结论正确吗?如果不正确,请说明你的正确结论.通过计算长方形的面积与正方形的面积,说明你的结论的正确性.操作与探究 C AB D G FE 图11—1 图11—225.(本小题满分12分)图12是正在修建的某隧道的截面,截面是由一段抛物线EHF (H 是抛物线的最高点)和一矩形ABFE 构成,其行车道CD 总宽度为8米,隧道为双向行驶的两车道.(1)在如图所示的直角坐标系中,求出拱顶所在抛物线的解析式. (2)在隧道拱的两侧距地面3米高处各安装一盏路灯,写出路灯所在位置的点的坐标. (3)为了保证行车安全,要求行驶车辆顶部(设为平顶),与隧道拱在竖直方向上高度之差至少有0.5米.现有一辆汽车,装满货物后,其宽度为4米,车载货物的顶部与地面的距离为2.5米,问该车能否顺利通过这个隧道?请说明理由.综合与应用 图1226.(本小题满分12分)已知:Rt △ABC 中∠C=90°,∠A=30°,斜边AB=103cm ,矩形DEFG 的长EF=103cm ,宽DE=6cm ,现Rt △ABC 不动,点F 与点A 重合,EF 与AB 在一条直线上,矩形DEFG 从点A 出发沿直线AB 以每秒1cm 的速度向B 点移动(如图13—1),直到点F与点B 重合为止.设移动时间为t 秒,矩形DEFG 与Rt △ABC 重合部分的面积为s (cm 2).(1)求当t=1秒及t=103秒时s 的值;(2)①当0秒<t ≤63秒时,求s 与t 的函数关系式;②当63秒<t ≤83秒时,求s 与t 的函数关系式; ③当83秒<t ≤103秒时,求s 与t 的函数关系式.备用图1备用图2图13—12009年河北省初中毕业生升学考试数学模拟试题(六)参考答案一、选择题(每小题2分,共20分)11.-4a 2+4a -1;12.>;13.95°;14.90°;15.1;16.23;17.70°; 18.x 6-1.三、解答题(共76分) 19.解:原式22416x x =-+.当1x =时,原式21)1)16=-+18=.20.解:在ACD Rt ∆中,035tan CDAD =在BCD Rt ∆中,045tan CDBD =而5.4=-BD AD即5.445tan 35tan 00=-CDCD 解得:5.10=CD所以大树的高为5.10米…21.解: (1)C 品牌. (2)略.(B 品牌的销售量是800个) (3)60°. (4)略.22.解:(1)y=10 x ×0.4+20×70×0.4-(30x -10x -20×70)×0.3 =980-2x ; 其中70≤x ≤100;(2)因为y 值随x 值的增大而减小,所以当x=70时,y 值最大,为840元.即每天从报社买进晚报70份,每月所获得的利润最大,为840元. 23.⑴ ① 略;②PC -PA ;⑵结论①仍成立;结论②不成立,此时②中三条线段的数量关系是PA -PC ;24.解:(1)如图2.(2)不正确.长方形的面积与正方形的面积相等.正方形的面积为8864⨯=.在图1中,△CGH ∽HFD ,∴CG CHDH DF=. 可得,87CH =,∴长方形的面积为:8(8)7647+⨯=. ∴长方形的面积与正方形的面积相等.25.(1)设抛物线的解析式为2y ax b =+,由H (0,5),F (5,2)得:解析式为23525y x =-+; (2)当y =3时,233525x =-+,解得:x =, ∴,3)和(,3);(3)能顺利通过这个隧道.当x =4时,3771652525y =-⨯+= ,∵772.50.525>+, ∴能顺利通过这个隧道.26.(1)当t=1秒时(如图2—1),AF=1,HF=33, ∴s=21×AF×HF=63.当t=103秒时(如图2—2),EF与AB重合,作HN⊥AB于N,作PK⊥AB于K, AN=63,BK=23,∴HP=NK=23,∴s=21×(HP+AB)×6=363.图2—1(E )(F )图2—2图1(2)①当0秒<t ≤63秒时(如图2—1), AF=t,HF=33t, ∴s=21×AF×HF=63t2. ②当63秒<t ≤83秒时(如图2—3), 作HN⊥AB于N,则AN=63, NF=t-63, ∴s=21×AN×HN+HN×NF =6t -183.③当83秒<t ≤103秒时(如图2—4), 作HN⊥AB于N,作PK ⊥AB于K , 则HP=23,BF=103-t , OF=BF ×tan60°=30-3t , ∴s=21×(HP+AB)×6-21×BF ×OF =21×(23+103)×6-21×(103-t )×(30-3t ) =-2×(103-t )2 +363.图2—3图3—4。