2.3 直线、平面垂直的判定及其性质 教学设计 教案
- 格式:docx
- 大小:91.58 KB
- 文档页数:4
2.3.1 直线与平面垂直的判定壶关一中杨贺强教材分析空间中直线与平面的三种位置关系中,垂直是相交时的一种非常重要的位置关系。
它不仅应用较多,而且是空间问题平面化的典范。
直线与平面的垂直问题是连接“线线垂直”和“面面垂直”的桥梁和纽带,可以说线面垂直是立体几何问题的重要考点之一。
三维目标(知识与技能):探究直线与平面垂直的判定定理,培养学生的空间想象能力。
(过程与方法):掌握直线与平面垂直的判定定理的应用,培养学生分析问题、解决问题的能力。
(情感态度与价值观):让学生明确直线与平面垂直在立体几何中的重要地位。
重点难点教学重点:直线与平面垂直的判定。
教学难点:灵活应用“直线与平面垂直判定定理”解决问题。
教学过程,板书设计1、探究“直线与平面垂直的定义”。
2、探究“直线与平面垂直的判定定理”。
3、使用三种语言(文字、图形、符号)描述直线与平面垂直的判定定理。
4、探究斜线在平面内的射影,讨论“直线与平面所成的角”。
教学过程一、回顾复习,情境导入已经学过的直线与平面的位置关系有哪些?-----垂直是相交时的特殊情况。
在日常生活中,我们对直线与平面垂直有很多感性认识,比如,旗杆与地面的位置关系,大桥的桥柱与水面的位置关系等,都给我们以直线与平面垂直的印象。
二、新知探究(小组活动):(一)直线与平面垂直的定义问题1:(由第1小组学生回答)你能给出直线和平面垂直的定义吗?回忆一下直线与直线垂直是如何定义的?设计意图:两直线垂直有相交垂直和异面垂直,而异面直线垂直是转化为两直线相交垂直,实质上是将空间问题转化为平面问题,让学生回忆直线与直线垂直的定义,旨在由此得到启发:用“平面化”的思想来思考问题,即能否用一条直线垂直于一个平面内的直线,来定义这条直线与这个平面垂直?问题2:(由第2小组学生回答)结合对下列问题的思考,试着给出直线和平面垂直的定义。
(1)阳光下,旗杆AB与它在地面上的影子BC所成的角度是多少?(2)随着太阳的移动,影子BC的位置也会移动,而旗杆AB与影子BC所成的角度是否会发生改变?(3)旗杆AB与地面上任意一条不过点B的直线B1C1的位置关系如何?依据是什么?(学生叙写定义,并建立文字、图形、符号这三种语言的相互转化)。
2.3.1直线与平面垂直的判定(一)漳浦一中 高中数学 杨琳琳一、教学目标1.通过对图片的观察,从熟知的生活中的事物中提炼、概括出直线与平面垂直的定义和判定定理,进而结合图形用抽象化的数学语言总结、表述出直线与平面垂直的判定定理;2.通过直观感知,操作确认,归纳直线与平面垂直判定的定理,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念。
二、教学重点、难点1.教学重点:概括出直线与平面垂直的定义和判定定理。
2.教学难点:概括出直线与平面垂直的判定定理及运用。
三、教学方法启发式教学四、教学过程设计定义形成部分师:同学们,我们先观察一下以下的图片,说出旗杆与地面、显示器的侧边与桌面有什么位置关系?师:请同学们再看看门的边缘与地面是什么关系呢?师:经过我们的观察,我们发现旗杆与地面、大桥的桥柱和水面都是垂直的关系,不过我们现在要用数学的眼光来观察、分析、研究这些事物,我们先观察第1个图。
将旗杆(是许多事物的代表)看成直线l ,将地面(也是许多事物的代表)看成平面α,今天就来研究直线l 与平面α垂直的有关知识。
定义:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直,记作:l ⊥α.直线 l 叫做平面α的垂线,平面α叫做直线l 它们唯一的公共点P 叫做垂足。
用符号语言表示为: 设计意图:从实际出发,看做平面α,旗杆看做l ,有具体到抽象,引导学生完成抽象与具体之间的相互转换.m l l m αα⊂⎫⇒⊥⎬⊥⎭师:现在我们已经学习了,直线与平面垂直的性质,那我们来看看以下的说法正确吗?①如果一条直线垂直于一个平面内的无数条直线,那么这条直线就与这个平面垂直。
②直线与平面内的无数条直线垂直,能判定这条直线与这个平面垂直吗? ③若a ⊥α,b ⊂α,则a ⊥b 。
设计意图:通过练习强化对概念的理解,突出概念里重要元素。
③在考察对垂直概念的理解以外还把具体的文字语言改为用数学语言表示,再次教育学生习惯数学语言,把具体问题抽象化。
2.3.3 直线与平面垂直的性质 2.3.4 平面与平面垂直的性质【课标要求】1.掌握直线与平面垂直,平面与平面垂直的性质定理. 2.能运用性质定理解决一些简单问题. 【核心扫描】1.线面垂直、面面垂直性质定理的应用.(重点) 2.线线、线面、面面垂直关系的相互转化.(难点)新知导学1.温馨提示:线与直线平行的结论.(2)该定理可用来判定两直线平行,揭示了“平行”与“垂直”这两种特殊位置关系之间的转化.温馨提示 其他性质(1)如果两个平面垂直,那么经过第一个平面内一点且垂直于第二个平面的直线在第一个平面内.即α⊥β,A ∈α,A ∈b ,b ⊥β⇒b ⊂α.(2)如果两个平面互相垂直,那么其中一个平面的垂线平行于另一个平面或在另一个平面内.即α⊥β,b ⊥β⇒b ∥α或b ⊂α.互动探究探究点1 垂直于同一直线的两个平面有什么关系? 提示 平行(可用此结论判定面面平行).探究点2 两个平面均垂直于一个平面,这两个平面有什么关系? 提示 关系不能确定,平行、相交(垂直)都有可能.类型一利用线面垂直性质定理证平行问题【例1】如图所示,在正方体A1B1C1D1-ABCD中,EF与异面直线AC,A1D都垂直相交.求证:EF∥BD1.[思路探索]分别证明EF、BD都垂直平面ACB1即可.1证明如图所示:连接AB1,B1D1,B1C1,BD.∵DD1⊥平面ABCD,AC⊂平面ABCD,∴DD1⊥AC.又AC⊥BD,DD1∩BD=D,∴AC⊥平面BDD1B1.又BD1⊂平面BDD1B1,∴AC⊥BD1.同理可证BD1⊥B1C.又B1C∩AC=C,∴BD1⊥平面AB1C.∵EF⊥AC,EF⊥A1D,又A1D∥B1C,∴EF⊥B1C.又AC∩B1C=C,∴EF⊥平面AB1C,∴EF∥BD1.[规律方法]线面垂直的性质是证明线线平行的方法之一,还可进而证明线面、面面平行.【活学活用1】如图所示,△ABC是正三角形,AE和CD都垂直于平面ABC,且AE =AB=2a,CD=a,F为BE的中点.求证:DF∥平面ABC.证明取AB的中点G,连接FG、GC,则FG为△BEA中位线,∴FG∥AE.∵AE⊥平面ABC,FG∥AE,∴FG⊥平面ABC.∵FG⊥平面ABC,CD⊥平面ABC,∴FG ∥CD .又FG =12AE =CD =a .∴四边形CDFG 为平行四边形,FD ∥CG .∵FD ∥CG .CG ⊂平面ABC ,∴DF ∥平面ABC . 类型二 利用面面垂直的性质定理证垂直问题【例2】 如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面. 已知α⊥γ,β⊥γ,α∩β=l . 求证:l ⊥γ.[思路探索] 根据直线和平面垂直的判定定理,可在γ内构造两相交直线分别与平面α,β垂直;或者由面面垂直的性质易在α,β内作出平面γ的垂线,再设法证明l 与其平行即可.证明 法一 在γ内取一点P ,作P A 垂直α与γ的交线于A ,PB 垂直β与γ的交线于B ,则P A ⊥α,PB ⊥β.∵l =α∩β,∴l ⊥P A ,l ⊥PB .又P A ∩PB =P ,且P A ⊂γ,PB ⊂γ, ∴l ⊥γ.法二 在α内作直线m 垂直于α与γ的交线,在β内作直线n 垂直于β与γ的交线, ∵α⊥γ,β⊥γ,∴m ⊥γ,n ⊥γ.∴m ∥n .又n ⊂β,∴m ∥β.又m ⊂α,α∩β=l , ∴m ∥l .∴l ⊥γ.[规律方法] 面面垂直的性质是作平面的垂线的重要方法,因此,在有面面垂直的条件下,若需要平面的垂线,要首先考虑面面垂直的性质.【活学活用2】 如图,在三棱锥P ABC 中,P A ⊥平面ABC ,平面P AB ⊥平面PBC .求证:BC ⊥AB .证明 在平面P AB 内,作AD ⊥PB 于D . ∵平面P AB ⊥平面PBC , 且平面P AB ∩平面PBC =PB .∴AD ⊥平面PBC .又BC ⊂平面PBC ,∴AD ⊥BC .又∵P A ⊥平面ABC ,BC ⊂平面ABC , ∴P A ⊥BC ,∴BC ⊥平面P AB . 又AB ⊂平面P AB ,∴BC ⊥AB .类型三 利用面面垂直的性质定理求二面角【例3】 在平面四边形ABCD 中,已知AB =BC =CD =a ,∠ABC =90°,∠BCD =135°,沿AC 将四边形折成直二面角B -AC -D .(1)求证:平面ABC ⊥平面BCD ;(2)求平面ABD 与平面ACD 所成的角的度数. [思路探索] 关于折叠问题,关键明确在折叠前后哪些量发生变化,如线与线的位置关系,角的大小等,要抓住不变量来解题.(1)证明 如图所示,其中图(1)是平面四边形,图(2)是折后的立体图.在四边形ABCD 中, ∵AB =BC ,AB ⊥BC , ∴∠ACB =45°,而∠BCD =∠ACB +∠ACD =135°, ∴∠ACD =90°,即CD ⊥AC .又平面ABC 与平面ACD 的二面角的平面为直角,且平面ABC ∩平面ACD =AC ,∴CD ⊥平面ABC ,又CD ⊂平面BCD ,∴平面ABC ⊥平面BCD . (2)解 过点B 作BE ⊥AC ,E 为垂足,则BE ⊥平面ACD . 又过点E 在平面ACD 内作EF ⊥AD ,F 为垂足,连接BF . 由已知可得BF ⊥AD , ∴∠BFE 是二面角B -AD -C 的平面角.∵E 为AC 的中点,∴AE =12AC =22a .又sin ∠DAC =CD AD =33,EF =33AE ,∴EF =22a ·33=66a ,tan ∠BFE =BEEF= 3.∴∠BFE =60°,即平面ABD 与平面ACD 所成的角的度数为60°.[规律方法] 当一个平面与二面角的一个面垂直时,常利用面面垂直的性质作出二面角面的垂线,而作出平面角.【活学活用3】 如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 为正方形,且P A =AD =2,E 、F 分别为AD 、PC 中点.(1)求异面直线EF 和PB 所成角的大小; (2)求证:平面PCE ⊥平面PBC ; (3)求二面角E -PC -D 的大小.(1)解 如图,取PB 的中点G ,连接FG 、AG , ∵E 、F 分别为AD 、PC 中点,∴FG 綉12BC ,AE 綉12BC ,∴FG 綉AE ,∴四边形AEFG 是平行四边形,∴AG ∥FE ,∵P A =AD =AB ,∴AG ⊥PB ,即EF ⊥PB , ∴EF 与PB 所成的角为90°.(2)证明 由(1)知AG ⊥PB ,AG ∥EF , ∵P A ⊥平面ABCD ,∴BC ⊥P A , ∵BC ⊥AB ,AB ∩BC =B , ∴BC ⊥平面P AB ,∴BC ⊥AG ,又∵PB ∩BC =B , ∴AG ⊥平面PBC , ∴EF ⊥平面PBC , ∵EF ⊂平面PCE ,∴平面PCE ⊥平面PBC .(3)解 作EM ⊥PD 于点M ,连接FM , ∵CD ⊥平面P AD ,∴CD ⊥EM , ∴EM ⊥平面PCD ,EM ⊥PC ,由(2)知EF ⊥平面PBC ,∴EF ⊥PC , 又EM ∩EF =E , ∴PC ⊥平面EFM , ∴FM ⊥PC ,∴∠MFE 是二面角E -PC -D 的平面角或其补角.∵P A =AD =2,∴EF =AG =2,EM =22,∴sin ∠MFE =EM EF =12,∴∠MEF =30°,即二面角E -PC -D 的大小为30°. 方法技巧 转化思想在垂直关系转换中的应用 线线垂直、线面垂直和面面垂直的转换关系如下:当证明垂直关系时,要灵活地应用垂直之间的转换关系.当运用平面垂直的性质定理时,一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,这样把面面垂直转化为线面垂直或线线垂直.【示例】 如图所示,在四棱锥V -ABCD 中,底面四边形ABCD 是正方形,侧面三角形VAD 是正三角形,平面VAD ⊥底面ABCD .(1)证明AB ⊥平面VAD ;(2)求面VAD 与面VDB 所成的二面角的平面角的正切值. [思路分析] (1)用面面垂直的性质 (2)由(1)利用垂线法作平面角.(1)证明 ∵底面四边形ABCD 是正方形, ∴AB ⊥AD .又∵平面VAD ⊥底面ABCD ,AB ⊂平面ABCD ,且平面VAD ∩平面ABCD =AD , ∴AB ⊥平面VAD .(2)解 如图所示,取VD 的中点E ,连接AE ,BE . ∵△VAD 是正三角形,∴AE ⊥VD ,AE =32AD .∵AB ⊥平面VAD , ∴AB ⊥VD .又∵AE ∩AB =A , ∴VD ⊥平面ABE .∴BE ⊥VD .因此∠AEB 就是所求二面角的平面角,于是tan ∠AEB =233.[题后反思] 证明垂直问题,要结合条件充分利用已知或证出的垂直关系的性质灵活地进行垂直间的转化.课堂达标1.平面α⊥平面β,a⊥α,则有().A.a∥βB.a∥β或a⊂βC.a与β相交D.a⊂β解析由已知易得:a∥β或a⊂β.答案 B2.(2012·济宁高一检测)已知平面α⊥平面β,则以下说法正确的个数是().①平面α内的直线必垂直平面β内的无数条直线;②在平面β内垂直于平面α与平面β的交线的直线必垂直于α内的任意一条直线;③α内的任意一条直线必垂直于β;④过β内的任意一点作平面α与平面β的交线的垂线,此直线必垂直于α.A.4 B.3C.2 D.1解析①②正确,③④不正确.答案 C3.已知a、b为直线,α、β为平面.在下列四个命题中,正确的命题是________.①若a⊥α,b⊥α,则a∥b;②若a∥α,b∥α,则a∥b;③若a⊥α,a⊥β,则α∥β;④若α∥b,β∥b,则α∥β.解析由“垂直于同一平面的两直线平行”知①真;由“平行于同一平面的两直线平行或异面或相交”知②假;由“垂直于同一直线的两平面平行”知③真;易知④假.答案①③4.已知α、β、γ是三个互不重合的平面,l是一条直线,给出下列四个命题:①若α⊥β,l⊥β,则l∥α;②若l⊥α,l∥β,则α⊥β;③若l上有两个点到α的距离相等,则l∥α;④若α⊥β,α∥γ,则γ⊥β.其中正确命题的序号是________.解析①也可能是直线l⊂α;②正确;③中的两个点可以在平面的两侧;④正确.答案②④5.如图,在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,P A⊥平面ABCD,且P A =AB,点E是PD的中点.(1)求证:AC⊥PB;(2)求证:PB∥平面AEC;(3)求二面角E-AC-B的大小.(1)证明(1)由P A⊥平面ABCD可得P A⊥AC.又AB⊥AC,所以AC⊥平面P AB,所以AC⊥PB.(2)证明如图,连接BD交AC于点O,连接EO,则EO是△PDB的中位线,∴EO∥PB.又EO⊂平面AEC,PB⊄平面AEC,∴PB∥平面AEC.(3)解如图,取AD的中点F,连接EF,FO,则EF是△P AD的中位线,∴EF∥P A.又P A⊥平面ABCD,∴EF⊥平面ABCD.同理,FO 是△ADC 的中位线, ∴FO ∥AB ,∴FO ⊥AC . 因此,∠EOF 是二面角E -AC -D 的平面角.又FO =12AB =12P A =EF ,∴∠EOF =45°.而二面角E -AC -B 与二面角E -AC -D 互补,故所求二面角E -AC -B 的大小为135°.课堂小结1.直线与平面垂直的性质定理是平行关系与垂直关系的完美结合,利用垂直关系可判断平行,反过来由平行关系也可判定垂直,即两条平行直线中的一条垂直于一个平面,则另一条直线也垂直于这个平面.2.面面垂直的性质定理是判断线面垂直的又一重要定理.3.灵活进行线线、线面、面面垂直关系之间的转换,是判定和运用垂直关系的关键.。
《空间中直线、平面的垂直关系》教学设计一、教材内容解析本节课的内容是探究空间直线与平面、平面与平面垂直的性质,选自人教A 版教材《2.3.3 直线与平面垂直的性质》和《2.3.4 平面与平面垂直的性质》。
空间中直线、平面的垂直关系是一种非常重要的的位置关系,它不仅应用广泛,而且是空间问题平面化的典范。
这类问题求解的关键是根据线面、面面之间的互化关系,借助创设辅助线和面,找出符号语言和图形语言之间的关系。
通过对有关概念和定理的概括、证明和应用,使学生体会“转化”的观点,提高学生的空间想象力和逻辑推理能力。
本节内容是学习了线面垂直和面面垂直判定之后的进一步探究,进一步巩固“观察模型——直观感知——操作确认——推理证明——拓展应用”定理学习模式,培养学生空间概念,空间想象能力以及逻辑推理能力。
二、教学目标设置根据本课教材的特点,新大纲对本节课的教学要求,结合学生身心发展的合理需要,确定以下教学目标:(1)知识与技能目标:①让学生在观察物体模型的基础上,进行操作确认,获得对性质定理的正确认识;②会证明性质定理,并能运用性质定理解决一些简单问题。
(2)过程与方法目标:①通过“直观感知、操作确认,推理证明”,培养学生逻辑推理能力;②了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系,掌握转化思想在解决问题中的运用;③通过类比空间中直线与平面的平行关系、平面与平面的平行关系的学习方法来探究本节课中的垂直关系。
(3)情感态度与价值观目标:①让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣;②提高学生的合情推理能力和空间想象力,培养学生的质疑思辨、创新精神;③进一步体会几何中的公理化体系,提升学生的科学素养。
教学重点:学生经历“观察模型——直观感知——操作确认——推理证明——拓展应用”定理学习过程,培养空间想象能力和逻辑推理能力,感悟数学中的“转化”的思想,并能类比此方法用于其它数学命题的学习,解决更多的生活中的实际问题,所以性质定理的发现及证明是本节课的重点。
必修2 2.3 线、面垂直的判定及其性质教案2.3.1 直线与平面垂直的判定一、知识梳理1、线与面垂直的定义如果一条直线与一个平面相交,并且和这个平面内的任意一条直线都垂直,我们就说这条直线与这个平面垂直。
问:如果一条直线垂直于一个平面内的无数条直线,那么这条直线是否与这个平面垂直?2、线与面垂直的判定判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
(线线垂直⇒线面垂直)(线线垂直⇒线面垂直⇒线线垂直)3、射影定理一条直线PA和一个平面α相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A叫做斜足。
在斜线上取一点(除斜足外)向平面引垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平面上的斜影。
斜线与斜影所构成的锐角叫做这条直线和这个平面所成的角。
因此线与面所成的角的范围是。
如果这个平面内有一条直线与这个平面的斜线的斜影垂直,那么这条直线就与这条斜线垂直。
(正方体中经常用)4、过一点有条直线和一个平面垂直。
过一点有个平面和一条直线垂直。
二、例题如右图,已知R t△ABC所在平面外一点S,且SA=SB=SC,点D为斜边AC的中点。
(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC。
三、练习1、如图,AB是⊙O的直径,PA垂直于⊙O所在平面,C是圆周上不同于A、B的一点,过A作AE⊥PC,再过E作EF⊥PB。
求证:PB⊥AF。
2、下列命题中正确的个数是()①如果直线l与平面α内的无数条直线垂直,则l⊥α②如果直线l与平面α内一条直线垂直,则l // α③如果直线a不垂直于平面α,则平面α内没有与直线a垂直的直线④如果直线a不垂直于平面α,则平面α内也可以有无数条直线与直线a垂直A、0B、1C、2D、33、空间四边形的四条边相等,那么它的对角线()A、相交且垂直B、不相交也不垂直C、相交不垂直D、不相交但垂直4、如图,S是△ABC所在平面外一点,SA⊥SB,SC⊥SB,SA⊥SC,H是△ABC的垂心。
直线与平面垂直的判定教案一、教案概要1.教学目标:了解直线与平面垂直的定义和性质,掌握判定直线与平面垂直的方法。
2.教学重点:掌握垂直的概念和性质。
3.教学难点:掌握判定直线与平面垂直的方法。
4.教学方法:讲解法、示范法、练习法。
5.教学工具:黑板、彩色粉笔、投影仪、多媒体教学课件。
二、教学内容1.直线与平面垂直的定义和性质。
2.判定直线与平面垂直的方法。
三、教学过程1.导入(10分钟)通过展示一些与平面垂直的事物,引出直线与平面垂直的概念,让学生了解直线与平面垂直的概念和性质。
2.讲解与示范(20分钟)通过黑板、投影仪或多媒体教学课件展示直线与平面垂直的定义和性质,让学生了解直线与平面垂直的特点和性质。
3.判定直线与平面垂直的方法(30分钟)(1)垂直的定义:直线与平面相交的角为90度。
(2)判定方法:根据两个性质来判定直线与平面垂直。
性质1:过直线一点且垂直于直线的直线与这个平面垂直。
性质2:过直线与平面有2点的直线与这个平面垂直。
通过讲解与示范,让学生理解垂直的定义和两个判定方法。
4.练习与巩固(30分钟)根据教师提供的习题和案例,让学生进行练习和巩固,检验学生对判定直线与平面垂直方法的掌握情况。
五、总结(10分钟)对本节课的重点和难点进行总结,并强调直线与平面垂直的概念和性质在几何学中的重要性。
六、布置作业(5分钟)布置作业,要求学生进一步巩固判定直线与平面垂直的方法,掌握几何图形的性质。
七、教学反思通过本节课的教学,学生对直线与平面垂直的定义和性质有了初步的了解,并且掌握了判定直线与平面垂直的方法。
通过练习和巩固,学生的理解和运用能力也得到了提高。
但是在教学过程中,应该注重激发学生的学习兴趣,增加互动性,让学生更加主动参与到教学中。
教学准备
1. 教学目标
1、知识与技能
(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;
(2)使学生掌握两个平面垂直的判定定理及其简单的应用;
(3)使学生理会“类比归纳”思想在数学问题解决上的作用。
2、过程与方法
(1)通过实例让学生直观感知“二面角”概念的形成过程;
(2)类比已学知识,归纳“二面角”的度量方法及两个平面垂直的判定定理。
2. 教学重点/难点
通过揭示概念的形成、发展和应用过程,使学生理会教学存在于观实生活周围,从中激发学生积极思维,培养学生的观察、分析、解决问题能力。
3. 教学用具
投影仪等.
4. 标签
数学,立体几何
教学过程
(一)创设情景,揭示课题
问题1:平面几何中“角”是怎样定义的?
问题2:在立体几何中,“异面直线所成的角”、“直线和平面所成的角”又是怎样定义的?它们有什么共同的特征?
以上问题让学生自由发言,教师再作小结,并顺势抛出问题:在生产实践中,有许多问题要涉及到两个平面相交所成的角的情形,你能举出这个问题的一些例子吗?如修水坝、发射人造卫星等,而这样的角有何特点,该如何表示呢?下面我们共同来观察,研探。
(二)研探新知
1、二面角的有关概念
老师展示一张纸面,并对折让学生观察其状,然后引导学生用数学思维思考,
并对以上问题类比,归纳出二面角的概念及记法表示(如下表所示)
2、二面角的度量
二面角定理地反映了两个平面相交的位置关系,如我们常说“把门开大一些”,是指二面角大一些,那我们应如何度量二两角的大小呢?师生活动:师生共同
做一个小实验(预先准备好的二面角的模型)在其棱上位取一点为顶点,在两
个半平面内各作一射线(如图2.3-3),通过实验操作,研探二面角大小的度
量方法——二面角的平面角。
教师特别指出:
(1)在表示二面角的平面角时,要求“OA⊥L”,OB⊥L;
(2)∠AOB的大小与点O在L上位置无关;
(3)当二面角的平面角是直角时,这两个平
做法:教师引导学生分析题意,先让学生自己动手推理证明,然后抽检学生掌握情况,教师最后讲评并板书证明过程。
(四)运用反馈,深化巩固
问题:课本P.73的探究问题
做法:学生思考(或分组讨论),老师与学生对话完成。
(五)小结归纳,整体认识
(1)二面角以及平面角的有关概念;
(2)两个平面垂直的判定定理的内容,它与直线与平面垂直的判定定理有何关系?
(六)课后巩固,拓展思维
1、课后作业:自二面角内一点分别向两个面引垂线,求证:它们所成的角与二两角的平面角互补。
2、课后思考问题:在表示二面角的平面角时,为何要求“OA⊥L、OB⊥L”?为什么∠AOB 的大小与点O在L上的位置无关?
课堂小结
(1)二面角以及平面角的有关概念;
(2)两个平面垂直的判定定理的内容,它与直线与平面垂直的判定定理有何关系?
课后习题
1、课后作业:自二面角内一点分别向两个面引垂线,求证:它们所成的角与二两角的平面角互补。
2、课后思考问题:在表示二面角的平面角时,为何要求“OA⊥L、OB⊥L”?为什么∠AOB 的大小与点O在L上的位置无关?
板书
略。