春季五年制小学奥数四年级奇数与偶数(上)
- 格式:doc
- 大小:167.50 KB
- 文档页数:4
个人收集整理-ZQ例:······,结果是偶数还是奇数?分析与解答:方法一:利用求和公式直接求和,可判断和地奇偶性等差数列地和(首项末项)×项数÷······()×÷()×因为是偶数,偶数与任一自然数地积仍是偶数,所以和是偶数方法二:在自然数列中,奇数与偶数相同排列,在这个自然数中,奇数、偶数各有(个),个奇数或偶数地和都是偶数.两个偶数地和是偶数,所以······地和是偶数.个人收集整理勿做商业用途练习:、任意取出个连续自然数,它们地总和是奇数还是偶数?、用,,,······十个数字组成五个两位数,每个数字只用一次,要求它们地和是一个奇数,并且尽可能大,那么这五个两位数地和是多少?个人收集整理勿做商业用途、判断××××地积是偶数还是奇数?、已知,请判断是奇数还是偶数?例.有张扑克牌,画面向上.小明每次翻转其中地张,那么,他能在翻动若干次后,使张牌地画面都向下吗?个人收集整理勿做商业用途分析与解答:同学们可以试验一下,只有将一张牌翻动奇数次,才能使它地画面由向上变为向下.要想使张牌地画面都向下,那么每张牌都要翻动奇数次.个人收集整理勿做商业用途个奇数地和是奇数,所以翻动地总张数为奇数时才能使张牌地牌面都向下.而小明每次翻动张,不管翻多少次,翻动地总张数都是偶数.个人收集整理勿做商业用途所以无论他翻动多少次,都不能使张牌画面都向下.练习:、小明涮了个碗,碗口向上地摆在桌上,他想每次翻转个碗,使它们地碗口转向相反地方向.翻转到某一时候,他能不能使碗口都向下呢?如果是个碗,每次翻转个呢?个人收集整理勿做商业用途、有张扑克牌,画面朝上,小刚每次翻转其中地张.他能在翻转若干次后,使张牌地画面都向下吗?、个小朋友排成一排(站地方向相同),做“向后转”地游戏,每次其中地个小朋友做向后转地动作,能否经过若干次后使个小朋友全部改变站地方向?请说明理由.个人收集整理勿做商业用途、电影院里有盏电灯,每盏灯由一根灯绳控制,拉一下亮.个学生依次进入电影院,第一个学生把地倍数地灯绳拉一下,灯全亮了,第二个学生把地倍数地灯绳都拉一下,第三个学生把地倍数地拉一下,······第个学生把地倍数地拉一下,最后,礼堂里有哪些灯是亮地?个人收集整理勿做商业用途1 / 1。
3本讲知识点属于数论大板块内的“定性分析”部分,小学生的数学思维模式大多为“纯粹的定量计算”,拿到一个题就先去试数,或者是找规律,在性质分析层面几乎为0,本讲力求实现的一个主要目标是提高孩子对数学的严密分析能力,培养孩子明白做题前有时要“先看能不能这么做,再去动手做”的思维模式。
无论是小升初还是杯赛会经常遇到,但不会单独出题,而是结合其他知识点来考察学生综合能力。
一、奇数和偶数的定义 整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
通常偶数可以用2k (k 为整数)表示,奇数则可以用2k +1(k 为整数)表示。
特别注意,因为0能被2整除,所以0是偶数。
二、奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数性质2:偶数±奇数=奇数性质3:偶数个奇数的和或差是偶数性质4:奇数个奇数的和或差是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数三、两个实用的推论推论1:在加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性。
推论2:对于任意2个整数a,b ,有a+b 与a-b 同奇或同偶模块一、奇数偶数基本概念及基本加减法运算性质【例 1】 1231993++++……的和是奇数还是偶数?【巩固】 2930318788+++++……得数是奇数还是偶数?【巩固】 (200201202288151152153233++++-++++……)(……)得数是奇数还是偶数?例题精讲 知识点拨教学目标5-1奇数与偶数【巩固】123456799100999897967654321+++++++++++++++++++++的和是奇数还是偶数?为什么?【巩固】东东在做算术题时,写出了如下一个等式:1038137564=⨯+,他做得对吗?【例 3】能否在下式的“□”内填入加号或减号,使等式成立,若能请填入符号,不能请说明理由⑴1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 8 □ 9=10⑵1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 8 □ 9=27【例 4】能否从四个3,三个5,两个7中选出5个数,使这5个数的和等于22.【巩固】能否从四个6,三个10,两个14中选出5个数,使这5个数的和等于44.【例 5】一个自然数数分别与另外两个相邻奇数相乘,所得的两个积相差150,那么这个数是多少?【巩固】一个偶数分别与其相邻的两个偶数相乘,所得的两个乘积相差80,那么这三个偶数的和是多少?【例 6】多米诺骨牌是由塑料制成的1×2长方形,共28张,每张牌上的两个1×1正方形中刻有“点”,点的个数分别为0,1,2,…,6个不等,其中7张牌两端的点数一样,即两个0,两个1,…,两个6;其余21张牌两端的点数不一样,所谓连牌规则是指:每相邻两张牌必须有一端的点数相同,且以点数相同的端相连,例如:…………现将一付多米诺骨牌按连牌规则连成一条链,如果在链的一端为6点,那么在链的另一端为多少点?并简述你的理由.【巩固】一条线段上分布着n个点,这些点的颜色不是黑的就是白的,它们将线段分为n+1段,已知线段两端的两个点都是黑的,而中间的每一个点的两边各有一黑一白.那么白点的数目是奇数还是偶数?模块二、奇偶运算性质综合及代数分析法【巩固】是否存在自然数a、b、c,使得(a-b)(b-c)(a-c)=45327?【巩固】a、b、c三个数的和与它们的积的和为奇数,问这三个数中最多可以有几个奇数?【例 8】已知a,b,c中有一个是511,一个是622,一个是793。
一、奇数与偶数一、新学:1.奇数和偶数整数可以分成奇数和偶数两大 .能被 2 整除的数叫做偶数,不能被 2 整除的数叫做奇数。
偶数通常可以用 2k(k 整数)表示,奇数可以用 2k+1(k 整数)表示。
特注意,因 0 能被 2 整除,所以 0 是偶数。
2.奇数与偶数的运算性性 1:偶数±偶数 =偶数,奇数±奇数 =偶数。
性 2:偶数±奇数 =奇数。
性 3:偶数个奇数相加得偶数。
性 4:奇数个奇数相加得奇数。
性 5:偶数×奇数 =偶数,奇数×奇数 =奇数。
利用奇数与偶数的些性,我可以精巧地解决多.二、例例 11+2+3+⋯+1993的和是奇数?是偶数?例 2 一个数分与另外两个相奇数相乘,所得的两个相差150,个数是多少?例 3 元旦前夕,同学相互送年卡 .每人只要接到方年卡就一定回年卡,那么送了奇数年卡的人数是奇数,是偶数?什么?例 4 已知 a、b、c 中有一个是 5,一个是 6,一个是 7.求 a-1,b-2,c-3的乘一定是偶数。
例 5 任意改某一个三位数的各位数字的序得到一个新数 .新数与原数之和不能等于 999。
例 7桌上有 9 只杯子,全部口朝上,每次将其中 6只同时“翻转”请.说明:无论经过多少次这样的“翻转”,都不能使 9 只杯子全部口朝下。
例 8假设 n 盏有拉线开关的灯亮着,规定每次拉动(n-1)个开关,能否把所有的灯都关上?请证明此结论,或给出一种关灯的办法。
例 9 在圆周上有 1987 个珠子,给每一珠子染两次颜色,或两次全红,或两次全蓝,或一次红、一次蓝 .最后统计有 1987 次染红, 1987 次染蓝 .求证至少有一珠子被染上过红、蓝两种颜色。
例 10 某校六年级学生参加区数学竞赛,试题共 40 道,评分标准是:答对一题给 3 分,答错一题倒扣 1 分.某题不答给 1 分,请说明该校六年级参赛学生得分总和一定是偶数。
奇数与偶数例1:1+2+3+······+2008,结果是偶数还是奇数?分析与解答:方法一:利用求和公式直接求和,可判断和的奇偶性等差数列的和=(首项+末项)×项数÷21+2+3+······+2008=(1+2008)×2008÷2=(1+2008)×1004因为1004是偶数,偶数与任一自然数的积仍是偶数,所以和是偶数方法二:在自然数列中,奇数与偶数相同排列,在1-2008这2008个自然数中,奇数、偶数各有2008/2=1004(个),1004个奇数或偶数的和都是偶数。
两个偶数的和是偶数,所以1+2+3+······+2008的和是偶数。
练习:1、任意取出1994个连续自然数,它们的总和是奇数还是偶数?2、用0,1,2,3······9十个数字组成五个两位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能大,那么这五个两位数的和是多少?3、判断23×47×65×132×239的积是偶数还是奇数?4、已知83+95+77+89+A=2001,请判断A是奇数还是偶数?例2.有5张扑克牌,画面向上。
小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?分析与解答:同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下。
要想使5张牌的画面都向下,那么每张牌都要翻动奇数次。
5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下。
而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数。
所以无论他翻动多少次,都不能使5张牌画面都向下。
5-1奇數與偶數的性質與應用教學目標本講知識點屬於數論大板塊內的“定性分析”部分,小學生的數學思維模式大多為“純粹的定量計算,拿到一個題就先去試數,或者是找規律,在性質分析層面幾乎為0,本講力求實現的一個主要目標是提高孩子對數學的嚴密分析能力,培養孩子明白做題前有時要“先看能不能這麼做,再去動手做”的思維模式。
無論是小升初還是杯賽會經常遇到,但不會單獨出題,而是結合其他知識點來考察學生綜合能力。
知識點撥一、奇數和偶數的定義整數可以分成奇數和偶數兩大類.能被2整除的數叫做偶數,不能被2整除的數叫做奇數。
通常偶數可以用2k(k為整數)表示,奇數則可以用2k+1(k 為整數)表示。
特別注意,因為0能被2整除,所以0是偶數。
二、奇數與偶數的運算性質性質1:偶數±偶數=偶數,奇數±奇數=偶數性質2:偶數±奇數=奇數性質3:偶數個奇數的和或差是偶數性質4:奇數個奇數的和或差是奇數性質5:偶數×奇數=偶數,奇數×奇數=奇數,偶數×偶數=偶數三、兩個實用的推論推論1:在加減法中偶數不改變運算結果奇偶性,奇數改變運算結果的奇偶性。
推論2:對於任意2個整數a,b ,有a+b與a-b同奇或同偶例題精講模組一、奇偶分析法之計算法【例 1】1231993++++……的和是奇數還是偶數?【考點】奇偶分析法之計算法【難度】2星【題型】解答【解析】在1至1993中,共有1993個連續自然數,其中997個奇數,996個偶數,即共有奇數個奇數,那麼原式的計算結果為奇數.【答案】奇數【例 1】從1開始的前2005個整數的和是______數(填:“奇”或“偶”)。
【考點】奇偶分析法之計算法【難度】2星【題型】填空【關鍵字】希望杯,4年級,初賽,5題【解析】1+2+3+…+2004+2005=(1+2005)×2005÷2=1003×2005是奇數【答案】奇數【巩固】2930318788+++++……得數是奇數還是偶數?【考點】奇偶分析法之計算法【難度】2星【題型】解答【解析】偶數。
第二讲:奇数与偶数教学目标本讲知识点属于数论大板块内的“定性分析”部分,小学生的数学思维模式大多为“纯粹的定量计算,拿到一个题就先去试数,或者是找规律,在性质分析层面几乎为0,本讲力求实现的一个主要目标是提高孩子对数学的严密分析能力,培养孩子明白做题前有时要“先看能不能这么做,再去动手做”的思维模式。
无论是小升初还是杯赛会经常遇到,但不会单独出题,而是结合其他知识点来考察学生综合能力。
知识点拨一、奇数和偶数的定义整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
通常偶数可以用2k(k为整数)表示,奇数则可以用2k+1(k为整数)表示。
特别注意,因为0能被2整除,所以0是偶数。
二、奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数性质2:偶数±奇数=奇数性质3:偶数个奇数的和或差是偶数性质4:奇数个奇数的和或差是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数三、两个实用的推论:推论1:在加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性。
推论2:对于任意2个整数a,b ,有a+b 与a-b 同奇或同偶模块一:奇数偶数基本概念及基本加减法运算性质【例 1】 1231993++++……的和是奇数还是偶数?【解析】 在1至1993中,共有1993个连续自然数,其中997个奇数,996个偶数,即共有奇数个奇数,那么原式的计算结果为奇数【巩固】 123456799100999897967654321+++++++++++++++++++++L L 的和是奇数还是偶数?为什么?【解析】 在算式中,1~99都出现了2次,所以123499999897964321++++++++++++++L L 是偶数,而100也是偶数,所以1234567991009998979676++++++++++++++++L L54321+++++的和是偶数.【巩固】 2930318788+++++……得数是奇数还是偶数?【解析】 偶数。
学生课程讲义
我们把学过的整数按从小到大的顺序写出来,可以写成:
0,1,2,3,4……
在学习和生活中,我们经常把上述这些数分成两大类,其中一类叫做偶数, 它们是:
0,2,4,6,8,10,……
另一类叫做奇数, 他们是:
1,3,5,7,9,……
如果一个整数可以被2整除,那么我们说这个数是偶数.如果一个整数不是偶数,那么它一定是奇数。
一个整数是偶数还是奇数,是这个整数自身的一种性质.这种性质,叫做奇
偶性
在这一讲中,我们向大家介绍奇数和偶数的三个最常见的性质
性质1任何一个奇数一定不等于任何一个偶数.(例如3≠4)
性质2相邻的两个自然数总是一奇
性质3有趣的运算规律
奇数士奇数=偶数
偶数士偶数=偶数
奇数士偶数=奇数
偶数士奇数=奇数
奇数×奇数=奇数
奇数×偶数=偶数
偶数×偶数=偶数
奇数不可能被偶数整除。
一、奇数与偶数一、新课学习:1.奇数和偶数整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
偶数通常可以用2k(k为整数)表示,奇数则可以用2k+1(k为整数)表示。
特别注意,因为0能被2整除,所以0是偶数。
2.奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数。
性质2:偶数±奇数=奇数。
性质3:偶数个奇数相加得偶数。
性质4:奇数个奇数相加得奇数。
性质5:偶数×奇数=偶数,奇数×奇数=奇数。
利用奇数与偶数的这些性质,我们可以精巧地解决许多实际问题.二、例题例11+2+3+…+1993的和是奇数?还是偶数?例2一个数分别与另外两个相邻奇数相乘,所得的两个积相差150,这个数是多少?例3元旦前夕,同学们相互送贺年卡.每人只要接到对方贺年卡就一定回赠贺年卡,那么送了奇数张贺年卡的人数是奇数,还是偶数?为什么?例4已知a、b、c中有一个是5,一个是6,一个是7.求证a-1,b-2,c-3的乘积一定是偶数。
例5任意改变某一个三位数的各位数字的顺序得到一个新数.试证新数与原数之和不能等于999。
例7桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。
例8假设n盏有拉线开关的灯亮着,规定每次拉动(n-1)个开关,能否把所有的灯都关上?请证明此结论,或给出一种关灯的办法。
例9在圆周上有1987个珠子,给每一珠子染两次颜色,或两次全红,或两次全蓝,或一次红、一次蓝.最后统计有1987次染红,1987次染蓝.求证至少有一珠子被染上过红、蓝两种颜色。
例10某校六年级学生参加区数学竞赛,试题共40道,评分标准是:答对一题给3分,答错一题倒扣1分.某题不答给1分,请说明该校六年级参赛学生得分总和一定是偶数。
例12某学校一年级一班共有25名同学,教室座位恰好排成5行,每行5个座位.把每一个座位的前、后、左、右的座位叫做原座位的邻位.问:让这25个学生都离开原座位坐到原座位的邻位,是否可行?例13在中国象棋盘任意取定的一个位置上放置着一颗棋子“马”,按中国象棋的走法,当棋盘上没有其他棋子时,这只“马”跳了若干步后回到原处,问:“马”所跳的步数是奇数还是偶数?例14线段AB有两个端点,一个端点染红色,另一个端点染蓝色.在这个AB 线段中间插入n个交点,或染红色,或染蓝色,得到n+1条小线段(不重叠的线段).试证:两个端点例外色的小线段的条数一定是奇数。
奇数、偶数与奇偶分析整数按能否被2整除分为两大类:奇数和偶数,奇数与偶数有下列基本性质:1.奇数≠偶数2.两个整数相加(减)或相乘,结果的奇偶性如下表所示3.若干个奇数之积是奇数,偶数与任意整数之积是偶数;偶数个奇数的和为偶数,若干个偶数的和为偶数.4.设m、n是整数,则m土n,nm±的奇偶性相同.5.设m是整数,则m与m,m n的奇偶性相同.奇偶性是整数的固有属性,通过分析整数的奇偶性来解决问题的方法叫奇偶分析法.例题【例1】三个质数之和为86,那么这三个质数是.思路点拨运用奇数、偶数、质数、合数性质,从分析三个加数的奇偶性人手.注:18世纪的哥尼斯堡,有7座桥把这儿的普雷格尔河中两个小岛与河岸联系起来,在这迷人的地方,人们议论着一个有趣的问题.一个游人怎样才能不重复地一次走遍7座桥,而最后又回到出发点.1736年彼得堡院士欧拉巧妙地解决了这个问题.欧拉把一个复杂的实际问题化为一个简单的几何图形,他指出只要我们能从一点出发,不重复地一笔把这样的图形画出来,那么就可说明游人能够不重复地一次走遍这7座桥,这就是著名的“一笔画”问题的来历.利用奇偶分析不难得到一般的结论:凡是能一笔画成的图形,它上面除了起点和终点外的每一个点总是一笔进来,一笔出去.因此,除了起点和终点外的每一个点都有偶数条线和它相连.简单地说,当且仅当图形中的奇结点(每点出发有奇数字线)的个数不大于2时,这个图形才能一笔画.【例2】如果a、b、c是三个任意的整数,那么222accbba+++、、().A.都不是整数B.至少有两个整数C.至少有一个整数D.都是整数思路点拨举例验证或从a、b、c的奇偶性说明.【例3】(1)设1,2,3,…,9的任一排列为a l,a2,a3…,a9.求证:(a l l一1)( a2—2)…(a9—9)是一个偶数.(2)在数11,22,33,44,54,…20022002,20032003,这些数的前面任意放置“+”或“一”号,并顺次完成所指出的运算,求出代数和,证明:这个代数和必定不等于2003.思路点拨(1)转换角度考察问题,化积的奇偶性为和的奇偶性来研究;(2)由于任意添“十”号或“一”号,形式多样,因此不可能一一尝试再作解答,从奇数、偶数的性质人手.【例4】已知n x x x x 、、、、Λ321都是+1或一1,并且011433221=+++++-x x x x x x x x x x n n n Λ,求证:n 是4的倍数.思路点拨 可以分两步,先证n 是偶数2k ,再证明k 是偶数,解题的关键是从已知等式左边各项的特点受到启发,挖掘隐含的一个等式.【例5】 游戏机的“方块”中共有下面?种图形.每种“方块”都由4个l ×l 的小方格组成.现用这7种图形拼成一个7× 4的长方形(可以重复使用某些图形).问:最多可以用这7种图形中的几种图形?思路点拨 为了形象化地说明问题,对7×4的长方形的28个小方格黑白相间染色,除“品字型”必占3个黑格1个白格或3个白格1个黑格,其余6个方格各占2个黑格2个白格.注:对同一个数学对象,从两个方向考虑(n 项和与积),再将这两个方面合在一起整体考虑,得出结论,这叫计算两次原理,通过计算两次可以建立方程,证明恒等式等.在一定的规则下,进行某种操作或变换,问是否(或证明)能够达到一个预期的目的,这就是所谓操作变换问题,此类问题变化多样,解法灵活,解题的关键是在操作变换中,挖掘不变量,不变性.一些非常规数字问题需要恰当地数学化,以便计算或推理.引入字母与赋值法是数学化的两种常用方式方法.所谓赋值法就是在解题时,将问题中的某些元素用适当的数表示,然后利用这些数值的大小,正负性、奇偶性等进行推理论证的一种解题方法.【例6】桌上放着七只杯子;杯口全朝上,每次翻转四个杯子:问能否经过若干次这样的翻动,使全部的杯子口都朝下?思路点拨 这不可能.我们将口向上的杯于记为:“0”,口向下的杯子记为“1”.开始时,由于七个杯子全朝上,所以这七个数的和为0,是个偶数.一个杯子每翻动一次,所记数由0变为1,或由l 变为0,改变了奇偶性.每一次翻动四个杯子,因此,七个之和的奇偶性仍与原来相同.所以,不论翻动多少次,七个数之和仍为偶数.而七个杯子全部朝下,和为7,是奇数,因此,不可能.整数可以分为奇数和偶数两类.【例7】在1,2,3,…,2005前面任意添上一个正号或负号,它们的代数和是奇数还是偶数?思路点拨 两个整数之和与这两个整数之差的奇偶性相同,只要知道1+2+3+…+2005的奇偶性即可.因两个整数的和与差的奇偶性相同,所以,在1,2,3,…,2005中每个数前面添上正号或负号,其代数和应与1+2+3+…+2005的奇偶性相同,而1+2+3+…+2005=21(1+ 2005)×2005=1003 ×2005为奇数;因此,所求代数和为奇数.注:抓住“a+b 与a —b 奇偶性相同”,通过特例1十2十3十…十2005得到答案.【例8】“ 元旦联欢会上,同学们互赠贺卡表示新年的:良好祝愿.“无论人数是什么数,用来交换的贺卡的张数总是偶数.”这句话正确吗?试证明你的结论.思路点拨 用分类讨论的思想方法,从“无论人数是什么数”入手,考虑人数为奇数或偶数的两种情况.这句话是正确的.下面证明之.若联欢会上的人数为偶数,设为2m (m 为整数),则每个人赠送给同学们的贺卡张数为奇数,即(2m —1).那么,贺卡总张数为2m(2m —1)=4m 2-2m ,显然是偶数.若联欢会上的人数为奇数,设为2m+1(m 为整数,则每个人赠送给同学们的贺卡张数应是2m ,为偶数.贺卡总张数为(2m+1)·2m ,仍为偶数.故“用来交换的贺卡张数总是偶数”是对的.注:按奇数和偶数分类考虑问题是常见的解决此类问题的策略之一.【例9】桌面上放有1993枚硬币,第1次翻动1993枚,第2次翻动其中的1992枚,第3次翻动其中的1991枚,…,第1993次翻动其中一枚,试问:能否使桌面上所有的1993枚硬币原先朝下的一面都朝上?并说明理由.思路点拨 若要把一枚硬币原先朝下的一面朝上,应该翻动该硬币奇数次.因此,要把1993枚硬币原先朝下的一面都朝上,应该翻动这1993枚硬币的总次数为奇数.现在1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997是个奇数,故猜想可以使桌面上1993枚硬币原先朝下的一面都朝上.理由如下:按规定,1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997,所以翻动的次数为奇数,而且可见每个硬币平均翻动了997次.而事实上,只要翻动一枚硬币奇数次,就能使这枚硬币原先朝下的一面朝上.按如下的方法进行翻动: 第1次翻动全部1993枚,第2次翻动其中的1992枚,第1993次翻动第2次未翻动的那1枚,第3次翻动其中的1991枚,第1992次翻动第3次未翻动的2枚,第997次翻动其中的997枚,第998次翻动第997次未翻动的996枚.这样,正好每枚硬币被翻动了997次,就能使每一枚硬币原来朝下的一面都朝上. 注:灵活、巧妙地利用奇俩性分析推理,可以解决许多复杂而有趣的问题,并有意想不到的效果.【例10】在6张纸片的正面分别写上整数:1、2、3、4、5、6,打乱次序后,将纸片翻过来,在它们的反面也随意分别写上1-6这6个整数,然后,计算每张纸片的正面与反面所写数字之差的绝对值,得出6个数.请你证明:所得的6个数中至少有两个是相同的. 思路点拨 从反面人手,即设这6个数两两都不相等,利用bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同,引入字母进行推理证明.设6张卡片正面写的数是654321a a a a a a 、、、、、,反面写的数对应为654321b b b b b b 、、、、、,则这6张卡片正面写的数与反面写的数的绝对值分别为11b a -,22b a -,33b a -,44b a -,55b a -,66b a -.设这6个数两两都不相等,则它们只能取0,1,2,3,4,5这6个值.于是11b a -+22b a -+33b a -+44b a -+55b a -+66b a -=0+1+2+3+4+5=15是个奇数. 另一方面,bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同.所以11b a -+22b a -+33b a -+44b a -+55b a -+66b a -与(a 1一b 1)+(a 2一b 2)+(a 3一b 3)+(a 4一b 4)+(a 5一b 5)+(a 6一b 6)= )(654321a a a a a a +++++一)(654321b b b b b b +++++ =(1+2+3+4+5+6)一(1+2+3+4+5+6)=O 的奇偶性相同,而0是个偶数,15是奇数,两者矛盾.所以,11b a -,22b a -,33b a -,44b a -,55b a -,66b a -这6个数中至少有两个是相同的.注:反证法是解决奇、偶数问题中常用的方法.【例11】有一只小渡船往返于一条小河的左右两岸之间,问:(1)若最初小船是在左岸,往返若干次后,它又回到左岸,那么这只小船过河的次数是奇数还是偶数?如果它最后到了右岸,情况又是怎样呢?(2)若小船最初在左岸,它过河99次之后,是停在左岸还是右岸?思路点拨 (1)小船最初在左岸,过一次河就到了右岸,再过一次河就由右岸回到左岸,即每次由左岸出发到右岸后再回到左岸,都过了两次河.因此,小船由左岸开始,往返多次后又回到左岸,则过河的次数必为2的倍数,所以是偶数.同样的道理,不难得出,若小船最后停在右岸,则过河的次数必为奇数.(2)通过(1),我们发现,若小船最初在左岸,过偶数次河后,就回到左岸;过奇数次河后,就停在右岸.现在小船过河99次,是奇数次.因此,最后小船该停在右岸.注 关键是对过河次数的理解:一个单程,即由左岸到右岸(或由右岸到左岸)就过河一次;往返一个来回就过河两次.【例12】黑板上写了三个整数,任意擦去其中一个,把它改写成另两个数的和减去1,这样继续下去,得到1995、1996、1997,问原来的三个数能否是2、2、2?思路点拨 如果原来的三个整数是2、2、2,即三个偶数,操作一次后,三个数变成二偶一奇,这时如果擦去其中的奇数,操作后三个数仍是二偶一奇.如果擦去的是其中的一个偶数,操作后三个数仍是二偶一奇.因此,无论怎样操作,得到的三个数都是二偶一奇,不可能得到1995、1996、1997.所以,原来的三个数不可能是2、2、2.注 解决本题的诀窍在于考查数字变化后的奇偶性.【例13】将正偶数按下表排成五列:第1列 第2列 第3列 第4列 第5列第1行 2 4 6 8第2行 16 14 12 10第3行 18 20 22 24… … 28 26根据上面的排列规律,则2000应位于( )A .第125行,第1列B .第125行,第2列C .第250行,第1列D .第250行,第2列思路点拨 观察表格,第1行最右边的数为8,第2行最左边的数为16,第3行最右边的数为24,于是可猜测:当行数为奇数时,该行最右边的数为8×行数;当行数为偶数时,该行最左边的数为8×行数.通过验证第4行、第5行、第6行知,上述猜想是正确的,因为2000=8×250,所以2000应在第250行,又因为250为偶数,故2000应在第250行最左边,即第250行第1列,故应选C .注:观察、寻找规律是解决这类问题的妙招.【例14】如图18—1,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字.若左轮子上方的箭头指着的数字为a ,右轮子上方的箭头指着的数字为b ,数对(a ,b)所有可能的个数为n ,其中a+b 恰为偶数的不同数对的个数为m ,则nm 等于( ) A .21 B .61 C .125 D .43 思路点拨 依题意可知所有的数对n=4×3=12,其中a+b 恰为偶数的数对m=3×1+1×2=5.因此,n m =125,故选C . 【例15】已知a 、b 、c 中有两个奇数、一个偶数,n 是整数,如果S=(a+2n+1)(b+2n 十2)(c+2n 十3),那么( )A .S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D . S 的奇偶性不能确定思路点拨 弄清a+2n+1,b+2n+2,c+2n+3的奇偶性即可.依题得:(a+2n+1)+(b+2n+2)+(c+2n+3)=a+b+c+6(n+1).∵a+b+c 为偶数,6(n+1)为偶数,∴a+b+c+6(n+1)为偶数∴a+2n+1,b+2n+2,c+2n+3中至少有一个为偶数,∴S 是偶数.故选A .注:三个数的和为偶数,则至少有一个为偶数;三个数中有一个为偶数,则三数之和为偶数.学力训练 1.若按奇偶性分类,则12+22+32+…+20022002是 数.2.能不能在下式, 的各个方 框中分别填人“+”号或“一”号,使等式成立?答: .3.已知三个质数a 、b 、c 满足a+b+c+abc =99,那么a c c b b a -+-+-的值等于 .4.已知n 为整数,现有两个代数式:(1)2n+3,(2)4n 一1,其中,能表示“任意奇数”的( )A .只有(1)B .只有(2)C .有(1)和(2)D .一个也没有5.如果a ,b ,c 都是正整数,且a ,b 是奇数,则3a +(b 一1)2c 是( ).A .只当c 为奇数时,其值为奇数B .只当c 为偶数时,其值为奇数C .只当c 为3的倍数,其值为奇数D .无论c 为任何正楚数,其值均为奇数6.已知a ,b ,c 三个数中有两个奇数、一个偶数,n 是整数,如果S=(a+n+1)(b+ 2n+2)(c+3n+3),那么( ).A . S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D .S 的奇偶性不能确定7.(1)是否有满足方程x 2-y 2=1998的整数解x 和y?如果有,求出方程的解;如果没有,说明理由.(2)一个立方体的顶点标上+1或一1,面上标上一个数,它等于这个面的4个顶点处的数的乘积,这样所标的14个数的和能否为0?8.甲、乙两人玩纸牌游戏,甲持有全部的红桃牌(A 作1,J ,Q ,K 分别作11,12,13,不同),乙持有全部的黑桃牌,两人轮流出牌,每次出一张,得到一对牌,出完为止,共得到13对牌,每对牌彼此相减,问这13个差的乘积的奇偶性能否确定?9.在1,2,3,…,1998之前任意添上“十”或“一”号,然后相加,这些和中最小的正整数是 .10.1,2,3,…,98共98个自然数,能够表示成两整数平方差的数的个数是 .11.在一次象棋比赛中,每两个选手恰好比赛一局,每局赢者记2分,输者记0分,平局每个选手各记1分,今有4个人统计百这次比赛中全部得分总数,由于有的人粗心,其数据各不相同,分别为1979,1980,1984,1985,经核实,其中有一人统计无误,则这次比赛共有 名选手参加.12.已知p 、q 、pq+1都是质数,且p 一q>40,那么满足上述条件的最小质数p = ; q = .13.设a ,b 为整数,给出下列4个结论(1)若a+5b 是偶数,则a 一3b 是偶数;(2)若a 十5b 是偶数,则a 一3b 是奇数;(3)若a+5b 是奇数,则a 一3b 是偶数;(4)若a+5b 是奇数,则a 一3b 是奇数,其中结论正确的个数是( ).A .0个B .2个C .4个D . 1个或3个14.下面的图形,共有( )个可以一笔画(不重复也不遗漏;下笔后笔不能离开纸) .A .0B .1C .2D .315.π的前24位数值为3.14159265358979323846264…,在这24个数字中,随意地逐个抽取1个数字,并依次记作a1,a2,…a24,则(a1一a2)( a3一a4)…(a23一a24)为( ).A.奇数B.偶数C.奇数或偶数D.质数16.没标有A、B、C、D、C、F、G记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A、C、E、G 4盏灯开着,其余3盏灯是关的,小刚从灯A开始,顺次拉动开关,即从A 到G,再从A始顺次拉动开关,即又从A到G…,他这样拉动了1999次开关后,问哪几盏是开的?17.有1997枚硬币,其中1000枚国徽朝上,997枚国徽朝下.现要求每一次翻转其中任意6枚,使它们的国徽朝向相反,问能否经过有限次翻转之后,使所有硬币的国徽都朝上?给出你的结论,并给予证明.18.对一个正整数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,求经过9次操作变为l的数有多少个?19.高为50cm,底面周长为50cm的圆柱,在此圆柱的侧面上划分(如图所示)边长为lcm的正方形,用四个边长为lcm的小正方形构成“T”字形,用此图形是否能拼成圆柱侧面?试说明理由.参考答案。
奥数奇数和偶数知识要点:奇数和偶数的概念:整数可以分成奇数和偶数两大类。
能被2整除的数叫做偶数(双数),不能被2整除的数叫做奇数(单数)。
特别注意,因为0能被2整除,所以0是偶数。
因此最小的奇数是1,最小的偶数是0。
1、偶数与奇数的关系:偶数+偶数=()偶数-偶数=()偶数+奇数=()偶数-奇数=()奇数+奇数=()奇数-奇数=()偶数×偶数=()偶数×奇数=()奇数×奇数=()偶数÷偶数=()偶数÷奇数=()奇数÷奇数=()2、奇数个奇数的和等于奇数,偶数个奇数的和等于偶数,任意个偶数的和等于偶数。
3、任意个奇数的积等于奇数,偶数与任意自然数之积是偶数。
4、若干个自然数的积是奇数,则每一个乘数都是奇数;若干个自然数之积是偶数,则其中必定有一个乘数是偶数。
5、相邻的两个整数必为一奇一偶,它们的积必为偶数,它们的和必为奇数。
例1、下表中有15个数,请选出五个数,使它们的和等于30.能做到吗?为什么?例2、在2003年“非典”时期,通信公司赠送某医院27部手机,它们的号码都是连续的。
这27部手机的号码和是奇数还是偶数?例3、任意改变某个三位数的各数字的次序后得到一个新的三位数(比如423可改变为432、342等),试问这个新的三位数与原来的那个三位数的和能不能等于999?如果能,试举一例;如果不能,请说明理由。
例4、赵老师在黑板上写了三个整数。
然后擦去一个数,再写上其他两个数之和;然后再随意擦去一个数,再写出其他两个数之和。
就这样一直做下去,最后得到2004,2005,2006。
赵老师一开始写的三个数有没有可能是1,3,5?例5、张老师在黑板上依次写下0,1,3,8,21,…一列数,规律是:每个数的3倍等于它前后相邻的两个数字的和,那么张老师写的第20个数是奇数还是偶数?例6、a,b,c,d是四个不同的质数,且a﹢b﹢c=d,那么a×b×c×d的积最小是多少?例7、已知a,b,c是三个连续的自然数,其中a是偶数,小红和小明两人的说法正确的是()小红:那么﹙a+1﹚, ﹙b+2﹚, ﹙c+3﹚这三个数的乘积一定是奇数。
奇数和偶数1.1+2+3+4+…+100+101是奇数还是偶数?2.在30到100中所有3的倍数的和是奇数还是偶数?3.有一列数:1,1,2,3,5,8,13,21,34,55,…,从第三个数开始,每个数都是前两个数的和.那么在前1000个数中,有多少个奇数?4.扑克牌中的J、Q、K分别表示11、12、13.甲取13张红心,乙取13张草花,两人都各自任意出一张牌凑成一对,这样一共可凑成13对.如果将每对求和,再将这13个和相乘,从积的奇偶性看,积应是____数.5.算式1×2+3×4+5×6+…+99×100的得数是奇数还是偶数?6.若一个能被5整除的两位数既不能被3整除,又不能被4整除,它的97倍是偶数,十位数字不小于6,则这个两位数是几?(第九届“希望杯”全国数学邀请赛第2试第4题)7.能否在下面的口内填人加号或减号,使得等式成立?为什么?1口2口3口4口5口6口7口8口9=IO8.算式1×2+3×4+5×6+…+99×100的得数是奇数还是偶数?9.若一个能被5整除的两位数既不能被3整除,又不能被4整除,它的97倍是偶数,十位数字不小于6,则这个两位数是几?(第九届“希望杯”全国数学邀请赛第2试第4题)10.能否在下面的口内填人加号或减号,使得等式成立?为什么?1口2口3口4口5口6口7口8口9=IO11.三个连续奇数的和是201,求这三个奇数.12.99+98 - 97+96 -95+…+2-1足奇数还是偶数?说明你的理由,13.已知三个整数a、b、c的和是奇数,并且a-b=3,那么a、b、c的奇偶性为( ).(A)三个都是奇数 (B)两个奇数一个偶数(C)一个奇数两个偶数 (D)三个都是偶数14.计算前100个正整数中所有奇数的和与所有偶数的和,从3,15,9,7,21,1,5,11,7中挑出7个数,使它们的和为50.能不能做到?说说你是怎么想的.15.用1,2,3,4,5这五个数两两相乘,可以得到10个不同的乘积.问乘积中是偶数多还是奇数多?16.在黑板上写3个整数,然后擦去一个换成其他两数之和或者差,这样继续操作下去,最后得到64,78,142.问:原来写的3个整数能否为1,3,57。
五年级上册奥数奇数与偶数及奇偶性的应用(例题含答案)第五讲:奇数与偶数及奇偶性的应用一、基本概念和知识1.奇数和偶数整数可以分为奇数和偶数两类。
能被2整除的数为偶数,不能被2整除的数为奇数。
偶数可表示为2k(k为整数),奇数可表示为2k+1(k为整数)。
需要注意的是,因为能被2整除,所以是偶数。
2.奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数。
性质2:偶数±奇数=奇数。
性质3:偶数个奇数相加得偶数。
性质4:奇数个奇数相加得奇数。
性质5:偶数×奇数=偶数,奇数×奇数=奇数。
二、例题利用奇数与偶数的性质,可以解决许多实际问题。
例如,求1+2+3+…+1993的和是奇数还是偶数?可以利用高斯求和公式直接求出和,再判别和的奇偶性。
但是,从加数的奇偶性考虑,同样可以判断和的奇偶性。
此题有两种解法。
解法1:因为997和1993是奇数,奇数×奇数=奇数,所以原式的和是奇数。
解法2:1~1993的自然数中,有996个偶数和997个奇数。
因为996个偶数之和一定是偶数,又因为奇数个奇数之和是奇数,所以997个奇数之和是奇数。
因为偶数+奇数=奇数,所以原式之和一定是奇数。
还有一个例题:一个数分别与另外两个相邻奇数相乘,所得的两个积相差150,这个数是多少?可以有两种解法。
解法1:因为相邻两个奇数相差2,所以150是这个数的2倍。
所以这个数是150÷2=75.解法2:设这个数为x,设相邻的两个奇数为2a+1和2a-1(a≥1)。
则有(2a+1)x-(2a-1)x=150,化简得2x=150,所以这个要求的数是75.最后一个例题:元旦前夕,同学们相互送贺年卡。
每人只要接到对方贺年卡就一定回赠贺年卡,那么送了奇数张贺年卡的人数是奇数还是偶数?为什么?解:因为是两人互送贺年卡,给每人分别标记送出贺年卡一次。
那么贺年卡的总张数应能被2整除,所以XXX的总张数应是偶数。
5-1奇數與偶數的性質與應用教學目標本講知識點屬於數論大板塊內的“定性分析”部分,小學生的數學思維模式大多為“純粹的定量計算,拿到一個題就先去試數,或者是找規律,在性質分析層面幾乎為0,本講力求實現的一個主要目標是提高孩子對數學的嚴密分析能力,培養孩子明白做題前有時要“先看能不能這麼做,再去動手做”的思維模式。
無論是小升初還是杯賽會經常遇到,但不會單獨出題,而是結合其他知識點來考察學生綜合能力。
知識點撥一、奇數和偶數的定義整數可以分成奇數和偶數兩大類.能被2整除的數叫做偶數,不能被2整除的數叫做奇數。
通常偶數可以用2k(k為整數)表示,奇數則可以用2k+1(k 為整數)表示。
特別注意,因為0能被2整除,所以0是偶數。
二、奇數與偶數的運算性質性質1:偶數±偶數=偶數,奇數±奇數=偶數性質2:偶數±奇數=奇數性質3:偶數個奇數的和或差是偶數性質4:奇數個奇數的和或差是奇數性質5:偶數×奇數=偶數,奇數×奇數=奇數,偶數×偶數=偶數三、兩個實用的推論推論1:在加減法中偶數不改變運算結果奇偶性,奇數改變運算結果的奇偶性。
推論2:對於任意2個整數a,b ,有a+b與a-b同奇或同偶例題精講模組一、奇偶分析法之計算法【例 1】1231993++++……的和是奇數還是偶數?【例 1】從1開始的前2005個整數的和是______數(填:“奇”或“偶”)。
【巩固】2930318788+++++……得數是奇數還是偶數?【巩固】123456799100999897967654321+++++++++++++++++++++的和是奇數還是偶數?為什麼?【巩固】(200201202288151152153233……)(……)得數是奇數還是偶數?++++-++++【例 2】12345679899+⨯+⨯+⨯++⨯的計算結果是奇數還是偶數,為什麼?【例 3】東東在做算術題時,寫出了如下一個等式:1038137564=⨯+,他做得對嗎?【例 4】一個自然數分別與另外兩個相鄰奇數相乘,所得的兩個積相差150,那麼這個數是多少?【巩固】一個偶數分別與其相鄰的兩個偶數相乘,所得的兩個乘積相差80,那麼這三個偶數的和是多少?【例 5】能否在下式的“□”內填入加號或減號,使等式成立,若能請填入符號,不能請說明理由。
奥数《奇偶问题》微课(教案)人教版数学四年级上册一、教学目标1. 让学生掌握奇数和偶数的概念,能够正确区分奇数和偶数。
2. 培养学生运用奇偶性解决实际问题的能力,提高学生的逻辑思维能力。
3. 激发学生对数学的兴趣,培养学生主动探索、合作交流的学习习惯。
二、教学内容1. 奇数和偶数的概念2. 奇数和偶数的性质3. 奇偶性在实际问题中的应用三、教学重点与难点1. 教学重点:奇数和偶数的概念,奇数和偶数的性质。
2. 教学难点:奇偶性在实际问题中的应用。
四、教学过程1. 导入新课利用生活中的实例,如:桌子上的苹果,让学生观察苹果的数量,引导学生发现苹果数量是偶数,激发学生对奇偶问题的兴趣。
2. 探究新知(1)让学生举例说明生活中的奇数和偶数。
(2)引导学生观察奇数和偶数的特征,总结出奇数和偶数的定义。
(3)让学生举例说明奇数和偶数的性质,如:奇数加奇数等于偶数,奇数乘奇数等于奇数等。
3. 实践应用(1)让学生解决实际问题,如:小明有10个苹果,他想把这些苹果分成两组,每组苹果的数量都是奇数或偶数,请问他有几种分法?(2)让学生通过小组合作,探讨奇偶性在实际问题中的应用,如:在游戏中,如何利用奇偶性来判断胜负?4. 总结提升引导学生回顾本节课所学内容,总结奇数和偶数的概念、性质以及在实际问题中的应用。
五、课后作业1. 判断下列数中,哪些是奇数,哪些是偶数:13、24、57、100、145。
2. 小明有15个苹果,他想把这些苹果分成若干组,每组苹果的数量都是奇数,请问他有几种分法?3. 请你举例说明在生活中,奇偶性是如何应用的?六、板书设计1. 奇数和偶数的概念2. 奇数和偶数的性质3. 奇偶性在实际问题中的应用七、教学反思本节课通过生活中的实例,引导学生探究奇数和偶数的概念和性质,让学生在实际问题中运用奇偶性,培养学生的逻辑思维能力。
在教学过程中,要注意关注学生的学习情况,及时给予指导和鼓励,让学生在轻松愉快的氛围中学习数学。
四年级奥数讲义:奇数、偶数与奇偶分析整数按能否被2整除分为两大类:奇数和偶数,奇数与偶数有下列基本性质:1.奇数≠偶数2.两个整数相加(减)或相乘,结果的奇偶性如下表所示3.若干个奇数之积是奇数,偶数与任意整数之积是偶数;偶数个奇数的和为偶数,若干个偶数的和为偶数.m 的奇偶性相同.4.设m、n是整数,则m土n,n5.设m是整数,则m与m,m n的奇偶性相同.奇偶性是整数的固有属性,通过分析整数的奇偶性来解决问题的方法叫奇偶分析法.例题【例1】三个质数之和为86,那么这三个质数是.思路点拨运用奇数、偶数、质数、合数性质,从分析三个加数的奇偶性人手.注: 18世纪的哥尼斯堡,有7座桥把这儿的普雷格尔河中两个小岛与河岸联系起来,在这迷人的地方,人们议论着一个有趣的问题.一个游人怎样才能不重复地一次走遍7座桥,而最后又回到出发点.1736年彼得堡院士欧拉巧妙地解决了这个问题.欧拉把一个复杂的实际问题化为一个简单的几何图形,他指出只要我们能从一点出发,不重复地一笔把这样的图形画出来,那么就可说明游人能够不重复地一次走遍这7座桥,这就是著名的“一笔画”问题的来历.利用奇偶分析不难得到一般的结论:凡是能一笔画成的图形,它上面除了起点和终点外的每一个点总是一笔进来,一笔出去.因此,除了起点和终点外的每一个点都有偶数条线和它相连.简单地说,当且仅当图形中的奇结点(每点出发有奇数字线)的个数不大于2时,这个图形才能一笔画.【例2】 如果a 、b 、c 是三个任意的整数,那么222a c c b b a +++、、( ). A .都不是整数 B .至少有两个整数 C .至少有一个整数 D .都是整数思路点拨 举例验证或从a 、b 、c 的奇偶性说明.【例3】 (1)设1,2,3,…,9的任一排列为a l ,a 2,a 3…,a 9.求证:(a l l 一1)( a 2 —2)…(a 9—9)是一个偶数.(2)在数11,22,33,44,54,…20022002,20032003,这些数的前面任意放置“+”或“一”号,并顺次完成所指出的运算,求出代数和,证明:这个代数和必定不等于2003.思路点拨 (1)转换角度考察问题,化积的奇偶性为和的奇偶性来研究;(2)由于任意添“十”号或“一”号,形式多样,因此不可能一一尝试再作解答,从奇数、偶数的性质人手.【例4】已知n x x x x 、、、、 321都是+1或一1,并且011433221=+++++-x x x x x x x x x x n n n ,求证:n 是4的倍数.思路点拨 可以分两步,先证n 是偶数2k ,再证明k 是偶数,解题的关键是从已知等式左边各项的特点受到启发,挖掘隐含的一个等式.【例5】 游戏机的“方块”中共有下面?种图形.每种“方块”都由4个l ×l 的小方格组成.现用这7种图形拼成一个7× 4的长方形(可以重复使用某些图形).问:最多可以用这7种图形中的几种图形?思路点拨 为了形象化地说明问题,对7×4的长方形的28个小方格黑白相间染色,除“品字型”必占3个黑格1个白格或3个白格1个黑格,其余6个方格各占2个黑格2个白格.注:对同一个数学对象,从两个方向考虑(n 项和与积),再将这两个方面合在一起整体考虑,得出结论,这叫计算两次原理,通过计算两次可以建立方程,证明恒等式等.在一定的规则下,进行某种操作或变换,问是否(或证明)能够达到一个预期的目的,这就是所谓操作变换问题,此类问题变化多样,解法灵活,解题的关键是在操作变换中,挖掘不变量,不变性.一些非常规数字问题需要恰当地数学化,以便计算或推理.引入字母与赋值法是数学化的两种常用方式方法.所谓赋值法就是在解题时,将问题中的某些元素用适当的数表示,然后利用这些数值的大小,正负性、奇偶性等进行推理论证的一种解题方法.【例6】桌上放着七只杯子;杯口全朝上,每次翻转四个杯子:问能否经过若干次这样的翻动,使全部的杯子口都朝下?思路点拨 这不可能.我们将口向上的杯于记为:“0”,口向下的杯子记为“1”.开始时,由于七个杯子全朝上,所以这七个数的和为0,是个偶数.一个杯子每翻动一次,所记数由0变为1,或由l 变为0,改变了奇偶性.每一次翻动四个杯子,因此,七个之和的奇偶性仍与原来相同.所以,不论翻动多少次,七个数之和仍为偶数.而七个杯子全部朝下,和为7,是奇数,因此,不可能.整数可以分为奇数和偶数两类.【例7】在1,2,3,…,2005前面任意添上一个正号或负号,它们的代数和是奇数还是偶数?思路点拨 两个整数之和与这两个整数之差的奇偶性相同,只要知道1+2+3+…+2005的奇偶性即可.因两个整数的和与差的奇偶性相同,所以,在1,2,3,...,2005中每个数前面添上正号或负号,其代数和应与1+2+3+...+2005的奇偶性相同,而1+2+3+ (2005)21(1+ 2005)×2005=1003 ×2005为奇数;因此,所求代数和为奇数.注:抓住“a+b 与a —b 奇偶性相同”,通过特例1十2十3十…十2005得到答案.【例8】“ 元旦联欢会上,同学们互赠贺卡表示新年的:良好祝愿.“无论人数是什么数,用来交换的贺卡的张数总是偶数.”这句话正确吗?试证明你的结论.思路点拨 用分类讨论的思想方法,从“无论人数是什么数”入手,考虑人数为奇数或偶数的两种情况.这句话是正确的.下面证明之.若联欢会上的人数为偶数,设为2m (m 为整数),则每个人赠送给同学们的贺卡张数为奇数,即(2m —1).那么,贺卡总张数为2m(2m —1)=4m 2-2m ,显然是偶数.若联欢会上的人数为奇数,设为2m+1(m 为整数,则每个人赠送给同学们的贺卡张数应是2m ,为偶数.贺卡总张数为(2m+1)·2m ,仍为偶数.故“用来交换的贺卡张数总是偶数”是对的.注:按奇数和偶数分类考虑问题是常见的解决此类问题的策略之一.【例9】桌面上放有1993枚硬币,第1次翻动1993枚,第2次翻动其中的1992枚,第3次翻动其中的1991枚,…,第1993次翻动其中一枚,试问:能否使桌面上所有的1993枚硬币原先朝下的一面都朝上?并说明理由.思路点拨 若要把一枚硬币原先朝下的一面朝上,应该翻动该硬币奇数次.因此,要把1993枚硬币原先朝下的一面都朝上,应该翻动这1993枚硬币的总次数为奇数.现在1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997是个奇数,故猜想可以使桌面上1993枚硬币原先朝下的一面都朝上.理由如下:按规定,1993次翻动的总次数为1+2+3+…+1993=1993×(1+1993)/2=1993×997,所以翻动的次数为奇数,而且可见每个硬币平均翻动了997次.而事实上,只要翻动一枚硬币奇数次,就能使这枚硬币原先朝下的一面朝上.按如下的方法进行翻动:第1次翻动全部1993枚,第2次翻动其中的1992枚,第1993次翻动第2次未翻动的那1枚,第3次翻动其中的1991枚,第1992次翻动第3次未翻动的2枚,第997次翻动其中的997枚,第998次翻动第997次未翻动的996枚.这样,正好每枚硬币被翻动了997次,就能使每一枚硬币原来朝下的一面都朝上.注:灵活、巧妙地利用奇俩性分析推理,可以解决许多复杂而有趣的问题,并有意想不到的效果.【例10】在6张纸片的正面分别写上整数:1、2、3、4、5、6,打乱次序后,将纸片翻过来,在它们的反面也随意分别写上1-6这6个整数,然后,计算每张纸片的正面与反面所写数字之差的绝对值,得出6个数.请你证明:所得的6个数中至少有两个是相同的.思路点拨 从反面人手,即设这6个数两两都不相等,利用bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同,引入字母进行推理证明.设6张卡片正面写的数是654321a a a a a a 、、、、、,反面写的数对应为654321b b b b b b 、、、、、,则这6张卡片正面写的数与反面写的数的绝对值分别为11b a -,22b a -,33b a -,44b a -,55b a -,66b a -.设这6个数两两都不相等,则它们只能取0,1,2,3,4,5这6个值.于是11b a -+22b a -+33b a -+44b a -+55b a -+66b a -=0+1+2+3+4+5=15是个 奇数. 另一方面,bi a i -与i i b a - (i =1,2,3,4,5,6)的奇偶性相同.所以11b a -+22b a -+33b a -+44b a -+55b a -+66b a -与(a 1一b 1)+(a 2一b 2)+(a 3一b 3)+(a 4一b 4)+(a 5一b 5)+(a 6一b 6)= )(654321a a a a a a +++++一)(654321b b b b b b +++++ =(1+2+3+4+5+6)一(1+2+3+4+5+6)=O 的奇偶性相同,而0是个偶数,15是奇数,两者矛盾.所以,11b a -,22b a -,33b a -,44b a -,55b a -,66b a -这6个数中至少有两个是相同的.注:反证法是解决奇、偶数问题中常用的方法.【例11】有一只小渡船往返于一条小河的左右两岸之间,问:(1)若最初小船是在左岸,往返若干次后,它又回到左岸,那么这只小船过河的次数是奇数还是偶数?如果它最后到了右岸,情况又是怎样呢?(2)若小船最初在左岸,它过河99次之后,是停在左岸还是右岸?思路点拨 (1)小船最初在左岸,过一次河就到了右岸,再过一次河就由右岸回到左岸,即每次由左岸出发到右岸后再回到左岸,都过了两次河.因此,小船由左岸开始,往返多次后又回到左岸,则过河的次数必为2的倍数,所以是偶数.同样的道理,不难得出,若小船最后停在右岸,则过河的次数必为奇数.(2)通过(1),我们发现,若小船最初在左岸,过偶数次河后,就回到左岸;过奇数次河后,就停在右岸.现在小船过河99次,是奇数次.因此,最后小船该停在右岸.注 关键是对过河次数的理解:一个单程,即由左岸到右岸(或由右岸到左岸)就过河一次;往返一个来回就过河两次.【例12】黑板上写了三个整数,任意擦去其中一个,把它改写成另两个数的和减去1,这样继续下去,得到1995、1996、1997,问原来的三个数能否是2、2、2?思路点拨 如果原来的三个整数是2、2、2,即三个偶数,操作一次后,三个数变成二偶一奇,这时如果擦去其中的奇数,操作后三个数仍是二偶一奇.如果擦去的是其中的一个偶数,操作后三个数仍是二偶一奇.因此,无论怎样操作,得到的三个数都是二偶一奇,不可能得到1995、1996、1997.所以,原来的三个数不可能是2、2、2.注 解决本题的诀窍在于考查数字变化后的奇偶性.【例13】将正偶数按下表排成五列:第1列 第2列 第3列 第4列 第5列第1行 2 4 6 8第2行 16 14 12 10第3行 18 20 22 24… … 28 26根据上面的排列规律,则2000应位于( )A .第125行,第1列B .第125行,第2列C .第250行,第1列D .第250行,第2列思路点拨 观察表格,第1行最右边的数为8,第2行最左边的数为16,第3行最右边的数为24,于是可猜测:当行数为奇数时,该行最右边的数为8×行数;当行数为偶数时,该行最左边的数为8×行数.通过验证第4行、第5行、第6行知,上述猜想是正确的,因为2000=8×250,所以2000应在第250行,又因为250为偶数,故2000应在第250行最左边,即第250行第1列,故应选C .注:观察、寻找规律是解决这类问题的妙招.【例14】如图18—1,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字.若左轮子上方的箭头指着的数字为a ,右轮子上方的箭头指着的数字为b ,数对(a ,b)所有可能的个数为n ,其中a+b 恰为偶数的不同数对的个数为m ,则nm 等于( ) A .21 B .61 C .125 D .43 思路点拨 依题意可知所有的数对n=4×3=12,其中a+b 恰为偶数的数对m=3×1+1×2=5.因此,n m =125,故选C .【例15】已知a、b、c中有两个奇数、一个偶数,n是整数,如果S=(a+2n+1)(b+2n十2)(c+2n十3),那么( )A.S是偶数B.S是奇数C.S的奇偶性与n的奇偶性相同D.S的奇偶性不能确定思路点拨弄清a+2n+1,b+2n+2,c+2n+3的奇偶性即可.依题得:(a+2n+1)+(b+2n+2)+(c+2n+3)=a+b+c+6(n+1).∵a+b+c为偶数,6(n+1)为偶数,∴a+b+c+6(n+1)为偶数∴a+2n+1,b+2n+2,c+2n+3中至少有一个为偶数,∴S是偶数.故选A.注:三个数的和为偶数,则至少有一个为偶数;三个数中有一个为偶数,则三数之和为偶数.学力训练 1.若按奇偶性分类,则12+22+32+…+20022002是 数.2.能不能在下式, 的各个方 框中分别填人“+”号或“一”号,使等式成立?答: .3.已知三个质数a 、b 、c 满足a+b+c+abc =99,那么a c c b b a -+-+-的值等于 .4.已知n 为整数,现有两个代数式:(1)2n+3,(2)4n 一1,其中,能表示“任意奇数”的( )A .只有(1)B .只有(2)C .有(1)和(2)D .一个也没有5.如果a ,b ,c 都是正整数,且a ,b 是奇数,则3a +(b 一1)2c 是( ).A .只当c 为奇数时,其值为奇数B .只当c 为偶数时,其值为奇数C .只当c 为3的倍数,其值为奇数D .无论c 为任何正楚数,其值均为奇数6.已知a ,b ,c 三个数中有两个奇数、一个偶数,n 是整数,如果S=(a+n+1)(b+ 2n+2)(c+3n+3),那么( ).A . S 是偶数B .S 是奇数C .S 的奇偶性与n 的奇偶性相同D .S 的奇偶性不能确定7.(1)是否有满足方程x 2-y 2=1998的整数解x 和y?如果有,求出方程的解;如果没有,说明理由.(2)一个立方体的顶点标上+1或一1,面上标上一个数,它等于这个面的4个顶点处的数的乘积,这样所标的14个数的和能否为0?8.甲、乙两人玩纸牌游戏,甲持有全部的红桃牌(A 作1,J ,Q ,K 分别作11,12,13,不同),乙持有全部的黑桃牌,两人轮流出牌,每次出一张,得到一对牌,出完为止,共得到13对牌,每对牌彼此相减,问这13个差的乘积的奇偶性能否确定?9.在1,2,3,…,1998之前任意添上“十”或“一”号,然后相加,这些和中最小的正整数是 .10.1,2,3,…,98共98个自然数,能够表示成两整数平方差的数的个数是 .11.在一次象棋比赛中,每两个选手恰好比赛一局,每局赢者记2分,输者记0分,平局每个选手各记1分,今有4个人统计百这次比赛中全部得分总数,由于有的人粗心,其数据各不相同,分别为1979,1980,1984,1985,经核实,其中有一人统计无误,则这次比赛共有名选手参加.12.已知p、q、pq+1都是质数,且p一q>40,那么满足上述条件的最小质数p=;q=.13.设a,b为整数,给出下列4个结论(1)若a+5b是偶数,则a一3b是偶数;(2)若a十5b是偶数,则a一3b是奇数;(3)若a+5b 是奇数,则a一3b是偶数;(4)若a+5b是奇数,则a一3b是奇数,其中结论正确的个数是( ).A.0个B.2个C.4个D.1个或3个14.下面的图形,共有( )个可以一笔画(不重复也不遗漏;下笔后笔不能离开纸) .A.0 B.1 C .2 D.315.π的前24位数值为3.14159265358979323846264…,在这24个数字中,随意地逐个抽取1个数字,并依次记作a1,a2,…a24,则(a1一a2)( a3一a4)…(a23一a24)为( ).A.奇数B.偶数C.奇数或偶数D.质数16.没标有A、B、C、D、C、F、G记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A、C、E、G 4盏灯开着,其余3盏灯是关的,小刚从灯A开始,顺次拉动开关,即从A到G,再从A始顺次拉动开关,即又从A到G…,他这样拉动了1999次开关后,问哪几盏是开的? 17.有1997枚硬币,其中1000枚国徽朝上,997枚国徽朝下.现要求每一次翻转其中任意6枚,使它们的国徽朝向相反,问能否经过有限次翻转之后,使所有硬币的国徽都朝上?给出你的结论,并给予证明.18.对一个正整数作如下操作:如果是偶数则除以2,如果是奇数则加1,如此进行直到1时操作停止,求经过9次操作变为l的数有多少个?19.高为50cm,底面周长为50cm的圆柱,在此圆柱的侧面上划分(如图所示)边长为lcm的正方形,用四个边长为lcm的小正方形构成“T”字形,用此图形是否能拼成圆柱侧面?试说明理由.参考答案。
奥数■奇数与偶数教案奥数奇数和偶数知识要点:奇数和偶数的概念:整数可以分成奇数和偶数两大类。
能被2 整除的数叫做偶数(双数),不能被2 整除的数叫做奇数(单数) 。
特别注意,因为0 能被2 整除,所以0 是偶数。
因此最小的奇数是1,最小的偶数是0。
1、偶数与奇数的关系:偶数+偶数= 偶数-偶数=偶数+奇数= 偶数-奇数=奇数+奇数= 奇数-奇数=偶数×偶数= 偶数×奇数=奇数×奇数= 偶数÷偶数=偶数÷奇数= 奇数÷奇数=2、奇数个奇数的和等于奇数,偶数个奇数的和等于偶数,任意个偶数的和等于偶数。
3、任意个奇数的积等于奇数,偶数与任意自然数之积是偶数。
4、若干个自然数的积是奇数,则每一个乘数都是奇数;若干个自然数之积是偶数,则其中必定有一个乘数是偶数。
5、相邻的两个整数必为一奇一偶,它们的积必为偶数,它们的和必为奇数。
例1、下表中有15 个数,请选出五个数,使它们的和等于30.能做到吗?为什么?例2、在2003年“非典”时期,通信公司赠送某医院27 部手机,它们的号码都是连续的。
这27 部手机的号码和是奇数还是偶数?例3 、任意改变某个三位数的各数字的次序后得到一个新的三位数 (比如423 可改变为432、342 等),试问这个新的三位数与原来的那个三位数的和能不能等于999?如果能,试举一例;如果不能,请说明理由。
例4 、赵老师在黑板上写了三个整数。
然后擦去一个数,再写上其他两个数之和;然后再随意擦去一个数,再写出其他两个数之和。
就这样一直做下去,最后得到2004,2005,2006。
赵老师一开始写的三个数有没有可能是1,3,5?例5 、张老师在黑板上依次写下0,1,3,8,21,⋯一列数,规律是:每个数的3 倍等于它前后相邻的两个数字的和,那么张老师写的第20 个数是奇数还是偶数?例6、a,b,c,d 是四个不同的质数,且a﹢b﹢c=d,那么a×b×c×d 的积最小是多少?例7 、已知a,b,c 是三个连续的自然数,其中a 是偶数,小红和小明两人的说法正确的是()小红:那么﹙a+1﹚, ﹙b +2﹚, ﹙c+3﹚这三个数的乘积一定是奇数。
奇数与偶数(上)
一、奇数和偶数的定义
整数可以分成奇数和偶数两大类。
能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
通常偶数可以用2k(k为整数)表示,奇数则可以用2k+1(k为整数)表示。
特别注意,因为0能被2整除,所以0是偶数。
二、奇数与偶数的运算性质
性质1:偶数±偶数=偶数,奇数±奇数=偶数
性质2:偶数±奇数=奇数
加减法中考虑奇数的个数:
性质3:偶数个奇数的和或差是偶数
性质4:奇数个奇数的和或差是奇数
性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数
乘法中考虑有无偶数
三、奇偶性的推论
推论1:在加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性。
推论2:对于任意2个整数a,b,有a+b与a-b同奇或同偶
部分一、奇数偶数基本概念及基本加减法运算性质
例1
是否存在自然数a和b,使得ab(a+b)=115?
例2
有四个互不相等的自然数,最大数与最小数的差等于4,数与最大数的乘积是一个奇数,而这四个数的和是最小的两位奇数。
求这四个数。
例3
数列1,1,2,3,5,8,13,21,34,55,…的排列规律是前两个数是1,从第三个数开始,每一个数都是它前两个数的和,这个数列叫做斐波那契数列,在斐波那契数列前2009个数中共有几个偶数?
在一张9行9列的方格纸上,把每个方格所在的行数和列数加起来,填在这个方格中,例如a=5+3=8。
问:填入的81个数字中是奇数多还是偶数多?
甲、乙两个哲人将正整数5至11分别写在7张卡片上。
他们将卡片背面朝上,任意混合之后,甲取走三张,乙取走两张。
剩下的两张卡片,他们谁也没看,就放到麻袋里去了。
甲认真研究了自己手中的三张卡片之后,对乙说:“我知道你的两张卡片上的数的和是偶数。
”试问:甲手中的三张卡片上都写了哪些数?答案是否唯一。
9999和99!能否表示成为99个连续的奇自然数之和?
测试题
1.是否存在自然数a、b、c,使得(a-b)(b-c)(a-c)=45327?
2.一个偶数分别与其相邻的两个偶数相乘,所得的两个乘积相差80,那么这三个偶数的和是多少?3.数列1,1,2,3,5,8,13,21,34,55,的排列规律是前两个数是1,从第三个数开始,每一个数都是它前两个数的和,这个数列叫做斐波那契数列,在斐波那契数列前2012个数中共有几个偶数?
4.甲同学一手握有写着23的纸片,另一只手握有写着32的纸片.乙同学请甲回答如下一个问题:“请将左手中的数乘以3,右手中的数乘以2,再将这两个积相加,这个和是奇数还是偶数?”当甲说出例5
例6
例4
和为奇数时,乙马上就猜出写有23的纸片握在甲的左手中.你能说出是什么道理吗?
5.如果把每个方格所在的行数和列数乘起来,填在这个方格,例如:5315a =⨯=.问填入的81个数
中是奇数多还是偶数多?
a 1
2345678
9987
6
5
4
3
2
1
6.在黑板上写1~2007这2007个自然数,每次任意擦去两个数,然后写上它们的和或差,一直这样重
复操作,经过若干次后黑板上只剩下一个数,请问结果是奇数还是偶数?为什么?
答案
1.不存在。
可以分情况来讨论:3奇0偶,2奇1偶,1奇2偶,0奇3偶。
但是比较繁琐,可以根据
45327是一个奇数,只有奇数乘以奇数才能得到,所以a-b 、b-c 、a-c 都为奇数,再根据奇偶性进行判断。
2.由定义知道,相邻两个偶数相差2,那么80恰好是原偶数的4倍,即原来的偶数是20。
而由题意知
道原来的三个偶数分别18,20,22,它们的和是60。
3.三个一组三个一组看,可以发现奇数,偶数交替变化的规律.可以发现有奇奇偶奇奇偶奇奇偶奇奇
偶…这样的变化规律,因为201236702÷=,所以前2012个数有670个偶数。
4.甲的两张纸片,23是奇数,32是偶数.因此,只要能判断出甲的左手中握的是奇数,即可知左手的
是23。
设甲左手握的数为a ,右手握的数为b ,乙同学请甲计算所得结果为c ,则32a b c ⨯+⨯=。
⑴ 若c 为奇数,则3a ⨯为奇数,所以左手握的数a 是奇数。
⑵ 若c 为偶数,则3a ⨯为偶数,所以左手握的数a 是偶数。
因此,从c 的奇偶性就可以断定左手握的数a 的奇偶性,从而确定左手握的数是23还是32。
在本题中,c 为奇数,因此合于第(1)种情况,a 是奇数,即左手中握的是23。
5.奇数行奇数多1个,偶数行全是偶数,显然偶数多。
6.奇数±奇数=偶数 擦去两个奇数写上一个偶数不改变结果的奇偶性
偶数±偶数=偶数 擦去两个偶数写上一个偶数不改变结果的奇偶性
奇数±偶数=奇数 擦去一个奇数一个偶数写上一个奇数相当于只擦去一个偶数还是不改变结果的奇偶性,在1-2007中有1004个奇数,每次都是成对的擦去奇数,所以最后只剩下一个数是偶数。