2020选修2-3精编培优讲义《1.2排列》教师版
- 格式:pdf
- 大小:484.97 KB
- 文档页数:14
§1.2排列与组合1.2.1排列第1课时排列与排列数公式学习目标1.理解并掌握排列的概念.2.理解并掌握排列数公式,能应用排列知识解决简单的实际问题.知识点一排列的定义一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.知识点二排列数的定义及公式1.排列数的定义从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m 个元素的排列数,用符号A m n表示.2.排列数公式A m n=n(n-1)(n-2)…(n-m+1)(n,m∈N*,m≤n)=n!(n-m)!.A n n=n(n-1)(n-2)…2·1=n!(叫做n的阶乘).另外,我们规定0!=1.1.123与321是相同的排列.(×)2.同一个排列中,同一个元素不能重复出现.(√)3.在一个排列中,若交换两个元素的位置,则该排列不发生变化.(×)4.从4个不同元素中任取3个元素,只要元素相同得到的就是相同的排列.(×)一、排列的概念例1判断下列问题是否为排列问题:(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信.解(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题.(2)植树和种菜是不同的,存在顺序问题,属于排列问题.(3)(4)不存在顺序问题,不属于排列问题.(5)中每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题.(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2)(5)(6)是排列问题,(1)(3)(4)不是排列问题.反思感悟判断一个具体问题是否为排列问题的思路跟踪训练1判断下列问题是否为排列问题.(1)会场有50个座位,要求选出3个座位有多少种方法?若选出3个座位安排三位客人,又有多少种方法?(2)从集合M={1,2,…,9}中,任取两个元素作为a,b,可以得到多少个焦点在x轴上的椭圆方程x2a2+y2b2=1?可以得到多少个焦点在x轴上的双曲线方程x2a2-y2b2=1?(3)平面上有5个点,其中任意三个点不共线,这5个点最多可确定多少条直线?可确定多少条射线?解(1)第一问不是排列问题,第二问是排列问题.“入座”问题同“排队”问题,与顺序有关,故选3个座位安排三位客人是排列问题.(2)第一问不是排列问题,第二问是排列问题.若方程x2a2+y2b2=1表示焦点在x轴上的椭圆,则必有a>b,a,b的大小关系一定;在双曲线x2a2-y2b2=1中,不管a>b还是a<b,方程x2a2-y2b2=1均表示焦点在x轴上的双曲线,且是不同的双曲线,故是排列问题.(3)确定直线不是排列问题,确定射线是排列问题.二、排列数公式的应用命题角度1 利用排列数公式求值例2-1 计算A 315和A 66.解 A 315=15×14×13=2 730, A 66=6×5×4×3×2×1=720. 命题角度2 利用排列数公式化简例2-2 (1)用排列数表示(55-n )(56-n )…(69-n )(n ∈N *且n <55); (2)化简n (n +1)(n +2)(n +3)…(n +m ).解 (1)∵55-n ,56-n ,…,69-n 中的最大数为69-n ,且共有(69-n )-(55-n )+1=15(个)数, ∴(55-n )(56-n )…(69-n )=A 1569-n .(2)由排列数公式可知n (n +1)(n +2)(n +3)…(n +m )=A m +1n +m .命题角度3 利用排列数公式证明例2-3 求证A m n +1-A m n =m A m -1n. 证明 ∵A m n +1-A mn =(n +1)!(n +1-m )!-n !(n -m )!=n !(n -m )!·⎝⎛⎭⎪⎫n +1n +1-m -1=n !(n -m )!·mn +1-m=m ·n !(n +1-m )!=m A m -1n, ∴A m n +1-A m n =m A m -1n. 反思感悟 排列数公式有两种形式,一种是连乘积的形式,另一种是阶乘的形式,若要计算含有数字的排列数的值,常用连乘积的形式进行计算,而要对含有字母的排列数的式子进行变形或作有关的论证时,一般用阶乘式.跟踪训练2 不等式A x 8<6A x -28的解集为( )A .[2,8]B .[2,6]C .(7,12)D .{8} 答案 D解析 由A x 8<6A x -28,得8!(8-x )!<6×8!(10-x )!,化简得x 2-19x +84<0,解得7<x <12,①又⎩⎪⎨⎪⎧x ≤8,x -2≥0,所以2≤x ≤8,② 由①②及x ∈N *,得x =8.三、排列的简单应用例3 用排列数表示下列问题.(1)从100个两两互质的数中取出2个数,其商的个数;(2)由0,1,2,3组成的能被5整除且没有重复数字的四位数的个数;(3)有4名大学生可以到5家单位实习,若每家单位至多招1名新员工,每名大学生至多到1家单位实习,且这4名大学生全部被分配完毕,其分配方案的个数.解 (1)从100个两两互质的数中取出2个数,分别作为商的分子和分母,其排列数为A 2100. (2)因为组成的没有重复数字的四位数能被5整除,所以这个四位数的个位数字一定是“0”,故确定此四位数,只需确定千位数字、百位数字、十位数字即可,其排列数为A 33.(3)可以理解为从5家单位中选出4家单位,分别把4名大学生安排到4家单位,其排列数为A 45. 反思感悟 首先分析问题是不是排列问题,若是排列问题,则利用定义解题.跟踪训练3 京沪高速铁路自北京南站至上海虹桥站,双线铁路全长1 318公里,途经北京、天津、河北、山东、安徽、江苏、上海7个省市,设立包括北京南、天津西、济南西、南京南、苏州北、上海虹桥等在内的21个车站,计算铁路部门要为这21个车站准备多少种不同的火车票?解 对于两个火车站A 和B ,从A 到B 的火车票与从B 到A 的火车票不同,因为每张票对应一个起点站和一个终点站.因此,结果应为从21个不同元素中,每次取出2个不同元素的排列数A 221=21×20=420(种).所以一共需要为这21个车站准备420种不同的火车票.1.排列有两层含义:一是“取出元素”,二是“按照一定顺序排成一列”.这里“一定的顺序”是指每次取出的元素与它所排的“位置”有关,所以,取出的元素与“顺序”有无关系就成为判断问题是否为排列问题的标准.2.排列数公式有两种形式,可以根据要求灵活选用.1.下面问题中,是排列问题的是()A.由1,2,3三个数字组成无重复数字的三位数B.从40人中选5人组成篮球队C.从100人中选2人抽样调查D.从1,2,3,4,5中选2个数组成集合答案 A解析选项A中组成的三位数与数字的排列顺序有关,选项B,C,D只需取出元素即可,与元素的排列顺序无关.2.A39等于()A.9×3 B.93C.9×8×7 D.9×8×7×6×5×4×3答案 C3.若A m10=10×9×…×5,则m=________.答案 64.从1,2,3,4这4个数字中选出3个数字构成无重复数字的三位数有________个.答案245.从n个不同的元素中取出m个(m≤n)元素排成一列,不同排法有________种.答案n(n-1)(n-2)…(n-m+1)一、选择题1.4·5·6·…·(n-1)·n等于()A.A4n B.A n-4nC.n!-4! D.A n-3n答案 D解析因为A m n=n(n-1)(n-2)…(n-m+1).所以A n-3n=n(n-1)(n-2)…[n-(n-3)+1]=n·(n-1)·(n-2)·…·6·5·4.2.将5本不同的数学用书放在同一层书架上,则不同的放法有()A.50 B.60 C.120 D.90答案 C解析5本书进行全排列,A55=120.3.有5名同学被安排在周一至周五值日,已知同学甲只能在周一值日,那么5名同学值日顺序的编排方案共有()A.12种B.24种C.48种D.120种答案 B解析∵同学甲只能在周一值日,∴除同学甲外的4名同学将在周二至周五值日,∴5名同学值日顺序的编排方案共有A44=24(种).4.下列各式中与排列数A m n相等的是()A.n!(n-m+1)!B.n(n-1)(n-2)…(n-m)C.n A m n -1n -m +1 D .A 1n ·A m -1n -1答案 D 解析∵A m n =n !(n -m )!,而A 1n ·A m -1n -1=n ·(n -1)![(n -1)-(m -1)]!=n !(n -m )!,∴A m n =A 1n ·A m -1n -1.5.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b ,共可得到lg a -lg b 的不同值的个数是( )A .9B .10C .18D .20 答案 C解析 首先从1,3,5,7,9这五个数中任取两个不同的数排列,共有A 25=20(种)排法, 因为31=93,13=39,所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是20-2=18.6.将4张相同的博物馆的参观票分给5名同学,每名同学至多1张,并且票必须分完,那么不同的分法的种数为( ) A .54B .45C .5×4×3×2D .5答案 D解析 由于参观票只有4张,而人数为5人,且每名同学至多1张,故一定有1名同学没有票.因此从5名同学中选出1名没有票的同学,有5种选法.又因为4张参观票是相同的,不加以区分,所以不同的分法有5种. 二、填空题7.若A 42x +1=140·A 3x ,则x =________. 答案 3解析 根据原方程,知x 应满足⎩⎪⎨⎪⎧2x +1≥4,x ≥3,x ∈N *,解得x ≥3,x ∈N *.由排列数公式,得(2x +1)·2x ·(2x -1)·(2x -2)=140x ·(x -1)·(x -2),所以x =3.8.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了________条毕业留言.(用数字作答)答案 1 560解析 根据题意,得A 240=1 560,故全班共写了1 560条毕业留言.9.高三(一)班学生要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求2个舞蹈节目不连排,则共有________种不同的排法. 答案 3 600解析 不同排法的种数为A 55A 26=3 600(种).10.若把英语单词“good ”的字母顺序写错了,则可能出现的错误共有________种. 答案 11解析 根据题意,因为“good ”四个字母中的两个“O ”是相同的, 则其不同的排列有12×A 44=12种, 而正确的排列只有1种, 则可能出现的错误共有11种.11.5名同学排成一列,甲同学不排排头的排法种数为________.(用数字作答) 答案 96解析 可分两步:第一步,甲同学不排排头,故排头的位置可以从余下的四个同学中选一个排,有A 14种方法;第二步,余下的四个同学全排列,有A 44种不同的排法,根据分步乘法计数原理,所求的排法种数为A 14A 44=96.故填96.12.有3名大学毕业生,到5家招聘员工的公司应聘,若每家公司至多招聘一名新员工,且3名大学毕业生全部被聘用,若不允许兼职,则共有______种不同的招聘方案.(用数字作答) 答案 60解析 将5家招聘员工的公司看作5个不同的位置,从中任选3个位置给3名大学毕业生,则本题即为从5个不同元素中任取3个元素的排列问题.所以不同的招聘方案共有A 35=5×4×3=60(种). 三、解答题13.A ,B ,C ,D 四人站成一排,其中A 不站排头,写出所有的站法. 解 作出“树形图”如下:故所有的站法:BACD,BADC,BCAD,BCDA,BDAC,BDCA,CABD,CADB,CBAD,CBDA,CDAB,CDBA,DACB,DABC,DBAC,DBCA,DCAB,DCBA.14.某国的篮球职业联赛共有16支球队参加.(1)每队与其余各队在主客场分别比赛一次,共要进行多少场比赛?(2)若16支球队恰好8支来自北部赛区,8支来自南部赛区,为增加比赛观赏度,各自赛区分别采用(1)中的赛制决出赛区冠军后,再进行一场总冠军赛,共要进行多少场比赛?解(1)任意两队之间要进行一场主场比赛及一场客场比赛,对应于从16支球队任取两支的一个排列,比赛的总场次是A216=16×15=240.(2)由(1)中的分析,比赛的总场次是A28×2+1=8×7×2+1=113.15.一条铁路有n个车站,为适应客运需要,新增了m个车站,且m>1,客运车票增加了62种,问原有多少个车站?现在有多少个车站?解 由题意可知,原有车票的种数是A 2n 种,现有车票的种数是A 2n +m 种,∴A 2n +m -A 2n =62,即(n +m )(n +m -1)-n (n -1)=62.∴m (2n +m -1)=62=2×31,∵m <2n +m -1,且n ≥2,m ,n ∈N *,∴⎩⎪⎨⎪⎧ m =2,2n +m -1=31,解得m =2,n =15, 故原有15个车站,现有17个车站.。
目录考点一:排列 (2)题型一、排列数计算 (3)题型二、排列在实际问题中的应用 (5)课后综合巩固练习 (6)考点一:排列排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素)排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. 排列数公式:A (1)(2)(1)mn n n n n m =---+,m n +∈N ,,并且m n ≤.全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列.n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=.排列组合一些常用方法1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空. 6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --.7.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成n 堆(组),必须除以n !,如果有m 堆(组)元素个数相等,必须除以m ! 8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.实际问题的解题策略排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径: ①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答. 具体的解题策略有: ①对特殊元素进行优先安排;②理解题意后进行合理和准确分类,分类后要验证是否不重不漏; ③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复;④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法; ⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理; ⑥对于正面考虑太复杂的问题,可以考虑反面. ⑦对于一些排列数与组合数的问题,需要构造模型.题型一、排列数计算1.(2017春•西夏区校级月考)若12320081232008M A A A A =+++⋯+,则M 的个位数字是( )A .3B .8C .0D .5【分析】根据题意,由排列数公式计算可得111A =,222A =,336A =,4424A =,55120A =,分析可得66A ,77A ,⋯,20082008A 的个位数都是0,由此分析可得答案.【解答】解:根据题意,由排列数公式计算可得111A =,222A =,336A =,4424A =,55120A =, 66A ,77A ,⋯,20082008A 的个位数都是0,1262433+++=,则M 的个位数字是3; 故选:A .【点评】本题考查排列数公式的应用,解题时要注意总结规律.2.(2017春•临朐县期中)已知自然数x 满足322121326x x x A A A +++-=,则(x )A .3B .5C .4D .6【分析】利用排列数公式构造关于x 的方程,由此能求出结果.【解答】解:自然数x 满足322121326x x x A A A +++-=,3(1)(1)2(2)(1)6(1)x x x x x x x ∴+--++=+,整理,得:231140x x --=,故选:C .【点评】本题考查实数值的求法,二查排列数公式的应用,考查推理论证能力、运算求解能力,考查化归与转化思想,考查创新意识、应用意识 3.(2017春•西夏区校级月考)解下列各式中的n 值.(1)2490n n A A =;(2)4424242n n n n n A A A ----=.【分析】(1)利用排列数公式得到90(1)(1)(2)(3)n n n n n n -=---,由此能求出n . (4)!42(4)!n -=能求出n .【解答】解:(1)2490nn A A =, 90(1)(1)(2)(3)n n n n n n ∴-=---, 25840n n ∴--=, (12)(7)0n n ∴-+=,解得12n =或7n =-(舍). 12n ∴=.(2)4424242n n n n n A A A ----=,(4)!42(4)!n -=(1)42n n ∴-=,2420n n ∴--=,解得7n =或6n =-(舍), 7n ∴=.【点评】本题考查方程的解法,考查排列数公式、组合数公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.题型二、排列在实际问题中的应用1.(2019春•广东期末)用数字0,1,2,3,4组成没有重复数字且大于3000的四位数,这样的四位数有()A.250个B.249个C.48个D.24个【分析】由排列组合及简单的计数问题得:用数字0,1,2,3,4组成没有重复数字且大于3000的四位数,这样的四位数有242448+=个,得解.【解答】解:①当千位数字为3时,由数字0,1,2,3,4组成没有重复数字的四位数有3 424A=个,②当千位数字为4时,由数字0,1,2,3,4组成没有重复数字的四位数有3424A=个,综合①②得:用数字0,1,2,3,4组成没有重复数字且大于3000的四位数,这样的四位数有242448+=个,故选:C.【点评】本题考查了排列组合及简单的计数问题.2.(2019春•南山区期末)某班某天上午有五节课,需安排的科目有语文,数学,英语,物理,化学,其中语文和英语必须连续安排,数学和物理不得连续安排,则不同的排课方法数为()A.60B.48C.36D.24【分析】由排列组合中的相邻问题与不相邻问题得:不同的排课方法数为22222324A A A=,得解.【解答】解:先将语文和英语捆绑在一起,作为一个新元素处理,再将此新元素与化学全排,再在3个空中选2个空将数学和物理插入即可,即不同的排课方法数为22222324A A A=,故选:D.【点评】本题考查了排列组合中的相邻问题与不相邻问题.3.(2019春•丽水期末)某班上午有五节课,计划安排语文、数学、英语、物理、化学各一节,要求语文与化学相邻,且数学不排第一节,则不同排法的种数为()A.24B.36C.42D.48【分析】由排列组合中的捆绑问题得:不同排法的种数为24232423481236A A A A-=-=,得解.【解答】解:先将语文与化学捆绑在一起,作为一个元素,再将四个元素全排,再减去数学排第一节的排法即可即不同排法的种数为24232423481236A A A A-=-=,故选:B.【点评】本题考查了排列组合中的捆绑问题.课后综合巩固练习1.(2019春•白山期末)六位同学站成一排照相,若要求同学甲站在同学乙的左边,则不同的站法有()A.180 种B.240 种C.360 种D.720 种【分析】根据题意,首先计算6人并排站成一排的情况数目,进而分析可得,甲站在乙的左边与甲站在乙的右边的数目是相等的,计算可得答案.【解答】解:根据题意,6人并排站成一排,有66A种情况,而其中甲站在乙的左边与甲站在乙的右边是等可能的,则其情况数目是相等的,故选:C.【点评】本题考查排列、组合的应用,关键在于明确甲站在乙的左边与甲站在乙的右边是等可能的即其数目是相等的.2.(2019•怀化三模)北京APEC峰会期间,有2位女性和3位男性共5位领导人站成一排照相,则女性领导人甲不在两端,3位男性领导人中有且只有2位相邻的站法有() A.12种B.24种C.48种D.96种【分析】将3名男性排成一排,形成了2个空,不包含两端,将其中的女性甲插入到里面,此时形成了4个空,再将另1名女性插入即可,问题得以解决.【解答】解:将3名男性排成一排,形成了2个空,不包含两端,将其中的女性甲插入到里面,此时形成了4个空,再将另1名女性插入即可,故有31132448A A A=种,故选:C.【点评】本题考查的是排列问题,把排列问题包含在实际问题中,属于中档题.3.(2019•岳麓区校级模拟)本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有()A.72种B.144种C.288种D.360种【分析】将数学与物理插入到语文、英语、化学、生物,且化学排在生物前面,此时形成了4个空(不包含最后的一个空)即可求出.【解答】解:先排语文、英语、化学、生物,且化学排在生物前面,此时形成了4个空(不包含最后的一个空),再将数学与物理插入到其中两个空中,42 44144A=种,故选:B.【点评】本题考查分类计数原理,特殊元素优先安排的原则,分类不重不漏4.(2019春•浉河区校级月考)某小学开家长会,会场第一排有连在一起的8个座位,有4位同学和她们的妈妈共8人坐在第一排的这8个座位上,则每位同学和她们的妈妈坐一起的不同排法种数为()A.378B.384C.396D.412【分析】由排列组合中的相邻问题得:先将4位同学和她们的妈妈分别捆绑在一起,作为一个新元素处理,再将4个新元素全排即可得解.【解答】解:由排列组合中的相邻问题得:每位同学和她们的妈妈坐一起的不同排法种数为2222422224384A A A A A=,故选:B.【点评】本题考查了排列组合中的相邻问题,通常用捆绑法5.(2019春•连云港期末)计算123452!3!4!5!6!++++=.解:n【点评】本题考查排列数公式的性质,考查数学转化思想方法6.(2017春•让胡路区校级期中)设*a N ∈,28a <,则等式35(28)(29)(35)maa a a A ---⋯-=中m = .【分析】利用排列数计算公式即可得出.【解答】解:等式35(28)(29)(35)m a a a a A ---⋯-=,*a N ∈,28a <,∴83535m a a A A --=.8m ∴=.故答案为:8.【点评】本题考查了排列数计算公式,考查了推理能力与计算能力。
§1.2排列课时目标1.了解排列与排列数的意义,能根据具体问题,写出符合要求的排列.2.能利用树形图写出简单问题中的所有排列.3.掌握排列数公式,并能利用它计算排列数.4.掌握解决排列应用题的基本思路和常用方法.1.排列(1)定义:一般地,从n个不同的元素中取出m(m≤n)个元素,按照____________排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)相同排列:若两个排列相同,则两个排列的________完全相同,且元素的____________也相同.2.排列数(1)定义:一般地,从n个不同元素中取出m(m≤n)个元素的________________,叫做从n个不同元素中取出m个元素的排列数,用符号________表示.(2)排列数公式:A m n=________________=n!(n-m)!;特别地,A n n=n·(n-1)·…·3·2·1=n!(m,n∈N*,且m≤n),0!=1.一、填空题1.下列问题属于排列问题的是________.(填序号)①从10个人中选2人分别去种树和扫地;②从10个人中选2人去扫地;③从班上30名男生中选出5人参加某一项活动;④从数字5,6,7,8中任取两个不同的数作幂运算.2.若从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四种不同工作,则选派方案共有______种.3.A、B、C三地之间有直达的火车,则需要准备的车票种数是________.4.5名同学排成一排照相,不同排法的种数是________.5.某班上午要上语文、数学、体育和外语4门课,又体育老师因故不能上第一节和第四节,则不同排课方案的种数是________.6.5个人站成一排,其中甲、乙两人不相邻的排法有__________种.7.从1~9的9个数字中任取5个数组成没有重复数字的五位数,且个位、百位、万位上必须是奇数的五位数的个数为________.8.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,则不同的排法共有________种.二、解答题9.用0、1、2、3、4五个数字:(1)可组成多少个五位数;(2)可组成多少个无重复数字的五位数;(3)可组成多少个无重复数字的且是3的倍数的三位数;(4)可组成多少个无重复数字的五位奇数.10.7名师生站成一排照相留念,其中老师1人,男学生4人,女学生2人,在下列情况下,各有多少种不同站法?(1)两名女生必须相邻而站;(2)4名男生互不相邻;(3)若4名男生身高都不等,按从高到低的顺序站;(4)老师不站中间,女生不站两端.能力提升11.由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是________.12.从数字0,1,3,5,7中取出不同的三个数作系数,可以组成多少个不同的一元二次方程ax2+bx+c=0?其中有实数根的方程又有多少个?1.排列问题的本质是“元素”占“位置”问题,有限制条件的排列问题的限制条件主要表现在某元素不排在某个位置上或某个位置不排某些元素,解决该类排列问题的方法主要是按“优先”原则,即优先排特殊元素或优先满足特殊位置.2.处理元素“相邻”“不相邻”或“元素定序”问题应遵循“先整体,后局部”的原则.元素相邻问题,一般用“捆绑法”,先把相邻的若干个元素“捆绑”为一个大元素与其余元素全排列,然后再“松绑”,将这若干个元素内部全排列.元素不相邻问题,一般用“插空法”,先将不相邻元素以外的“普通”元素全排列,然后在“普通”元素之间及两端插入不相邻元素.1.2排列答案知识梳理1.(1)一定的顺序(2)元素排列顺序2.(1)所有排列的个数A m n(2)n(n-1)(n-2)…(n-m+1)作业设计1.①④2.360解析选派方案种数为6选4的排列数,即A46=360.3.64.1205.12解析分两步排课:体育有两种排法;其他科目有A33种排法,∴共有2×A33=12(种)排课方案.6.72解析先排另外3人,有A33种排法,甲、乙插空,有A24种排法.∴不同的排法共有A33·A24=6×12=72(种).7.1 800解析先排个位、百位、万位数字有A35种,另两位有A26种排法,∴共有A35·A26=1 800(个).8.960解析 排5名志愿者有A 55种不同排法,由于2位老人相邻但不排在两端,所以在这5名志愿者的4个空档中插入2位老人(捆绑为1个元素)有A 14·A 22种排法.所以共有A 55·A 14·A 22=960(种)不同的排法.9.解 (1)各个数位上的数字允许重复,故由分步计数原理知,共有4×5×5×5×5=2 500(个).(2)方法一 先排万位,从1,2,3,4中任取一个有A 14种填法,其余四个位置四个数字共有A 44种,故共有A 14·A 44=96(个).方法二 先排0,从个、十、百、千位中任选一个位置将0填入有A 14种方法,其余四个数字全排有A 44种方法,故共有A 14·A 44=96(个).(3)构成3的倍数的三位数,各个位上数字之和是3的倍数,按取0和不取0分类: ①取0,从1和4中取一个数,再取2进行排列,先填百位有A 12种方法,其余全排有A 22种方法,故有2A 12·A 22=8(种)方法.②不取0,则只能取3,从1或4中任取一个,再取2,然后进行全排列为2A 33=12(种)方法,所以共有8+12=20(个).(4)考虑特殊位置个位和万位,先填个位,从1、3中选一个填入个位有A 12种填法,然后从剩余3个非0数中选一个填入万位,有A 13种填法,包含0在内还有3个数在中间三位置上全排列,排列数为A 33,故共有A 12·A 13·A 33=36(个).10.解 (1)2名女生站在一起有站法A 22种,视为一个元素与其余5人全排列,有A 66种排法,所以有不同站法A 22·A 66=1 440(种).(2)先站老师和女生,有站法A 33种,再在老师和女生站位的间隔(含两端)处插入男生,每空一人,则插入方法有A 44种,所以共有不同站法A 33·A 44=144(种).(3)7人全排列中,4名男生不考虑身高顺序的站法有A 44种,而由高到低有从左到右和从右到左的不同,所以共有不同站法2·A 77A 44=420(种).(4)中间和两端是特殊位置,可分类求解如下: ①老师站在两端之一,另一端由男生站,有A 12·A 14·A 55种站法;②两端全由男生站,老师站除两端和正中的另外4个位置之一,有A 24·A 14·A 44种站法,所以共有不同站法A 12·A 14·A 55+A 24·A 14·A 44=960+1 152=2 112(种). 11.36解析 如果5在两端,则1、2有三个位置可选,排法为2×A 23A 22=24(种);如果5不在两端,则1、2只有两个位置可选,排法有3×A 22A 22=12(种),故可组成符合要求的五位数的个数为24+12=36.12.解 要确定一元二次方程ax 2+bx +c =0,分2步完成: 第1步:确定a ,只能从1,3,5,7中取一个,有A 14种取法; 第2步:确定b ,c ,可从剩下的4个数字中任取2个,有A 24种取法. 由分步计数原理,知可组成A 14·A 24=48(个)不同的一元二次方程.一元二次方程ax 2+bx +c =0(a ≠0)要有实数根必须满足b 2-4ac ≥0,分2类: 第1类:当c =0时,a ,b 可以从1,3,5,7中任取2个数字,有A 24种取法;第2类:当c ≠0时,由b 2-4ac ≥0知,b 只能取5或7,当b 取5时,a ,c 只能取1,3这两个数,有A 22种取法;当b 取7时,a ,c 可取1,3这两个数或1,5这两个数,有2A 22种取法.因此c ≠0时,有A 22+2A 22(种)取法.由分类计数原理,有实数根的一元二次方程有A 24+A 22+2A 22=18(个).。
人教版高数选修2-3第一章1.2排列组合(教师版)排列组合_________________________________________ _________________________________________ _________________________________________ _________________________________________1.理解排列组合的概念.2.能利用计数原理推导排列公式、组合公式.3.熟练掌握排列、组合的性质.4.能解决简单的实际问题.1.排列与组合的概念:(1)排列:一般地,从n个不同的元素中取出m(m ≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m个元素的一个排列.注意:○1如无特别说明,取出的m个元素都是不重复的.○2排列的定义中包括两个基本内容,一是“取出元素”,二是“按照一定的顺序排列”.○3从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列.○4在定义中规定m≤n,如果m=n,称作全排列.○5在定义中“一定顺序”就是说与位置有关.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号m nC 表示.3.排列数公式与组合数公式: (1)排列数公式:(1)(2)(1),m n A n n n n m =--⋅⋅⋅-+其中m ,n *∈N ,且m ≤n .(2)全排列、阶乘、排列数公式的阶乘表示. ○1全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列.○2阶乘:自然数1到n 的连乘积,叫做n 的阶乘,用n !表示,即!.nnAn =○3由此排列数公式(1)(2)(1)m nA n n n n m =---+所以!.()!m nn An m =-(3)组合数公式:!.!()!m nn Cm n m =-(4)组合数的两个性质: 性质1:.m n m nn CC -= 性质2:11.m m m n n n CC C -+=+类型一.排列的定义例1:判断下列问题是不是排列,为什么? (1)从甲、乙、丙三名同学中选出两名参加一项活动,其中一名同学参加上午的活动,另一名同学参加下午的活动.(2)从甲、乙、丙三名同学中选出两名同学参加一项活动.[解析] (1)是排列问题,因为选出的两名同学参加的活动与顺序有关.(2)不是排列问题,因为选出的两名同学参加的活动与顺序无关.练习1:判断下列问题是不是排列,为什么? (1)从2、3、4这三个数字中取出两个,一个为幂底数,一个为幂指数.(2)集合M ={1,2,…,9}中,任取相异的两个元素作为a ,b ,可以得到多少个焦点在x 轴上的椭圆方程22221x y a b +=和多少个焦点在x 轴上的双曲线方程2222 1.x y a b-=[解析] (1)是排列问题,一个为幂底数,一个为幂指数,两个数字一旦交换顺序,产生的结果不同,即与顺序有关.(2)第一问不是第二问是.若方程22221x y a b+=表示焦点在x 轴上的椭圆,则必有a >b ,a ,b 的大小一定;在双曲线22221x y a b-=中,不管a >b 还是a <b ,方程22221x y a b-=均表示焦点在x 轴上的双曲线,且是不同的双曲线,故这是排列.类型二.组合的定义例2:判断下列问题是组合问题还是排列问题.(1)设集合A={a,b,c,d,e},则集合A的子集中含有3个元素的有多少个?(2)某铁路线上有5个车站,则这条线上共需准备多少种车票?多少种票价?[解析] (1)因为本问题与元素顺序无关,故是组合问题.(2)因为甲站到乙站,与乙站到甲站车票是不同的,故是排列问题,但票价与顺序无关,甲站到乙站,与乙站到甲站是同一种票价,故是组合问题.练习1:判断下列问题是组合问题还是排列问题.(1)3人去干5种不同的工作,每人干一种,有多少种分工方法?(2)把3本相同的书分给5个学生,每人最多得1本,有几种分配方法?[解析] (1)因为分工方法是从5种不同的工作中取出3种,按一定次序分给3个人去干,故是排列问题.(2)因为3本书是相同的,无论把3本书分给哪三人,都不需考虑他们的顺序,故是组合问题.类型三.排列数与组合数例3:计算下列各式. (1)57;A(2)212;A(3)77.A[解析] [答案] (1)57A =7×6×5×4×3=2520; (2)213A =13×12=156;(3)77A =7×6×5×4×3×2×1=5040.练习1:乘积m (m +1)(m +2)…(m +20)可表示为( ) A.2mAB.21m AC.2020m A +D.2120m A +[答案] D[解析] 排列的顺序为由小到大,故n =m +20,而项数是21故可表示为2120.m A+例4:计算98100C[答案]98100982100100100100994950.21C C C -⨯====⨯练习2:计算972959898982C C C ++ [答案]原式1231223298989898989898992()()C C C C C C C C =++=+++=3399100161700.C C +== 类型四.排列问题例5:3个女生和5个男生排成一排. (1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?[解析] (1)(捆绑法)因为3个女生必须排在一起,所以可以先把她们看成一个整体,这样同5个男生合在一起共有6个元素,排成一排有66A 种不同排法.对于其中的每一种排法,3个女生之间又都有33A 种不同的排法,因此共有63634320A A⋅=种不同的排法.(2)(插空法)要保证女生全分开,可先把5个男生排好,每两个相邻的男生之间留出一个空档,这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把3个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于5个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让3个女生插入都有36A 种不同排法,因此共有535614400A A⋅=种不同的排法.练习1:3个女生和5个男生排成一排. (1)如果两端都不能排女生,可有多少种不同的排法?(2)如果两端不能都排女生,可有多少种不同的排法?[解析] (1)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有2656A A ⋅=14400种不同的排法.(2)3个女生和5个男生排成一排有88A 种排法,从中减去两端都是女生的排法2636A A ⋅种,就能得到两端不都是女生的排法种数,因此共有82683636000A A A-⋅=种不同的排法.类型五.组合问题例6:高中一年级8个班协商组成年级篮球队,共需10名队员,每个班至少要出1名,不同的组队方式有多少种?[解析] 本题实质上可以看作把2件相同的礼品分到8个小组去,共有1288C C+36=种方案.练习1:有、甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这,三项任务,不同的选法共有多少种?[解析] 共分三步完成,第一步满足甲任务,有210C 种选法,第二步满足乙任务有18C 种选法,第三步满足丙任务,有17C 种选法,故共有21110872520C C C =种不同选法.类型六.排列与组合综合问题例7:某校乒乓球队有男运动员10人和女运动员9人,选出男女运动员各3名参加三场混合双打比赛(每名运动员只限参加一场比赛),共有多少种不同参赛方法?[答案] 362880[解析] 从10名男运动员中选3名有310C 种,从9名女运动员中选3名有39C 种;选出的6名运动员去配对,这里不妨设选出的男运动员为A ,B ,C ;先让A 选择女运动员,有3种不同选法;B 选择女运动员的方法有2种;C 只有1种选法了,共有选法3×2×1=6种;最后这3对男女混合选手的出场顺序为33A ,根据分步计数原理,共有33310936362880CC A ⨯⨯=种不同参赛方法.练习1:在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数的共有( )A.36个B.24个C.18个D.6个 [答案] A[解析] 由各位数字之和为偶数,可知所求三位数由2个奇数和1个偶数组成,由乘法原理,各位数字之和为偶数的数共有21332336CC A ⋅⋅=个.1.89×90×91×…×100可表示为( )A.10100A B.11100AC.12100AD.13100A[答案] C 2.已知123934,n n A A --=则n 等于( ) A.5B.6C.7D.8[答案] C3.将6名学生排成两排,每排3人,则不同的排法种数有( )A.36B.120C.720D.140[答案] C4.6名同学排成一排,其中甲、乙两人排在一起的不同排法有( )A.720种B.360种C.240种D.120种 [答案] C 5.若266,x C C =则x 的值是( )A.2B.4C.4或2D.0[答案] C6.1171010r r CC +-+可能的值的个数为( )A.1个B.2个C.3个D.无数个 [答案] B7.某校一年级有5个班,二年级有7个班,三年级有4个班,分年级举行班与班之间的篮球单循环赛,共需进行比赛的场数是( ) A.222574CC C ++ B.222574C C CC.222574AA A ++D.216C[答案] A8.有3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法有( )A.90种 B .180种 C.270种 D.540种 [答案] D_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.某乒乓球队共有男女队员18人,现从中选出男、女队员各1人组成一对双打组合,由于在男队员中有2人主攻单打项目,不参与双打组合,这样一共有64种组合方式,则乒乓球队中男队员的人数为( )A.10人B.8人C.6人D.12人 [答案] A2.将4个不同的小球随意放入3个不同的盒子,使每个盒子都不空的放法种数是( ) A.1334A AB.2343C AC.3242C AD.132442C C C[答案] B3.有3名男生和5名女生照相,如果男生不排在是左边且不相邻,则不同的排法种数为( ) A.3538A AB.5354A AC.5355A AD.5356A A[答案] C4.8位同学,每位相互赠照片一张,则总共要赠________张照片. [答案] 565.5名学生和5名老师站一排,其中学生不相邻的站法有________种.[答案]864006.由0,1,2,3,4,5组成无重复数字的六位数,其中个位数字小于百位数字的数共有________个.[答案]3007.有10个三好学生的名额,分配给高三年级6个班,每班至少一个名额,共有________种不同的分配方案.[答案]1268.从10名学生中选出5人参加一个会议,其中甲、乙两人有且仅有1人参加,则选法种数为________.[答案]140能力提升1.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个[答案]B2.方程22a b c∈--,且,,a b c互不相ay b x c=+中的,,{3,2,0,1,2,3}同,在所有这些方程所表示的曲线中,不同的抛物线共有()A.60条B.62条C.71条D.80条[答案]B3. 6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.24[答案] D4.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( )A.56个B.57个C.58个D.60个[答案]C5.某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有________种.(用数字作答)【答案】966. 把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有__________种.[答案]367. 在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为_________(结果用数值表示).[答案] 1208.从数字0,1,3,5,7中取出不同的三个数作系数,可以组成多少个不同的一元二次方程ax 2+bx +c =0?其中有实根的方程有多少个?[答案] 先考虑组成一元二次方程的问题:首先确定a ,只能从1,3,5,7中选一个,有14A 种,然后从余下的4个数中任选两个作b 、c ,有24A 种.所以由分步计数原理,共组成一元二次方程:124448A A⋅=个.方程更有实根,必须满足240.bac -≥分类讨论如下:当c =0时,a ,b 可在1,3,5,7中任取两个排列,有24A 个;当c ≠0时,分析判别式知b 只能取5,7.当b 取5时,a ,c 只能取1,3这两个数,有22A 个;当b 取7时a ,c 可取1,3或1,5这两组数,有222A 个,此时共有22222AA +个.由分类计数原理知,有实根的一元二次方程共有:2224222AA A ++=18个.。
1。
2 排列1.排列的概念一般地,从n个不同的元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.预习交流1如何判断一个问题是否是排列问题?提示:排列问题与元素的排列顺序有关,是按一定的顺序排成一列,如果交换元素的位置,其结果发生了变化,叫它是排列问题,否则,不是排列问题.2.排列数的概念一般地,从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A mn表示.根据分步计数原理,我们得到排列数公式A mn=n(n-1)(n-2)…(n-m+1),其中n,m∈N*,且m≤n。
n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列.在排列数公式中,当m=n时,即有A mn=n(n-1)(n-2)·…·3·2·1,A nn 称为n的阶乘(factorial),通常用n!表示,即A nn=n!。
我们规定0!=1,排列数公式还可以写成A mn =!()!nn m。
预习交流2如何理解和记忆排列数公式?提示:A mn是m个连续自然数的积,最大一个是n,依次递减,最后一个是(n-m+1).一、排列问题下列三个问题中,是排列问题的是__________.①在各国举行的足球联赛中,一般采取“主客场制”,若共有12支球队参赛,求比赛场数;②在“世界杯"足球赛中,采用“分组循环淘汰制",共有32支球队参赛,分为八组,每组4支球队进行循环,问在小组循环赛中,共需进行多少场比赛?③在乒乓球单打比赛中,由于参赛选手较多,故常采用“抽签捉对淘汰制”决出冠军.若共有100名选手参赛,待冠军产生时,共需举行多少场比赛?思路分析:交换元素的顺序,有影响的是排列问题,否则,不是.答案:①解析:对于①,同样是甲、乙两队比赛,甲作为主队和乙作为主队是两场不同的比赛,故与顺序有关,是排列问题;对于②,由于是组内循环,故一组内的甲、乙只需进行一场比赛,与顺序无关,故不是排列问题;对于③,由于两名选手一旦比赛后就淘汰其中一位,故也与顺序无关,故不是排列问题.下列问题是排列问题吗?并说明理由.①从1,2,3,4四个数字中,任选两个做加法,其结果有多少种不同的可能?②从1,2,3,4四个数字中,任选两个做除法,其结果有多少种不同的可能?解:①不是排列问题;②是排列问题.理由:由于加法运算满足交换律,所以选出的两个元素做加法时,与两个元素的位置无关,但做除法时,两个元素谁是除数,谁是被除数不一样,此时与位置有关,故做加法不是排列问题,做除法是排列问题.判断排列问题的原则:①与顺序有关;②元素互不相同;③一次性抽取.二、排列数问题解方程:3A错误!=2A错误!+6A错误!.思路分析:先把式中的排列数转化为关于x的表达式,并注意A错误!中m≤n,且m,n为正整数这些限制条件,再求解关于x的方程.解:由3A3,x=2A错误!+6A错误!,得3x(x-1)(x-2)=2(x+1)x+6x(x-1).∵x≥3,∴3(x-1)(x-2)=2(x+1)+6(x-1),即3x2-17x+10=0.解得x=5或x=错误!(舍),故x=5.解不等式:A错误!>6A错误!。