质量管理工具-统计方法-散布图、直方图
- 格式:doc
- 大小:68.00 KB
- 文档页数:5
质量管理七种工具是指在质量管理过程中常用的七种方法和工具,包括流程图、因果图、直方图、散点图、控制图、检查表和Pareto图。
这些工具可以帮助识别问题、分析数据、改进过程,以提高产品或服务的质量。
流程图:用于显示一个或多个输入转化为一个或多个输出的过程中,所需要的步骤顺序和可能分支。
流程图有助于了解和估算一个过程的质量成本。
因果图:也称为鱼骨图或石川图,用于分析问题的根本原因。
通过将问题与可能的原因相关联,可以识别出问题的潜在因素。
直方图:一种特殊的条形图,用于描述集中趋势、分散程度和统计分布形状。
直方图可以直观地展示数据的分布情况。
散点图:显示两个变量之间的关系的图表。
通过散点图的观察和分析,可以发现两个变量之间是否存在相关关系或因果关系。
控制图:用于确定一个过程是否稳定或可预测的绩效。
控制图可以检测到过程的异常波动,从而及时采取措施解决问题。
检查表:用于收集数据的查对清单。
通过检查表,可以对某一特定事项或问题进行逐项检查,以便记录和分析数据。
Pareto图:一种特殊的垂直条形图,用于识别造成大多数问题的少数重要原因。
Pareto图可以帮助企业优先解决关键问题,提高生产效率和质量。
这些工具在质量管理中发挥着重要作用,通过综合运用这些工具,企业可以更好地理解和控制生产过程,提高产品质量,降低生产成本,增强客户满意度和忠诚度。
质量管理的老7种工具老七种工具:分层法排列图法因果分析图法调查表法直方图法散布图法控制图法产生背景:日本,二十世纪六十年代。
老七种工具的特点:强调用数据说话,重视对制造过程的质量控制通俗易懂,一线员工易于掌握质量管理老7种工具1.分层法概念分层法又称分类法,即:把收集来的原始质量数据,按照一定的目的和要求加以分类整理,以便分析质量问题及其影响因素的一种方法。
原则➢根据分层的目的➢按照一定的标志➢数据的归类➢分层的关键质量数据分层的标志(5M1E)操作者、机器设备、原材料、测量、方法、环境。
不同的时间;不同的检验手段;废品的缺陷项目。
分层法实例(1)某轧钢厂一个车间的生产情况统计如下:甲乙丙三班各轧制钢材2000t,共轧制6000t,其中轧废169t。
如果只知道这样三个数据,则无法对质量问题进行分析。
下表是进行的分层分析。
分层法实例(2)某产品的汽缸体与气缸盖之间经常发生漏油现象,使用分层法分析其主要原因。
解:通过现场调查发现主要原因是密封不好。
该装配工序是由甲乙丙三个工人各自完成的;并发现漏油的主要原因是三个人在涂粘结济方法上的不同以及所使用的气缸垫分别来自A 和B两个协作厂。
调查的数据如下:调查总数50个,漏油19个,漏油发生率0.38。
现采用分层法按操作者和协作厂分层收集整理数据。
按操作者分层结论:工人乙的操作方法漏油发生率比较低。
按协作厂分层结论:B厂的气缸垫漏油发生率比较低。
综上:建议采用乙的工作方法和B厂的气缸垫。
实施结果:漏油发生率增加了原因:没有考虑两者之间的关系措施:重新考虑分层与协作厂联合分层结论:B厂↔工人甲A厂↔工人乙2.排列图法概念➢排列图又称主次因素分析图或帕累托图(Pareto)。
➢由两个纵坐标、一个横坐标、几个直方块和一条折线所构成。
➢累计百分比将影响因素分成A、B、C三类。
排列图又叫巴雷特图(pareto diagram),其原理是意大利经济学家帕累托在分析社会财富分布状况时得到的“关键的少数和次要的多数”的结论。
新旧七种质量管理常用七种工具对比新七大手法要紧应用在中高层管理上,而旧七手法要紧应用在具体的实际工作中。
因此,新七大手法应用于一些管理体系比较严谨与管理水准比较高的公司QC旧七大手法:特性要因分析图、柏拉图、查检表、层别法、散布图、直方图、管制图。
QC新七大手法:关系图、系统图法、KJ法、箭头图法、矩阵图法、PAPC法、矩阵数据解析法。
一、检查表检查表又称调查表,统计分析表等。
检查表是QC七大手法中最简单也是使用得最多的手法。
但或者许正由于其简单而不受重视,因此检查表使用的过程中存在的问题很多。
使用检查表的目的:系统地收集资料、积存信息、确认事实并可对数据进行粗略的整理与分析。
也就是确认有与没有或者者该做的是否完成(检查是否有遗漏)。
二、排列图法排列图法是找出影响产品质量要紧因素的一种有效方法。
制作排列图的步骤:1、收集数据,即在一定时期里收集有关产品质量问题的数据。
如,可收集1个月或者3个月或者半年等时期里的废品或者不合格品的数据。
2、进行分层,列成数据表,马上收集到的数据资料,按不一致的问题进行分层处理,每一层也可称之一个项目;然后统计一下各类问题(或者每一项目)反复出现的次数(即频数);按频数的大小次序,从大到小依次列成数据表,作为计算与作图时的基本根据。
3、进行计算,即根据第(3)栏的数据,相应地计算出每类问题在总问题中的百分比,计入第(4)栏,然后计算出累计百分数,计入第(5)栏。
4、作排列图。
即根据上表数据进行作图。
需要注意的是累计百分率应标在每一项目的右侧,然后从原点开始,点与点之间以直线连接,从而作出帕累托曲线。
三、因果图法因果图又叫特性要因图或者鱼骨图。
按其形状,有人又叫它为树枝图或者鱼刺图。
它是寻找质量问题产生原因的一种有效工具。
画因果分析图的注意事项:1、影响产品质量的大原因,通常从五个大方面去分析,即人、机器、原材料、加工方法与工作环境。
每个大原因再具体化成若干个中原因,中原因再具体化为小原因,越细越好,直到能够采取措施为止。
常用质量管理统计方法常用的质量管理统计方法包括:旧QC七大手法(检查表、数据分层法、排列图、因果图、散布图、直方图、控制图)和新QC七大手法(亲和图、树图、关联图、箭条图、PDPC、矩阵图、矩阵数据分析法),以及其它一些方法如:头脑风暴法、对策表、流程图、水平对比法等。
简介如下:一、检查表(调查表、统计分析表)1、概念:系统地收集资料和累积资料,确认事实并对资料进行粗略的整理和简单分析的统计图表。
2、分类:不合格品项目检查表、缺陷位置检查表、质量分布检查表、矩陈检查表、用于非数字数据分析用的检查表。
3、用途:用在对现状的调查,以备今后作分析。
4、制作步骤(1)确定搜集资料的具体目的。
(2)确定为达到目的所需搜集的数据资料。
(3)确定对资料的的分析方法、所釆用的统计工具。
(4)根据不同目的,设计用于记录资料的调查表格式。
(5)用收集和记录的部分资料进行表格试用,目的是检查表格设计的合理性。
(6)如有必要应评审和修改调查表。
5、注意事项(1)应能迅速、正确、简易地收集到数据,记录时只要在必要项目上加注记号;(2)记录时要考虑到层別,按人员、机台、原料、时间等分类;(3)数据来源要清楚:由谁检查、检查时间、检查方法、检查班次、检查机台,均应写清楚,其他测定或检查条件也要正确地记录下來;(4)尽可能以记号、图形标记,避免使用文字;(5)检查项目不宜太多,以4-6项为宜(针对重要的几项就可),其他可能发生的项目采用“其他”栏。
6、应用实例二、数据分层法(分类法、分组法)1、概念:数据分层法就是性质相同的,在同一条件下收集的数据归纳在一起,以便进行比较分析。
2、分类方法:数据分层可根据实际情况按多种方式进行。
例如,按不同时间,不同班次进行分层,按使用设备的种类进行分层,按原材料的进料时间,原材料成分进行分层,按检查手段,使用条件进行分层,按不同缺陷项目进行分层等等。
数据分层法经常与统计分析表结合使用。
3、应用步骤(1)收集数据。
QC七大手法(工具)完整版介绍“七大手法”主要是指企业质量管理中常用的质量管理工具,有“老七种”和“新七种”之分。
“老七种”有分层法、调查表、排列法、因果图、直方图、控制图和相关图,新的QC七种工具分别是系统图、关联图、亲和图、矩阵图、箭条图、PDPC法以及矩阵数据分析法等。
今天我们一起来回顾一下“老七种”。
何为QC七手法:QC七手法又称为QC七工具,一般指旧QC七手法,即层别法、检查表、柏拉图、因果图、管制图、散布图和直方图。
是质量管理及改善运用的有效工具。
QC手法的适用范围:QC手法的用途非常广泛,可以用于企业管理的方方面面(包括计划管控、员工思想意识行为管理、质量管控、成本管控、交期管控、士气管理、环境管理、安全管理、效率管理、绩效考核、日常管理等等),但主要用于品质管理及改善。
七大手法口诀:因果追原因、检查集数据、柏拉抓重点、直方显分布、散布看相关、管制找异常、层别作解析。
因果图(特性要因图、石川图、鱼骨图):定义:当一个问题的特性(结果)受到一些要因(原因)影响时,将这些要因加以整理,成为有相互关系且有条理的图形,这个图形就称为特性要因图,又叫鱼骨图(Fish-Bone Diagram)。
用途说明:1.整理问题。
2.追查真正的原因。
3.寻找对策。
制作步骤:1. 决定问题或品质的特性——特性的选择不能使用看起来很抽象或含混不清的主题。
2. 决定大要因——须是简单的完整句,且具有某些程度或是方向性。
3. 决定中小要因。
4. 决定影响问题点的主要原因。
5. 填上制作目的、日期及制作者等资料。
应注意事项:1.脑力激荡。
2.以事实为依据。
3.无因果关系者,予以剔除,不予分类。
4.多加利用过去收集的资料。
5.重点放在解决问题上,并依结果提出对策,依5W2H原则执行。
.WHY——为什么?为什么要这么做?理由何在?原因是什么?.WHAT——是什么?目的是什么?做什么工作?.WHERE——何处?在哪里做?从哪里入手?.WHEN——何时?什么时间完成?什么时机最适宜?.WHO——谁?由谁来承担?谁来完成?谁负责?.HOW ——怎么做?如何提高效率?如何实施?方法怎样?.HOW MUCH——多少?做到什么程度?数量如何?质量水平如何?费用产出如何?6.依据特性别,分别制作不同的特性要因图。
质量管理;老七种工具一、质量管理的老七种工具指的是什么?质量管理的老七种工具是对应质量管理的新七种工具而言的,又叫做QC其中工具,包括统计分析表、数据分层表、排列图、因果分析图、直方图、散布图和控制图七种,其中工具可以单独使用也可以配合使用。
目的是服务质量管理。
二、质量管理的老七种工具的主要作用是什么?1、统计分析表:统计分析表是利用统计方法对数据进行整理和初步原因分析并形成表格以供直接阅读的一种工具,其格式多种多样,可以根据用户的习惯来自行制定,有利于对质量数据进行分类汇总查找规律。
2、数据分层表:数据分层法是统计分析表的延伸,就是将性质相同的,条件相同条件下收集的质量数据归纳比较。
例如统计分析表如果具体到每个车间工段的话,数据分层表可以具体到其班组和生产材料及影响因素,检查者的素质能力等。
可以按检查手段,按使用条件、和时效等进行分层,进行质量深入分析。
3、排列图。
排列图是在统计分析基础上,对影响质量的各个因素进行逐层分析后,通过直观手段呈现质量影响主要因素或者高频因素的一种质量管理图形,又叫柏拉图,图形的左侧纵坐标是影响频数,右侧纵坐标是影响频率,坐标趋势线是累积频数,横坐标是影响因素从大到小的排列组合4、因果分析图。
因果分析图又叫鱼骨图,是一种以原因作为因素,以结果为质量问题特征的关系图。
用箭头对应来代表。
因果分析图可以通过头脑风暴法来集思广益,调动员工发现质量问题并查找原因的积极性。
5、直方图。
直方图与排列图的作用类似,但是形式不一样。
主要是反映质量问题和管理效果总体分布的一种工具。
通过直方图可以较为直观的看出质量的特征的分布,有利于质量管理的高效准确开展。
6、散布图。
散布图的作用是通过若干数据的对应关系,使得特征和原因分布在一定平面区间内,作为查找质量特征发生原因或者条件的一种借鉴工具。
有利于判断质量问题以及客观条件和发生原因等变量之间的对应关系。
7、控制图。
控制图分为供分析的控制图和供管理用的控制图。
TS16949推进宣传(九)
---常用统计分析方法介绍(二)----散布图、直方图
一、散布图
在质量问题的原因分析中,常会接触到各个质量因素之间的关系。
这些变量之间的关系往往不能进行解析描述,不能由一个(成几个)变量的数值精确地求出另一个变量的值,我们称之为非确定性关系。
散布图就是将两个非确定性关系变量的数据对应列出,标记在坐标图上,来观察它们之间的关系的图表。
1.散布图的画法
(1)收集数据
所要研究的两个变量如果一个为原因,另一个为结果时,则一般取原因变量为自变量,取结果变量为因变量。
通过抽样检测得到两个变量的一组数据序列。
(2)在坐标上画点
在直角坐标系中,把上述对应的数据组序列以点的形式一一描出。
注意,横轴与纵轴的长度单位选取原则是使两个变量的散布范围大致相等,以便分析两变量之间的相关关系。
2.散布图的用途
(1)确定两变量(因素)之间的相关性
两变量之间的散布图大致可分下列六种情形。
1)强正相关(完全正线性相关)。
x增大,y也随之线性增大。
x与y之间可用直线y=a+bx(b为正数)表示。
此时,只要控制住x,y也随之被控制住了,图1就属这种
情况。
图1
2)弱正相关。
图2所示,点分布在一条直线附近,且x增大,y基本上随之线性增大,此时除了因素x外可能还有其它因素影响y。
图2
3)无关。
图3所示,x和y两变量之间没有任何一种明确的趋势关系。
说明两因素互不相关。
图3
4)弱负相关。
图4所示,x增大,y基本上随之线性减小。
此时除x之外,可能还有其它因素影响y。
图4
5)强负相关(完全负线性相关)。
图5所示,x与y之间可用直线y=a+bx(b为负数)表示。
y随x的增大而减小。
此时,可以通过控制x而控制y的变化。
图5
6)非线性相关。
图6所示,x、y之间可用曲线方程进行拟合,根据两变量之间的曲线关系,可以利用x的控制调整实现对y的控制。
图6
(2)变量控制。
通过分析各变量之间的相互关系。
确定出各变量之间的关联性类型及其强弱。
当两变量之间的关联性很强时,可以通过对容易控制(操作简单、成本低)的变量的控制达到对难控制(操作复杂、成本高)的变量的间接控制。
(3)可以把质量问题作为因变量,确定各种因素对产品质量的影响程度。
当同时分析各种因素对某一质量指标的作用关系时,或某一质量现状的引发因素包含多种因素时,应尽可能将质量数据按照各种可能因素类型进行分层,如:按操作人员分层、按使用设备分层、按工作时间分层、按使用原材料分层、按工艺方法分层或按工作环境分层
等等。
将因素分层之后使原来无关的数据得以进一步细分,从而提示出更准确的内在联系。
二、直方图
直方图是适用于对大量计量值数据进行整理加工、找出其统计规律。
即分析数据分布的形态,以便对其总体分布特征进行推断的方法。
主要图形为直角坐标系中若干顺序排列的矩形。
各矩形底边相等,为数据区间。
矩形的高为数据落入各相应区间的频数。
1.直方图画法
(1)收集数据。
数据个数一般在100个左右,至少不少于50个。
理论上讲数据越多越好,但因收集数据需要耗费时间和人力、费用,所以收集的数据有限。
(2)找出最大值L,最小值S和极差R。
找出全体数据的最大值L和最小值S,计算出极差R=L-S。
(3)确定数据分组数k及组矩h。
通常分组数k取4-20。
设数据个数为n,通常取等组距,h=R/k。
(4)确定各组上、下界.只需确定第一组下界值即可根据组距h确定出各组的上、下界取值。
注意一个原则:应使数据的全体落在第一组的下界值与最后一组(第k组)的上界值所组成的开区间之内。
(5)累计频率画直方图。
累计各组中数据频数fi,并以组距为底边,fi为高,画出一系列矩形,得到直方图。
见图7所示。
图7 直方图
2.直方图用途
(1)计算均值和标准差S
均值表示样本数据的“质量中心”,可以按下式计算,
(3)
式中,n为数据个数。
样本数据的分散或变异程度可用下列样本标准差进行度量:
(4)
(2)从直方图可以直观地看出产品质量特性的分布形态,便于判断工序是否处于统计控制状态,以决定是否采取相应处理措施。