数学模型_捕鱼业的持续收获
- 格式:ppt
- 大小:313.00 KB
- 文档页数:9
最优捕鱼策略数学模型 The following text is amended on 12 November 2020.最优捕鱼策略数学模型摘要为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度。
本文实际上就是为了解决渔业上最优捕鱼策略问题,即在可持续捕捞的前提下,追求捕捞量的最大化。
问题一采用条件极值列方程组的方法求解,即1龄鱼的数量由3龄鱼和4龄鱼的产卵孵化而来;2,3龄鱼的数量分别由上一年1龄鱼,2龄鱼生长而来;4龄鱼由上一年的3龄鱼和上一年末存活的4龄鱼组成。
最后得到:只要每年1-8月份3、4龄鱼捕捞总量小于、,就可以实现总捕捞量最大为;对结果分析得到捕捞的对象主要是3龄鱼,当3龄与4龄鱼的捕捞系数发生变化时,总的捕捞量变化不大。
问题二给出年初各龄鱼的数量,要求在5年后鱼群的生产能力没有受到太大的破坏的前提下,使5年的总收获量最大,即在5年内鱼群能够可持续繁殖和生长。
本题以5年的总捕获量为目标函数,以5年后各龄鱼的数量没有发生太大的变化为条件,建立承包期总产量模型。
最终得到的捕捞策略如表1-1。
只要各年龄鱼每年的捕捞数量小于表1-1中的数量,就可以实现5年后鱼群的生产能力没有发生太大的变化。
关键字一、问题重述为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度。
一种合理、简化的策略是,在实现可持续收获的前提下,追求最大产量或最佳效益。
考虑对某种鱼(鲳鱼)的最优捕捞策略:假设这种鱼分4个年龄组:称1龄鱼,……,4龄鱼。
各年龄组每条鱼的平均重量分别为,,,(克);各年龄组鱼的自然死亡率均为(1/年);这种鱼为季节性集中产卵繁殖,平均每条4龄鱼的产卵量为×105 (个);3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵,产卵和孵化期为每年的最后4个月;卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产卵总量n之比)为×1011/×1011+n).渔业管理部门规定,每年只允许在产卵卵化期前的8个月内进行捕捞作业。
最优捕鱼策略1、基本假设如下:(1) 只考虑这一种鱼的繁殖和捕捞, 鱼群增长过程中不考虑鱼的迁入和迁出。
(2) 各年龄组的鱼在一年内的任何时间都会发生自然死亡。
(3) 所有的鱼都在每年最后的四个月内完成产卵和孵化的过程。
孵化成活的幼鱼在下一年初成为一龄的鱼, 进入一龄鱼组。
(4) 产卵发生于后四个月之初, 产卵期鱼的自然死亡发生于产卵之后。
(5) 相邻两个年龄组的鱼群在相邻两年之间的变化是连续的, 也就是说, 第k 年底第i 年龄组的鱼的条数等于第k+ 1 年初第i+ 1 年龄组鱼的条数。
(6) 四龄以上的鱼全部死亡。
(7) 采用固定努力量捕捞意味着捕捞的速率正比于捕捞时各年龄组鱼群中鱼的条数, 比例系数为捕捞强度系数。
2、符号和数据符号t——时间(以年计) , t∈R + ;k ——年份, k= 0, 1, 2 , ⋯N (k)i ——第k+ 1 年初i 龄鱼总条数,N (k )i ∈R + ;x i ( t) ——t 时刻i 年龄组的鱼群的大小;r——鱼的自然死亡率;f i——i 年龄组鱼的产卵力;w i——i 年龄组鱼的平均重量;E i——i 年龄组的捕捞强度系数;ai——i 龄鱼的生育率, 即平均每条i 龄鱼在一年内生育的鱼数, ai≥0 ;bi——i 龄鱼的存活率, 即i 龄鱼经过一年后到i+ 1 龄鱼数与原鱼数之比, 0<bi< 1, i= 1, 2, 3 ;n——年产卵总量;b0——卵成活率;R ——净繁殖率, 它表示平均每条鱼一生所产卵并成活为1 龄鱼的条数。
3、解题过程(1)设 N (k ) = {N (k )1 , N (k)2 , N (k)3 , N (k)4 }T;X ( t) = {x 1 ( t) , x 2 ( t) , x 3 ( t) , x 4 ( t) }T;(f 1, f 2, f 3, f 4) T= (0, 0, 0. 5 c0, c0) T;{W 1,W 2,W 3,W 4}T= (5. 07, 11. 55, 17. 86,22. 99) T;(E 1, E 2, E 3, E 4) T = (0, 0, 0. 42E , E ) , 称E 为捕捞努力量;r= 0. 8, S= 2/3 (产卵时刻) , c0= 1. 109×105,c1= 1. 220×1011, c2= exp (- r) = 0. 449 33 , c3= exp(- r S) = 0. 586 65 .(2)鱼生长期是连续的, 组建微分方程组模型:d X ( t)/d t= f (X ) , t∈[ 0, + ∞) .来描述鱼死亡随时间连续发生并具有季节性的繁殖和捕捞。
最佳捕鱼方案摘要:本文解决的是一个最佳捕鱼方案设计的单目标线性规划问题,目的是制定每天的捕鱼策略,使得总收益最大。
根据题设条件,结合实际情况,我们设计了成本与损失率随天数的增加成反比变化的函数曲线(见图三所示),并导出总收益的表达式: 212121111i i i i i i i i W w p s q m =====⨯-⨯∑∑∑。
由于价格是关于供应量的分段函数(见图一所示),我们引入“0-1”变量法编写程序(程序见附录一),并用数学软件LINGO 求解,得到最大收益(W)为441291.4元,分21天捕捞完毕。
其中第1~16天,日捕捞量在1030~1070公斤之间,第17~21天的日捕捞量为1610~1670公斤之间(具体数值见正文)。
由结果分析,我们对模型提出了优化方向,例如人工放水来降低成本。
关键词:“0-1”整数规划,单目标线性规划,离散型分布。
一. 问题重述一个水库,由个人承包,为了提高经济效益,保证优质鱼类有良好的生活环境,必须对水库里的杂鱼做一次彻底清理,因此放水清库。
水库现有水位平均为15米,自然放水每天水位降低0.5米,经与当地协商水库水位最低降至5米,这样预计需要二十天时间,水位可达到目标。
据估计水库内尚有草鱼二万五千余公斤,鲜活草鱼在当地市场上,若日供应量在500公斤以下,其价格为30元/公斤;日供应量在500—1000公斤,其价格降至25元/公斤,日供应量超过1000公斤时,价格降至20元/公斤以下,日供应量到1500公斤处于饱和。
捕捞草鱼的成本水位于15米时,每公斤6元;当水位降至5米时,为3元/公斤。
同时随着水位的下降草鱼死亡和捕捞造成损失增加,至最低水位5米时损失率为10%。
承包人提出了这样一个问题:如何捕捞鲜活草鱼投放市场,效益最佳?二. 模型假设1.池塘中草鱼的生长处于稳定状态,不考虑种群繁殖以及其体重增减,即在捕捞过程中草鱼总量保持在25,000公斤不变。
2.第一天捕捞时水位为15m ,每天都在当天的初始水位捕捞草鱼,水库水位每天按自然放水0.5m 逐渐降低,20天后刚好达到最低要求水位5m 。
污水处理和渔业持续收获的数学建模关于污水处理的数学建模摘要因为全球经济的日益增长中国经济也随之快速发展,经济发展的越快,就不可避免的破坏更多的自然环境,所以环保问题已经成为一个不容忽视的问题,而与每个居民的日常生活密切相关的就是水资源问题,因此对于污水处理这一特殊的问题我们在解决时就应该本着高效的原则去实施,在这个污水处理问题中,我们先建立了一般情况下的模型,然后将该模型应用到实际问题中从而解决了实际问题。
在模型的建立中我们要考虑工厂的净化能力,江水的自净能力,在保证江水经这一系列的处理后在到达下一个居民点后要达到国家标准,还要花费最少,对该问题进行全面的分析后可知这是一个运筹学方面关于线性规划的最优解问题,在该模型的建立中我们针对江水污水浓度在每个居民点之前小于国家标准这一条件对其建立线性约束条件,然后综合考虑费用最小,在结合三个处理厂各自的情况后关于费用抽象数模型的目标函数,,然后应用LINDO软件求解该问题得到当三个处理厂排出的污水浓度分别为40 mg/l,20 mg/l,50 mg/l时,此时我们得到使江面上所有地段的水污染达到国家标准,最少需要花费费用为500万元。
当从三个处理厂出来的污水浓度分别为 62.222225mg/l,60mg/l,50mg/l,时,此时如果只要求三个居民点上游的水污染达到国家标准最少需要花费费用为188.8889万元。
问题的提出设上游江水流量为1000(1210L/min),污水浓度为0.8(mg/L),3个工厂的污水流量均为5(1210L/min),污水浓度(从上游到下游排列)分别为100,60,50(mg/L),处理系数均为1(万元/((1210L/min)×(mg/L))),3个工厂之间的两段江面的自净系数(从上游到下游)分别为0.9和0.6。
国家标准规定水的污染浓度不超过1(mg/L)。
(1)为了使江面上所有地段的水污染达到国家标准,最少需要花费多少费用?(2) 如果只要求3个居民点上游的水污染达到国家标准,最少需要花费多少费用?问题的分析通过对该污水处理所花费用最少问题的分析,我们可知在此问题中有多个污水浓度,江水的原始污水浓度,工厂排出的污水浓度,处理厂排出的污水浓度,以及当处理厂排出污水与江水混合后再经江水自净后的浓度,在这几个浓度中只有经处理厂排出的污水的浓度是未知的,其关系着整个问题,要使总费用最少,江中每段的污水浓度都达到国家标准,江水中污水浓度在到达下一居民点之前须达到国家标准1(mg/l),那么问题的重点就在于对污水浓度的认识。
西安邮电大学(理学院)数学建模报告最优捕鱼策略专业名称:信息与计算科学班级: 1302班学生姓名:张梦倩学号(8位): 07131057指导教师:支晓斌摘要为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度。
本文实际上就是为了解决渔业上最优捕鱼策略问题,即在可持续捕捞的前提下,追求捕捞量的最大化。
问题一采用条件极值列方程组的方法求解,即1龄鱼的数量由3龄鱼和4龄鱼的产卵孵化而来;2,3龄鱼的数量分别由上一年1龄鱼,2龄鱼生长而来;4龄鱼由上一年的3龄鱼和上一年末存活的4龄鱼组成。
最后得到:只要每年1-8月份3、4龄鱼捕捞总量小于、,就可以实现总捕捞量最大为;对结果分析得到捕捞的对象主要是3龄鱼,当3龄与4龄鱼的捕捞系数发生变化时,总的捕捞量变化不大。
问题二给出年初各龄鱼的数量,要求在5年后鱼群的生产能力没有受到太大的破坏的前提下,使5年的总收获量最大,即在5年内鱼群能够可持续繁殖和生长。
本题以5年的总捕获量为目标函数,以5年后各龄鱼的数量没有发生太大的变化为条件,建立承包期总产量模型。
最终得到的捕捞策略如表1-1。
只要各年龄鱼每年的捕捞数量小于表1-1中的数量,就可以实现5年后鱼群的生产能力没有发生太大的变化。
一、问题重述为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度。
一种合理、简化的策略是,在实现可持续收获的前提下,追求最大产量或最佳效益。
考虑对某种鱼(鲳鱼)的最优捕捞策略:假设这种鱼分4个年龄组:称1龄鱼,……,4龄鱼。
各年龄组每条鱼的平均重量分别为5.07,11.55,17.86,22.99(克);各年龄组鱼的自然死亡率均为0.8(1/年);这种鱼为季节性集中产卵繁殖,平均每条4龄鱼的产卵量为1.109×105(个);3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵,产卵和孵化期为每年的最后4个月;卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产卵总量n之比)为1.22×1011/(1.22×1011+n).渔业管理部门规定,每年只允许在产卵卵化期前的8个月内进行捕捞作业。