物态变化现象总结
- 格式:docx
- 大小:15.32 KB
- 文档页数:4
物理第三章物态变化知识点总结物理第三章物态变化知识点总结「篇一」1、温度:物体的冷热程度叫温度2、摄氏温度(符号:t单位:摄氏度)瑞典的摄尔修斯规定:①把纯净的冰水混合物的温度规定为0℃②把1标准大气压下纯水沸腾时的温度规定为100℃③把0到100℃之间分成100等份,每一等份就是1℃3、温度计原理:液体的热胀冷缩的性质制成的构造:玻璃壳、毛细管、玻璃泡、刻度及液体使用:使用温度计以前,要注意观察量程和认清分度值使用温度计测量液体的温度时做到以下三点:①温度计的玻璃泡要全部浸入被测物体中;②待示数稳定后再读数;③读数时,不要从液体中取出温度计,视线要与液面上表面相平。
4、体温计,实验温度计,寒暑表的主要区别构造量程分度值用法体温计玻璃泡上方有缩口35―42℃ 0.1℃离开人体读数,用前需甩实验温度计无―20―100℃ 1℃不能离开被测物读数,也不能甩寒暑表无―30 ―50℃ 1℃同上5、熔化和凝固物质从固态变成液态叫熔化,熔化要吸热物质从液态变成固态叫凝固,凝固要放热6、熔点和凝固点固体分晶体和非晶体两类熔点:晶体都有一定的熔化温度,叫熔点;非晶体没有熔点凝固点:晶体者有一定的凝固温度,叫凝固点;非晶体没有凝固点同一种物质的凝固点跟它的熔点相同晶体熔化的条件:①达到熔点温度②继续从外界吸热液体凝固成晶体的条件:①达到凝固点温度②继续向外界放热记忆常见的一些晶体与非晶体7、汽化与液化物质从液态变为气态叫汽化,汽化有两种不同的方式:蒸发和沸腾,这两种方式都要吸热。
物质从气态变为液态叫液化,液化有两种不同的方式:降低温度和压缩体积,这两种方式都要放热。
8、蒸发现象定义:蒸发是液体在任何温度下都能发生的,并且只在液体表面发生的汽化现象影响蒸发快慢的因素:液体温度高低,液体表面积大小,液体表面空气流动的快慢9、沸腾现象定义:沸腾是在一定温度下,发生在液体内部和表面同时进行的剧烈的汽化现象液体沸腾的条件:①温度达到沸点②继续吸收热量10、升化和凝化物质从固态直接变成气态叫升华,从气态直接变成固态叫凝华日常生活中的升华和凝华现象(冰冻的湿衣服变干,冬天看到霜)升华吸热,凝华放热重视知识的.系统性要重视知识结构,要系统地掌握好知识结构,不能孤零零的背些定义在脑子里,要有一个对物理课本的系统概念,这样才能把零散的知识系统起来。
物态变化1.温度计是根据液体的热胀冷缩的原理制成的。
2.摄氏度的规定:冰水混合物温度规定为0度,一标准大气压下沸水的温度规定为100度。
3.熔化:物质从固态变成液态的过程叫熔化,要吸热。
4.凝固:物质从液态变成固态的过程叫凝固,要放热。
5.熔点和凝固点:晶体熔化时保持不变的温度叫熔点;晶体凝固时保持不变的温度叫凝固点。
同种晶体的熔点和凝固点相同。
6.晶体和非晶体的重要区别:晶体都有一定的熔化温度(即熔点),而非晶体没有熔点。
7.汽化:物质从液态变为气态的过程叫汽化,汽化的方式有蒸发和沸腾。
都要吸热。
8.蒸发:是在任何温度下,且只在液体表面发生的,缓慢的汽化现象。
9.沸腾:是在一定温度(沸点)下,在液体内部和表面同时发生的剧烈的汽化现象。
液体沸腾时要吸热,但温度保持不变,这个温度叫沸点。
10.液化:物质从气态变成液态的过程叫液化,液化要放热。
使气体液化的方法有:降低温度和压缩体积。
11.升华和凝华:物质从固态直接变成气态叫升华,要吸热;而物质从气态直接变成固态叫凝华,要放热。
光现象1.光的三原色是:红、绿、蓝;2.不可见光包括有:红外线和紫外线。
特点:红外线能使被照射的物体发热,具有热效应(如太阳的热就是以红外线传送到地球上的);紫外线最显著的性质是能使荧光物质发光,另外还可以灭菌。
3.光在真空中传播速度最大,是3×108m/s,而在空气中传播速度也认为是3×108m/s4.光的反射定律:反射光线与入射光线、法线在同一平面上,反射光线与入射光线分居法线两侧,反射角等于入射角。
(注:光路是可逆的)5.漫反射和镜面反射一样遵循光的反射定律。
6.平面镜成像特点:虚像、等大、等距、对称光的折射1.光的折射规律:光从空气斜射入水或其他介质,折射光线与入射光线、法线在同一平面上;折射光线和入射光线分居法线两侧,折射角小于入射角;入射角增大时,折射角也随着增大;当光线垂直射向介质表面时,传播方向不改变。
第三章物态变化§3.1 温度一、温度⑴定义:物理学中通常把物体的冷热程度叫做温度。
(2)物理意义:反映物体冷热程度的物理量。
二、温度计——测量温度的工具1.工作原理:依据液体热胀冷缩的规律制成的。
......温度计中的液体有水银、酒精、煤油等.2.常见的温度计:实验室用温度计、体温计、寒暑表。
三、摄氏温度(℃)——温度的单位1. 规定:在标准大气压下冰水混合物的温度定为0摄氏度,沸水的温度定为100摄氏度,分别记作0℃、100℃,平均分为100等份,每一等份代表1℃。
2. 读法:(1)人的正常体温是37℃——37摄氏度;(2)水银的凝固点是-39℃——零下39摄氏度或负39摄氏度.四、温度计的使用方法1.使用前“两看”——量程和分度值;I .实验室用温度计:-20℃~110℃、1℃;(一般) 11.体温计:35℃~42℃、0.1 ℃;III.寒暑表:-35℃~50℃、1℃.2.根据实际情况选择量程适当的温度计;如果待测温度高于温度计的最高温度,就会涨破温度计;反之则读不出温度。
3.温度计使用的几个要点⑴温度计的玻璃泡要全部浸泡在待测液体中,不能碰容器底或容器壁;⑵温度计的玻璃泡浸入被测液体后要稍等一会,不能在示数上升时读数,待示数稳定后再读数;⑶读数时温度计的玻璃泡要继续留在液体中;视线要与温度计中液柱的液面相平.五、体温计1.量程:35℃~42℃;分度值:0.1℃.2.特殊结构:玻璃泡上方有很细的缩口。
使用方法:用前须甩一甩。
(否则只升不降)☆典型例题图11.如右图所示,图1中温度计的示数为36℃;图2中的示数为二9℃。
分析:首先判断液柱的位置:可顺着液柱上升的方向观察,若数字越来越大,则说明液面在0℃以上,应该从0℃向上读;反之则说明液面在0℃以下,应该从0℃向下读。
2. 用体温计测量小强同学的体温是37.9℃,若没有甩过,用它只能测出以下哪位同学的体温( C )A.小红:37.6℃ ;B :小刚:36.9℃ ;C :小明:38.2℃ ;D :小华:36.5℃分析:体温计只升不降的特点。
自然现象中常见的物态变化现象自然界中,我们常常能够观察到各种各样的物态变化现象。
物质在不同的条件下,会发生从一个状态到另一个状态的转变,这就是物态变化。
本文将介绍一些常见的物态变化现象,并探讨其原因和意义。
一、溶解溶解是指一种物质在另一种物质中完全分散形成透明或半透明的混合物。
常见的例子是将糖溶解在水中、盐溶解在水中等。
溶解是一种快速而普遍的物态变化现象,这是因为在溶解过程中,溶质的分子或离子与溶剂的分子进行相互作用,从而形成一个新的物质。
溶解的原理是溶质的分子或离子与溶剂的分子之间发生吸引力或排斥力。
当这种相互作用力大于溶质分子或离子之间的相互作用力时,溶解就会发生。
溶解现象在日常生活中非常常见,对于化学反应、生物过程等都有重要的影响。
二、沸腾沸腾是指液体在一定温度下,凝固体和气体之间发生反复转化的过程。
当液体加热到一定温度时,液体内部的分子能量增加,分子间的相互作用力减弱。
当液体内部的蒸气压等于外部气压时,液体就会发生沸腾。
沸腾时,液体内部会产生气泡,并释放出大量的热量和气体。
沸腾在我们的日常生活中随处可见,如水烧开时发生的沸腾现象。
沸腾的过程中,液体内部的分子与气体相互转化,这种相变过程对于烹饪、发酵等过程至关重要。
三、冻结冻结是指液体在一定温度下,变为固体的物态变化过程。
当液体的温度降低到冰点以下时,液体内部的分子的热能减小,分子的运动速度减慢,分子间的相互作用力增强。
这导致液体分子逐渐排列成规则的晶格结构,形成固体。
冻结现象在我们的生活中非常常见,比如水在零度以下凝固成冰。
冻结不仅对于现实生活有着重要的影响,还在工业生产、自然环境等方面起着重要作用。
四、蒸发蒸发是指液体在一定温度下,从表面向空气中转化为气体的过程。
液体的分子在不断运动中,有的分子能量较高,逃离液面,形成气体的分子,这个过程就是蒸发。
蒸发是一种常见的物态变化现象,比如水洗完衣服晾晒时,水分逐渐蒸发。
蒸发过程中,液体的温度会降低,所以蒸发是一种具有降温作用的物理过程。
物态变化现象知识点总结物态变化是物质由一种物态转换成另一种物态的过程,主要包括固态、液态和气态之间的相互转化。
在日常生活和工业生产中,我们经常会遇到物态变化现象,因此了解物态变化的知识是非常重要的。
本文将从物态变化的基本概念、分类、影响因素和应用等方面对物态变化进行详细的介绍。
一、基本概念物态是指物质所处的状态,主要包括固态、液态和气态。
固态是物质分子间距离较小,分子运动范围有限,分子只能作微小的振动运动,具有一定的形状和体积。
液态是物质分子间距离较大,分子间仍有一定的吸引力,分子运动范围较大,具有一定的形状但无一定的体积。
气态是物质分子间距离很大,分子间几乎无相互作用力,分子运动范围很大,无一定的形状和体积,能扩散填充整个容器。
物态变化是指物质由一种物态转换成另一种物态的过程。
固液相变是指固态物质转变成液态物质的过程,液气相变是指液态物质转变成气态物质的过程,固气相变是指固态物质转变成气态物质的过程。
物态变化是由于物质内部的分子或原子之间的相互作用的变化而发生的,是一种内部结构的改变。
而物态变化过程中,虽然物质的物态发生了改变,但物质的化学成分和质量是不发生变化的。
二、分类1. 固液相变固液相变是指固态物质转变成液态物质的过程,主要包括熔化和凝固两种过程。
熔化是指固态物质受热增加分子内能,使分子的振动增强,分子间距离增大,固体结构逐渐瓦解,最终转变成液态;凝固是指液态物质受冷使分子内能减小,分子的振动减弱,分子间距离减小,液体结构逐渐变得有序,最终转变成固态。
2. 液气相变液气相变是指液态物质转变成气态物质的过程,主要包括汽化和液化两种过程。
汽化是指液态物质受热增加分子内能,从液体中脱离出来,蒸发成气体;液化是指气态物质受冷使分子内能减小,从气体中凝聚下来,凝结成液体。
3. 固气相变固气相变是指固态物质转变成气态物质的过程,主要包括升华和凝华两种过程。
升华是指固态物质受热增加分子内能,从固体中直接脱离出来,转变成气态;凝华是指气态物质受冷使分子内能减小,直接从气体中凝聚下来,转变成固态。
一、读谚语,释物态变化1、雪落高山,霜降平原下雪天,高山气温低于山下平地气温,下到高山的雪不易熔化,而下到平地的雪易及时熔化。
所以同样的雪,高山上比平地多。
霜是地面上的水蒸气遇冷凝华的结果,山下平地表面上的水蒸气比高山上多,故平地易形成霜,而高山不易形成霜。
2、水缸出汗,不用挑担(水缸穿裙子,天就要下雨)缸中的水由于蒸发,水面以下部分温度比空气温度低,空气中的水蒸气遇到温度较低的缸的外表面就产生了液化现象,水珠附着在水缸外面。
睛天时由于空气中水蒸气含量少,虽然水蒸气也会在水缸外表面液化,但微量的液化很快又蒸发了,不能形成水珠。
如果空气潮湿,水蒸发就很慢,水缸外表面的液化大于汽化,就有水珠出现了,空气中水蒸气的含量大,降雨的可能性大,当然不用挑水浇地了。
3、开水不响,响水不开因为烧水时水中的气泡上升会发出响声,气泡上升得越快,发出的响声越大,气泡上升的快慢与水壶底部的水和表面的水的温差有关,温差越大,气泡上升越快。
开始烧水时,接触壶底的水温度较高,表面的水温度较低,温差较大,气泡上升快,故“响水不开”。
当水沸腾时,壶底的水与表面的水温度基本相等,水中的气泡上升变慢,故“开水不响”。
4、冰冻三尺,非一日之寒结冰是水的凝固现象,水的温度在0℃—4℃之间是反常膨胀,即热缩冷胀。
冬天,当气温下降时,上层河水的温度较低,密度较大,就要下沉,河底水的温度高,密度较小,就要上升,形成对流,使全部河水不断冷却。
当整个河水的温度都降到4℃时,对流就停止了。
气温继续下降时,上层河水的温度继续下降,河底水的温度仍保持4℃。
当上层的河水温度降到0℃并继续放热时,河面开始结冰。
从这以后,由于水和冰都是热的不良导体,光滑明亮的冰面又能防止辐射,因此,热传递的三种方式都不易进行,冰下的水放热极为缓慢,结成厚厚的冰需要时间很长,所以才有“冰冻三尺,非一日之寒”的说法。
5、下雪不冷,化雪冷雪是由空气中的水蒸气凝华或小水珠凝固而形成的,由于凝华和凝固都是放热过程,所以感觉不冷,而雪熔化是吸热过程,所以感觉冷。
常见例子:
1、 晶 体:海波 冰 各种金属 钻石 石英 水晶 食盐 明矾 奈;
2、 非晶体:松香 玻璃 蜂蜡 沥青 塑料等
3、汽化:湿衣服变干,洒在地上水变干。
4、液化现象:雾、露、“白气”、“冒汗”、或“冒气”等,通常是空 气中
的水蒸气遇冷放热液化产生。
5、升华:碘升华、舞台上用的干冰升华、冻干的衣服的过程、人工降雨、
樟脑球(卫生球)变小、灯丝变细、 固体清新剂变少。
6、凝华现象:灯丝变细—灯泡变黑,雪、霜、冰花(冰花”在玻璃的内侧)、雾凇 。
⑴刚从冰箱中拿出的冰棒,包装纸上沾有“白粉”是凝华现象
⑵剥去包装纸,冰棒冒“热气”是液化现象
⑶剥去包装纸,过一会儿冰棒“流汗”属于熔化现象
⑷冰棒放入茶杯中,杯子外壁会“出汗”属于液化现象
O
时间
O 时间 O 时间 O 时间 甲 晶体 甲 晶体 乙 非晶体 乙 非晶体 物质熔化的温度变化曲线 物质凝固的温度变化曲线
固
( )( ) ( )( )。
初中物理物态变化所有知识点全整理(优秀7篇)液体温度计是根据液体热胀冷缩的规律制成的。
使用温度计前应先观察它的量程和分度值。
温度计的使用方法:(1)温度计的玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁。
(2)要等温度计的示数稳定后再读数;(3)读数时温度计的玻璃泡要继续留在液体中,视线要与液柱的上表面相平。
物态变化:(1)熔化:固→液,吸热(冰雪融化)(2)凝固:液→固,放热(水结冰)(3)汽化:液→气,吸热(湿衣服变干)(4)液化:气→液,放热(液化气)(5)升华:固→气,吸热(樟脑丸变小)(6)凝华:气→固,放热(霜的形成)晶体、非晶体的熔化图像:液体沸腾的条件:(1)达到沸点(2)继续吸热自然界水循环现象中的物态变化:(1)雾、露――――液化(2)雪、霜――――凝华使气体液化的途径:(1)降低温度(2)压缩体积公式学习,物理钥匙篇二每一个公式都有一定的适用范围,不能乱用,每一个字母都有着特定含义,需要理解:例如p=F/S中“S”指两物全接触的公共面积,这个公式既适用于固体,也可适用于液体和气体,而p=ρ物gh来说适用范围就更小,只适用规则固体物体放在水平面上产生的压强。
我们面对每一个公式不能机械记忆其等量关系,建议应从以下五个方面进行扩展,这样才能形成知识体系,提升学习物理的效率。
1、根据公式想物理概念,对于ρ=m/V,v=s/t,p=F/s,W=F·s,可以记:单位体积物体的质量叫物质的密度。
2、根据公式记单位,记住物理量的国际单位、常用单位、单位进率。
3、根据公式想变形公式,多进行这样的训练有利于扩展思维,提高分析问题的能力。
4、根据公式记影响物理量的因素,例如从f=Fμ记影响滑动摩擦力大小因素是压力大小和接触面的粗糙程度,且成正比,又如通过p=F/S记影响压强大小的因素,其实质是乘积式或比值式的物理量都可以采用这种方法。
5.通过公式想实验公式是实验的原理所在,从公式中想所要测的物理量,从所测物理量想所需的实验器材,再进一步想实验过程,操作过程中的注意事项。
生活中常见的物态变化现象你在厨房忙活时,水煮开了,哗啦啦的声音就像是在说:“嘿,快来看看我变成蒸汽啦!”这热气腾腾的场面,真的是让人忍不住想要给它一个赞。
记得有次,我做了个煮汤的实验,结果水开得太猛,锅盖都快飞起来,像是在跟我打招呼。
哈哈,气态的水蒸气总是那么轻盈,飘飘荡荡,似乎在天空中开了一场派对。
然后说到冰淇淋,哇,夏天的救星。
那冰冷的口感,真是让人欲罢不能。
可是,如果不小心放在阳光下,嘿嘿,几分钟后就会变成一滩甜蜜的水,像是你心头的“甜蜜负担”,让人心疼不已。
冰淇淋的变化就像生活中的琐事,谁能想到,一不小心就会让一切变得如此复杂呢?还有说到冬天的雪花,简直美得不可方物。
那时候,雪花飘落,仿佛整个世界都被装点得如梦似幻。
可是等到太阳一出来,雪慢慢化成水,瞬间变得湿漉漉,像是打了个小喷嚏,真让人哭笑不得。
雪的变化总是让我想起人生的无常,刚刚还在欢笑,转眼间却又变得那么平淡。
还有水果,比如西瓜,切开后那汁水横流,简直让人垂涎欲滴。
吃的时候,心里想的可不是它的形态变化,而是那一口的清爽。
可没吃完的西瓜放在外面,等它慢慢变得软绵绵,最后就成了那一滩令人作呕的液体。
生活中这些小细节,常常让人感慨万千,变化真是无处不在。
再说说我们平时喝的饮料,听说过“气泡水”吗?那一泡泡的气体,就像是在跟你打招呼,喝一口,瞬间清爽无比。
但如果放久了,那泡泡就会慢慢消失,变得毫无生气,像是人生中的某些瞬间,曾经热闹非凡,后来却变得无趣。
生活就是这样,总有高峰低谷,酸甜苦辣。
还有果冻,哎呀,别提了!做果冻的时候,明明是一团液体,等冷却后就变得像个小孩一样,咕噜噜的,摇摇晃晃。
那样的触感,让人忍不住想捏一捏,可一捏就变得不成样子了。
这让我想到,有时候我们在生活中也太过于追求完美,结果反而失去了原本的乐趣。
哎,天气变化也很有意思。
前几天还在穿短袖,结果一转身就开始下雪,这真是让人感到无比惊讶,仿佛是在玩捉迷藏。
而这变化就像我们的心情一样,时而晴空万里,时而乌云密布,让人捉摸不定。