最新物态变化 物态变化知识点总结
- 格式:doc
- 大小:24.50 KB
- 文档页数:2
《物态变化》知识清单一、物态变化的概念在物理学中,物态变化指的是物质在不同状态之间的相互转化。
物质通常有三种状态:固态、液态和气态。
而从一种状态转变为另一种状态的过程,就叫做物态变化。
比如,冰化成水,水变成水蒸气,这都是常见的物态变化现象。
理解物态变化对于我们认识周围的世界以及很多自然现象都非常重要。
二、熔化和凝固1、熔化(1)定义:物质从固态变成液态的过程叫做熔化。
(2)例子:春天,冰雪消融;蜡烛受热熔化。
(3)特点:熔化过程中要吸热。
(4)熔点:晶体熔化时的温度叫做熔点。
不同的晶体,熔点一般不同。
(5)晶体熔化的条件:温度达到熔点;继续吸热。
2、凝固(1)定义:物质从液态变成固态的过程叫做凝固。
(2)例子:水结成冰;钢水浇铸成钢锭。
(3)特点:凝固过程中要放热。
(4)凝固点:晶体凝固时的温度叫做凝固点。
同一种晶体的凝固点和它的熔点相同。
(5)晶体凝固的条件:温度达到凝固点;继续放热。
三、汽化和液化1、汽化(1)定义:物质从液态变成气态的过程叫做汽化。
(2)方式:汽化有蒸发和沸腾两种方式。
蒸发定义:在任何温度下都能发生的汽化现象叫做蒸发。
影响因素:液体的温度、液体的表面积、液体表面上方的空气流速。
特点:蒸发吸热,有制冷作用。
沸腾定义:在一定温度下,在液体表面和内部同时发生的剧烈汽化现象叫做沸腾。
特点:沸腾过程中吸热,但温度保持不变。
沸点:液体沸腾时的温度叫做沸点。
不同液体的沸点不同。
沸腾的条件:温度达到沸点;继续吸热。
2、液化(1)定义:物质从气态变成液态的过程叫做液化。
(2)例子:夏天,从冰箱里拿出的饮料瓶外壁上会“出汗”;冬天,口中呼出的“白气”。
(3)方法:降低温度;压缩体积。
(4)特点:液化过程中要放热。
四、升华和凝华1、升华(1)定义:物质从固态直接变成气态的过程叫做升华。
(2)例子:冬天,冰冻的衣服也能晾干;樟脑丸变小。
(3)特点:升华过程中要吸热。
2、凝华(1)定义:物质从气态直接变成固态的过程叫做凝华。
物态变化详细知识点总结一、固态、液态和气态的基本特征1. 固态:固态是指物质的分子或原子之间结合非常紧密,无法自由流动,因此呈现出一定的形状和体积。
此外,固态物质具有相对较大的密度和较小的分子间距,分子或原子在固态内部做微小的振动运动。
常见的固态物质包括金属、石英、盐类、冰等。
2. 液态:液态是指物质分子或原子之间的相互作用比较松散,可以自由流动,但却不能忽略其相互吸引作用。
液态物质的形状和体积可以任意改变,但是体积和形状又受容器的限制。
此外,液态物质的密度比固态小,分子或原子的运动也比固态活跃。
常见的液态物质包括水、酒精、石油等。
3. 气态:气态是指物质分子或原子之间的相互作用非常弱,可以自由流动,同时没有固定的形状和体积。
气态物质分子或原子间距离很大,分子或原子的运动非常活跃,体积和形状受到容器限制。
常见的气态物质包括氧气、氮气、二氧化碳等。
二、物态变化的条件物态变化的条件主要包括温度和压强两个因素。
温度是指物质内部分子或原子的平均运动速度,温度升高会使分子或原子的运动速度增加,从而使物质的相态发生改变;压强则是指物质分子或原子之间的相互作用力,压强增大会使分子或原子之间的距离变短,从而使物质的相态发生改变。
1.气体的状态方程通常情况下,气体状态方程可以写作 PV=nRT,其中P代表气体的压强,V代表气体的体积,n代表气体的摩尔数,R为气体常数,T代表气体的温度。
在等温过程中,当气体的温度不变时,压强和体积成反比,当气体的压强增大,则体积减小;当气体的压强减小,则体积增大。
在等压过程中,当气体的压强不变时,体积和温度成正比,当气体的温度增加,则体积增大;当气体的温度减小,则体积减小。
在等容过程中,当气体的体积不变时,压强和温度成正比,当气体的温度增加,则压强增大;当气体的温度减小,则压强减小。
2. 熔化与凝固熔化是指物质由固态变成液态的过程,其过程需要吸收热量。
当物质处于熔化点时,会出现熔化现象。
初中物理物态变化知识点总结8篇篇1一、物态变化概述在物理学中,物态变化指的是物质在受到外界条件(如温度、压力等)影响时,由一种物态转变为另一种物态的过程。
在初中的物理学习中,我们主要接触到的物态变化包括熔化、凝固、汽化、液化、升华和凝华等。
二、具体知识点详解1. 熔化与凝固熔化是指物体由固态转变为液态的过程,凝固则是液体转变为固体的过程。
这两个过程的关键都在于温度。
例如,金属加热至熔点后,会由固态转变为液态;而当液态的金属冷却至凝固点时,则会转变为固态。
2. 汽化与液化汽化是液体转化为气体的过程,其中又可以分为蒸发和沸腾两种形式。
蒸发是在任何温度下都能进行的,而沸腾则需要达到一定的温度。
液化则是气体转变为液体的过程,通常需要通过降低温度和/或增加压力来实现。
3. 升华与凝华升华是指固体不经过液体阶段直接变为气体的过程,而凝华则是气体不经过液体阶段直接变为固体的过程。
这两个过程通常在温度和压力的变化下发生,且多见于一些特殊的物质。
三、物态变化中的热量交换在物态变化过程中,往往会伴随着热量的交换。
例如,熔化、汽化和升华过程需要吸收热量,而凝固、液化和凝华则释放热量。
这种热量的交换对于理解和描述物态变化过程至关重要。
四、物态变化在生活中的应用物态变化在日常生活中的应用非常广泛。
例如,金属冶炼过程中就涉及到了熔化和凝固的物态变化;天气变化中的雨、雪、霜、露等则涉及到汽化、液化和凝华等物态变化。
了解这些物态变化原理,不仅可以帮助我们更好地理解自然现象,还可以应用于实际生活中。
五、实验与观察在物态变化学习中的重要性学习物态变化的过程中,实验与观察起着至关重要的作用。
通过实验,我们可以直观地观察到物态变化的过程,理解其原理。
同时,实验还可以帮助我们验证和理解理论知识,加深对物态变化的认识。
六、总结物态变化是物理学中的基础知识点,对于初中生的物理学习具有重要意义。
掌握物态变化的概念、原理和应用,不仅可以更好地理解自然现象,还可以应用于实际生活中。
初中物理_物态变化_知识点总结物态变化是物质由一种物态转变为另一种物态的过程。
主要有固态、液态和气态三种物态。
而物质在不同温度和压力条件下会发生物态变化。
一、固态1.物体的形状在固态下保持不变。
2.分子之间的距离较近,分子之间的相互作用力较强。
3.固体的微观颗粒呈紧密有序排列。
4.固体的密度比液态和气态大。
5.固体具有一定的弹性和刚性。
二、液态1.液体的形状会随容器的形状而变化。
2.分子之间的距离较固态变大,分子之间的相互作用力较弱。
3.液体的微观颗粒呈无规则排列。
4.液体的密度比气态大。
5.液体具有一定的粘性和流动性。
三、气态1.气体没有固定的形状,会完全填满容器。
2.气体的分子之间的距离较远,分子之间的相互作用力极弱。
3.气体的微观颗粒混乱无序排列。
4.气体的密度较小,可压缩性大。
5.气体具有扩散性和可压缩性。
四、物态变化1.溶解:把一个物质加入到另一个物质中,使其分子散开。
2.融化:当物质受热后,固态物质的分子振动加剧,分子间的相互作用力减小,固体逐渐变为液体。
3.凝固:当物质受冷后,液态物质的分子运动减慢,分子间的相互作用力增大,液体逐渐变为固体。
4.沸腾:液体受热后,液态分子的运动加剧,溶液内部产生气泡并且蒸汽迅速逸出。
5.浸润:液体能够渗透到固体表面并扩展分布。
6.蒸发:液体表面的分子得到足够能量,从液体逸出,形成气体状态。
7.冷凝:气体受冷后,气态分子的运动减慢,分子间的相互作用力增大,气体逐渐变为液体。
8.升华:固体受热后,固态分子的能量增加,摆脱相互吸引,直接从固体变为气体。
9.凝结:气体受冷后,气态分子的运动减慢,分子间的相互作用力增大,气体逐渐变为固体。
五、物态变化的条件1.温度:温度升高或降低可以引起物态变化。
2.压力:增加压力可以引起物态变化。
3.其他因素:如溶质浓度、溶解度等因素。
六、物态变化的能量变化1.吸热:物质从固态或液态变为气态时,需要吸收热量,称为吸热过程。
初中物理物态变化知识点物态变化是物质由一种物态转变为另一种物态的过程,主要包括固态、液态和气态之间的相互转变。
以下是初中物理物态变化的主要知识点:一、固态到液态的物态变化:1.熔化:当物质受到热或其他因素的作用时,固态物质的分子振动增大,突破了分子间的结构力,使得物质表面开始融化,并最终变为液态。
二、液态到固态的物态变化:1.凝固:当物质受到冷或其他因素的作用时,液态物质的分子振动减小,逐渐靠近,从而形成新的分子结构,使得物质逐渐凝固为固态。
三、液态到气态的物态变化:1.蒸发:当液体受热或其他因素的作用时,分子的热运动增强,一部分分子能量足够大而能够克服液体表面的吸附力,从液体表面跳出变为气体,这个过程称为蒸发。
2.沸腾:当液体受热到一定程度时,液体内部也会产生气泡,并从液体底部不断冒出,液体不断汽化并产生大量气体的过程称为沸腾。
四、气态到液态的物态变化:1.冷凝:当气体受冷或其他因素的作用时,分子的热运动减弱,分子之间的吸引力增强,使得气体分子逐渐靠近并形成液体,这个过程称为冷凝。
五、固态到气态的物态变化:1.升华:一些固态物质在一定温度下直接从固态转变为气态,而不经过液态的过程。
在升华过程中,固态物质的分子直接从固体表面脱离,转变为气体。
六、气态到固态的物态变化:1.凝结:气体遇冷或其他因素的作用时,分子速度减慢,分子间的吸引力增强,从而使气体中的分子逐渐靠近并形成固体结构,这个过程称为凝结。
初中物理中常见的物态变化实例有:1.熔化:冰块融化为水;2.凝固:水凝固为冰块;3.蒸发:水中的水分在太阳的照射下逐渐蒸发;4.沸腾:水在经过加热后开始沸腾;5.冷凝:水蒸气遇冷凝结成水滴;6.升华:固态干冰直接从固态转变为气态;7.凝结:水蒸气遇冷凝结成云雾。
第三单元:物态变化➢知识点1:温度和温度计1.定义:表示物体冷热程度的物理量。
2.常用的温度计:体温计、寒暑表、实验室液体温度计、测温枪(1)实验室常用的液体温度计原理:液体的热胀冷缩(2)体温计原理:液体的热胀冷缩构造:玻璃泡上方有细而弯的“缩口”分度值:0.1摄氏度(3)寒暑表原理:液体的热胀冷缩构造:玻璃泡、内径很细的玻璃管、刻度及温标量程:零下30摄氏度—50摄氏度分度值:1摄氏度3.液体温度计的使用(1)看:使用温度计时,要看清它的量程,即温度计所能测量的范围。
还要看清温度计的分度值,也就是一个小格代表的值(2)选:估计被测量物体的温度,选择量程合适的温度计。
(3)放:用温度计测量液体温度时,要使温度计的玻璃泡全部浸入被测液体中,不能碰到容器壁或容器底。
(4)读:温度计的玻璃泡浸入被测液体后要稍微等一会儿,待温度计的示数稳定后再读数,读数时温度计的玻璃泡要继续留在液体中,视线要与温度计中液柱的液面相平。
俯视读数偏大,仰视读数偏小。
(俯大仰小)(5)记:记录温度值,不要漏写或错写单位。
4.常见温度的估计(单位:摄氏度)人体正常的体温:36.5℃-37.3℃人感觉舒适的室内温度:15℃-25℃冰箱冷藏室:0-4冰箱冷冻室:零度——零下24 ℃(-24)人感觉舒适的洗澡水:40℃➢知识点2:熔化和凝固1.熔化及其应用(1)定义:物质从固态变为液态的过程叫熔化,熔化需要吸收热量(熔化吸热)。
(2)应用:冰雪消融、铁块熔化、蜡烛“流泪”、雪糕化水、吃雪糕解暑2.凝固及其应用(1)定义:物质从液态变为固态的过程叫凝固,凝固需要放出热量(凝固放热)。
(2)应用:水结冰、铁水烧铸兵器、冬天在菜窖里面放水防止蔬菜冻坏.(利用液体凝固放热)3.探究固体熔化规律(1)实验器材:铁架台、酒精灯、石棉网、烧杯、试管、温度计、停表、磨碎的固体(海波和石蜡)(2)实验过程:把分别装有海波和石蜡的试管放在盛有水的烧杯中,用酒精灯加热,并用搅拌棒不断搅动。
物态变化知识点总结归纳一、物态变化的基本概念1. 物态的概念:物质存在的形态可以分为气态、液态和固态三种。
在不同的温度和压强条件下,物质可以呈现不同的物态状态。
2. 物态变化的概念:当物质的温度、压强等外界条件发生改变时,物质的物态状态也会发生变化,称为物态变化。
3. 物态变化的分类:根据物质在不同温度和压强下的状态变化,可以分为升华、凝固、熔化、气化和凝结等不同类型的物态变化。
二、物态变化的规律1. 温度对物态变化的影响:温度是物态变化的重要影响因素,不同温度下物质的相变形式和性质都会发生变化。
一般来说,物质的熔点、沸点和融化热、汽化热与温度有一定的关系。
2. 压强对物态变化的影响:压强也是物态变化的重要影响因素,对于气体和液体的相变过程影响较大。
压强的增加会使气体变为液体,降低压强会使液体变为气体。
三、物态变化的重要性1. 应用价值:物态变化的过程在人类生产和生活中具有非常重要的应用价值,如利用物态变化制冷、制热、净化和分离物质等。
2. 理论意义:通过研究物态变化的规律和原理,可以帮助我们深入理解物质的本质和性质,揭示出物质在不同条件下的特性和行为。
四、常见物态变化过程1. 升华:固体直接转变为气体的过程,不经过液体状态。
常见升华的物质有干冰(二氧化碳)、氯化铵等。
2. 凝固:液体转变为固体的过程,是一种凝结过程的特例。
凝固时,液体变为固体,释放出一定的凝固热。
常见凝固的物质有水、冰等。
3. 熔化:固体转变为液体的过程,是一种熔解过程的特例。
在熔化过程中,固体吸收一定的熔化热,转变为液体。
常见熔化的物质有冰、蜡等。
4. 气化:液体直接转变为气体的过程,不经过固体状态。
气化时,液体变为气体,吸收一定的气化热。
常见气化的物质有水、酒精等。
5. 凝结:气体转变为液体或固体的过程。
大气中的水蒸气冷凝成液态水或固态水(雾凇、冰雹)等现象都是凝结过程的体现。
五、常见物质物态变化的实验及示意1. 水的物态变化实验(1)冰的熔化实验:将一块冰放在温度较高的环境中,观察冰的表面逐渐出现水滴,最终冰完全融化为水的过程。
初中物理物态变化知识点总结物态变化是物质在不同条件下的状态发生改变的过程。
常见的物态变化有固态、液态和气态三种。
1.固态变化固态是物质最稳定的状态。
在合适的温度和压力条件下,物质会保持固态。
固态的物质具有固定的形状和体积。
固态变化主要包括加热、冷却和挤压等。
当物质加热时,分子或原子的热运动增强,使固体内部的相互作用减小,固体逐渐变得松散,最终溶为液体或气体。
当物质冷却时,分子或原子的热运动降低,固体内部的相互作用增强,固体继续凝固为更紧密的固态。
挤压是将固态物质受到外力作用时,分子或原子之间的距离变小,导致固体变形,但仍保持固态。
2.液态变化液体是物质在一定温度下,固态和气态之间的过渡状态。
液态的物质不具有固定的形状,但具有固定的体积。
液态变化主要包括加热、冷却和蒸发等。
当物质加热时,分子或原子的热运动增强,液体内部的相互作用减小,液体逐渐蒸发为气体。
当物质冷却时,分子或原子的热运动降低,液体内部的相互作用增强,液体逐渐凝固为固体。
蒸发是指液态物质表面的分子因为热运动具有足够的能量,克服表面张力脱离液体转变为气体。
3.气态变化气体是物质在一定温度下,分子或原子间的相互作用非常弱,分子或原子间的距离很大,自由运动的状态。
气体不具有固定的形状和体积。
气态变化主要包括加热、冷却和压缩等。
当物质加热时,分子或原子的热运动增强,气体内部的相互作用减小,气体膨胀。
当物质冷却时,分子或原子的热运动降低,气体内部的相互作用增强,气体逐渐凝聚为液体或固体。
压缩是指对气体施加外力,使气体分子或原子之间的距离缩小,气体体积减小。
物态变化的核心原理是分子或原子的热运动和相互作用。
热运动是分子或原子的无规则运动,其速度与温度有关。
相互作用是指物质内部分子或原子之间的力,包括吸引力和斥力。
当温度变化时,分子或原子的热运动和相互作用发生改变,使得物质的状态发生变化。
在物质的物态变化中,有几个重要的规律需要注意:1.相变是物质从一种状态转变到另一种状态的过程,常见的相变有凝固、熔化、汽化和凝华等。
物态变化知识点总结画图一、物态变化的基本概念物态变化指的是物质由一种状态变为另一种状态的过程。
常见的物态变化有固态到液态的熔化、液态到气态的汽化、气态到液态的凝结、液态到固态的凝固等。
在物态变化过程中,物质的分子间距离和运动状态发生变化,伴随着热量的吸收或释放。
二、固液相变1. 熔化:固体升温到一定温度时,分子间的排列结构开始变松弛,分子间的引力逐渐克服,导致固体变为液体。
熔化涉及的过程有熔化热和熔点,熔化点是指物质从固态变为液态的温度,熔化热是指单位质量物质在其熔化点时从固态变为液态所吸收的热量。
熔化是吸热过程,能量吸收使固体内能增加,分子运动加快,据此进行的表格示例如下图所示:2. 凝固:液体冷却到一定温度时,分子间的排列结构开始逐渐密排,分子间的引力逐渐压倒分子的热运动,导致液体变为固体。
凝固是熔化的逆过程,也涉及着凝固点和凝固热的概念。
凝固是放热过程,能量放出导致液态内能减少,分子运动减慢。
如下图所示:三、液气相变1.汽化:液体升温到一定温度时,分子热运动增大,使液体表面上的分子具有较大的动能,能够克服液态表面张力形成气泡,液体表面的一部分液体分子脱离液相变为气体。
汽化包括汽化热和饱和蒸气压两个重要概念。
汽化是吸热过程,能量吸收使液体内能增加,分子逃逸速度增大,据此进行的表格示例如下图所示:2.凝结:气体冷却到一定温度时,分子的热运动减小,使气体的分子逐渐被液态引力束缚在一起形成液体,凝结是汽化的逆过程,也涉及着凝结的点和凝结热。
凝结是放热过程,能量放出导致气体内能减少,分子运动减慢。
如下图所示:四、物态变化的实际应用物态变化在生产和生活中有着广泛的应用。
例如,在冷冻食品过程中,凝固作为重要的物态变化过程;在汽车发动机中,燃料的汽化和燃烧是物态变化的典型应用;在家庭生产中,水的煮沸和冷却过程也是物态变化的实例。
总之,物态变化是我们日常生活中常见的现象,在化学、物理领域也有着重要的理论和实践意义。
物态变化知识点总结
固态、液态和气态:
固态:物质具有固定的形状和体积。
液态:物质具有固定的体积,但没有固定的形状。
气态:物质既没有固定的形状也没有固定的体积。
物态变化的类型:
熔化:固态变为液态。
例如,冰融化成水。
凝固:液态变为固态。
例如,水结冰。
汽化:液态变为气态。
例如,水蒸发成水蒸气。
液化:气态变为液态。
例如,水蒸气凝结成水。
升华:固态直接变为气态。
例如,干冰(固态二氧化碳)直接升华为气态。
凝华:气态直接变为固态。
例如,霜的形成。
温度与物态变化:
熔点:物质从固态变为液态所需要的温度。
凝固点:物质从液态变为固态所需要的温度,与熔点相同。
沸点:物质从液态变为气态所需要的温度。
临界点:在某些情况下,物质可以在特定的温度和压力下直接从液态变为气态,而不需要经过固态或气态。
物态变化过程中的吸热和放热:
熔化、汽化和升华是吸热过程,即这些过程需要吸收热量。
凝固、液化和凝华是放热过程,即这些过程会释放热量。
实际应用:熔化:金属冶炼、制作巧克力等。
凝固:制作冰雕、铸造金属等。
汽化:衣物晾晒、蒸发冷却等。
液化:液化石油气、冷凝器中的冷却水等。
升华:真空干燥、冷冻干燥等。
凝华:霜冻、雪的形成等。
了解这些物态变化的基本概念和原理,可以帮助我们更好地理解自然现象和实际应用中的物理过程。
物态变化是物质的一种性质,它指物质在不同的条件下,由于温度、压力、浓度等因素的改变而引起的状态的变化。
物态变化主要包括固态、液态和气态三种状态。
下面将从固态、液态和气态三个方面展开,分别介绍物态变化的相关知识点。
一、固态变化固态是物质最基本的状态,其分子或原子紧密排列,间距较小,力量较大。
固体的主要特点是形状固定、体积不变,而且固体有一定的硬度。
在固态变化中,最常见的是物质的熔化和凝固。
1.熔化:当固体受热时,温度逐渐升高,当达到一定温度时,固体分子或原子的热运动增强,开始逐渐脱离原来的位置,并形成液体。
熔化是固态变化中的一种常见现象,例如将冰加热,当温度达到0℃时,冰开始熔化成水。
2.凝固:与熔化相反,凝固是指液体变为固体的过程。
当液体受冷时,温度逐渐降低,液体分子或原子的热运动减弱,逐渐接近并重新排列成固体。
凝固也是固态变化中的一种常见现象,例如将水冷却至0℃以下,水开始凝固成冰。
二、液态变化液态是物质的一种状态,分子或原子之间的间距较大,力量较小。
液体的主要特点是形状不固定、体积不变。
在液态变化中,最常见的是物质的汽化和液化。
1.汽化:当液体受热时,温度逐渐升高,当达到一定温度时,液体分子或原子的热运动增强,开始逐渐脱离原来的位置,并形成气体。
汽化是液态变化中的一种常见现象,例如将水加热,当温度达到100℃时,水开始汽化成水蒸气。
2.液化:与汽化相反,液化是指气体变为液体的过程。
当气体受冷时,温度逐渐降低,气体分子或原子的热运动减弱,逐渐接近并重新排列成液体。
液化也是液态变化中的一种常见现象,例如将水蒸气冷却至100℃以下,水蒸气开始液化成水。
三、气态变化气态是物质的一种状态,分子或原子之间的间距较大,力量较小。
气体的主要特点是形状不固定、体积可变。
在气态变化中,最常见的是物质的凝华和气化。
1.凝华:当气体受冷时,温度逐渐降低,气体分子或原子的热运动减弱,逐渐接近并重新排列成固体。
凝华是气态变化中的一种常见现象,例如将水蒸气冷却至100℃以下,水蒸气开始凝华成水。
《物态变化》知识清单一、物态变化的基本概念物态变化指的是物质在不同状态之间的转变。
物质通常有三种状态:固态、液态和气态。
从一种状态转变为另一种状态的过程中,往往伴随着吸热或放热。
固态是物质具有固定形状和体积的状态,比如冰块、铁块等。
液态物质具有一定的体积,但形状不固定,能流动,像水、油等。
气态物质既没有固定的形状,也没有固定的体积,能充满整个容器,例如氧气、氮气等。
二、熔化和凝固1、熔化熔化是指固态物质变成液态的过程。
这个过程需要吸热。
例如,冰变成水就是熔化。
晶体在熔化过程中温度保持不变,有固定的熔化温度,这个温度叫做熔点。
非晶体在熔化过程中温度不断升高,没有固定的熔点。
常见的晶体有冰、海波、各种金属等;常见的非晶体有石蜡、玻璃、松香等。
2、凝固凝固是指液态物质变成固态的过程。
凝固过程会放热。
水变成冰就是凝固。
晶体在凝固过程中温度保持不变,有固定的凝固温度,即凝固点。
且同一种晶体的熔点和凝固点相同。
非晶体在凝固过程中温度不断降低,没有固定的凝固点。
三、汽化和液化1、汽化汽化是指液态变成气态的过程,汽化过程需要吸热。
汽化有两种方式:蒸发和沸腾。
蒸发是在液体表面发生的缓慢的汽化现象。
蒸发的快慢与液体的温度、表面积和表面上方的空气流动速度有关。
温度越高、表面积越大、空气流动速度越快,蒸发就越快。
沸腾是在液体表面和内部同时发生的剧烈的汽化现象。
液体沸腾时的温度叫做沸点。
不同液体的沸点不同,而且沸点会随着气压的变化而变化,气压越高,沸点越高;气压越低,沸点越低。
2、液化液化是指气态变成液态的过程,这个过程会放热。
常见的液化现象有雾、露的形成,冬天呼出的“白气”等。
使气体液化的方法有两种:降低温度和压缩体积。
比如,在常温下压缩石油气的体积,可以使其液化储存在钢瓶中。
四、升华和凝华1、升华升华是指固态直接变成气态的过程,升华需要吸热。
例如,冬天冰冻的衣服变干,就是冰直接升华成了水蒸气。
常见的升华物质有碘、干冰等。
物态变化知识点总结生物一、物态变化的基本概念1. 固态、液态和气态:在常温常压下,固态是物质的一种状态,分子间的相互作用力很大,分子只能在原子核周围做微小的振动运动。
液态是物质的一种状态,分子间的相互作用力稍弱,分子能够在一定范围内做相对自由的运动。
气态是物质的一种状态,分子间的相互作用力很小,分子能够自由地运动,并且具有较大的平均自由程和分子速度。
2. 熔化和凝固:物质在温度升高时,固态物质会逐渐变为液态,这个过程叫做熔化。
而在温度降低时,液态物质会逐渐变为固态,这个过程叫做凝固。
3. 汽化和液化:物质在温度升高时,液态物质会逐渐变为气态,这个过程叫做汽化。
而在温度降低时,气态物质会逐渐变为液态,这个过程叫做液化。
二、物态变化的影响因素1. 温度:温度是影响物态变化的一个重要因素。
一般来说,温度升高会使固态物质转变为液态或气态,而温度降低会使气态或液态物质转变为固态。
2. 压力:压力对物态变化同样也有影响。
一般来说,增加压力可以使气态物质转变为液态或固态,减小压力则会使液态或固态物质转变为气态。
3. 外部条件:除了温度和压力外,还有许多其他外部条件也会影响物态变化,比如光照、电磁场等。
三、物态变化在生物体内的应用1. 水的物态变化:在生物体内,水的物态变化对维持生物内部环境的稳定起着重要作用。
例如,水分子的融化和凝固是维持生物细胞内部温度的重要手段之一。
此外,水的液化和汽化也是生物体调节体温的重要方式。
2. 植物的物态变化:植物的水分状态也受到温度和压力的影响。
温度升高时,植物体内的水分会蒸发,这对植物来说可能影响根系的吸水和养分的吸收。
而在压力增加时,植物的细胞液也会受到压力的影响,从而影响植物的生长和发育。
3. 动物的物态变化:在动物体内,物态变化对维持生物内部环境的稳定同样也非常重要。
例如,动物在寒冷的环境中会通过增加褐色脂肪组织来维持体温,这是通过调节脂肪组织内脂肪的液化和固化来实现的。
总结物态变化知识点一、物态变化的基本概念1. 物态变化的定义物态变化是指物质在不同的温度、压力和环境条件下,由固态向液态、气态或由液态向固态、气态等的转变过程。
物态变化是物质性质的一种外显性的变化,需要特定的温度和压力条件才能发生。
物态变化通常包括熔化、凝固、升华、凝结、汽化和凝聚等过程。
2. 物态变化的基本特征物态变化是由于物质分子之间相互作用力的变化而引起的。
在物态变化过程中,物质分子之间的相互作用力呈现出显著的变化,熔化、蒸化是分子间相互作用力减弱的过程,而凝固、凝结是分子间相互作用力增强的过程。
3. 物态变化的条件物态变化是受到温度、压力和环境条件等影响的。
温度是影响物态变化的主要因素,压力和环境条件也会对物态变化产生一定影响。
例如,水在大气压力下的沸点约为100℃,而在高山上的沸点要低于100℃,因为大气压力较低。
二、物态变化的规律1. 物态变化的规律物态变化的规律主要包括以下几个方面:(1)温度对物态变化的影响:物态变化通常需要特定的温度条件,例如溶解度、沸点、凝固点等。
(2)压力对物态变化的影响:压力也会影响物质的物态变化,如气体的压力越大,气体的沸点也会随之升高。
(3)环境对物态变化的影响:物态变化还受到环境条件的影响,例如在无空气的条件下,液态水蒸发的速度更快。
2. 物态变化的热力学规律物态变化是由于物质分子之间的相互作用力的变化而引起的,因此物态变化也与热力学规律密切相关。
在不同的温度、压力和环境条件下,物质的热力学状态也会发生变化,导致物态的改变。
3. 物态变化的动力学规律物态变化的发生需要一定的动力学条件,例如在升华过程中,固体分子要克服固体相的相互作用力才能脱离表面成为气体分子。
因此,物态变化也受到动力学规律的影响。
三、物态变化的应用1. 物态变化在生产生活中的应用物态变化在生产生活中有着广泛的应用,例如工业生产中的制冷、制热技术,就是基于物质的物态变化原理而设计的。
还有凝固技术、沸石吸附技术、固体萃取技术等,都是基于物态变化原理而开发的。
《物态变化》知识清单一、物态变化的概念物态变化指的是物质在一定条件下,从一种状态转变为另一种状态的过程。
物质常见的状态有固态、液态和气态。
比如,冰融化成水,水蒸发变成水蒸气,就是常见的物态变化现象。
二、物态变化的种类1、熔化熔化是指固态物质吸热变为液态的过程。
例如,冰在受热后变成水,铁在高温下变成铁水。
晶体有固定的熔点,在熔化过程中温度保持不变;而非晶体没有固定的熔点,在熔化过程中温度会不断升高。
2、凝固凝固则是液态物质放热变为固态的过程。
像水冷却后变成冰,液态的金属液冷却后变成固态金属。
晶体在凝固过程中温度保持不变,而非晶体在凝固时温度持续下降。
3、汽化汽化包括蒸发和沸腾两种方式。
蒸发是在液体表面发生的缓慢的汽化现象,它可以在任何温度下进行。
比如,湿衣服在通风处会逐渐变干。
沸腾则是在液体表面和内部同时发生的剧烈汽化现象,需要达到一定的温度,即沸点。
水在标准大气压下的沸点是 100℃。
4、液化液化是气态物质放热变为液态的过程。
常见的例子有,水蒸气遇冷变成小水珠,冬天从口中呼出的“白气”就是水蒸气液化形成的。
5、升华升华是指固态物质直接变为气态的过程。
比如,放在衣柜里的樟脑丸会逐渐变小直至消失,就是升华现象。
6、凝华凝华则是气态物质直接变为固态的过程。
冬天窗户玻璃上的冰花,就是室内的水蒸气遇冷凝华形成的。
三、物态变化的条件1、温度温度是影响物态变化的重要因素。
对于晶体来说,达到熔点会发生熔化,达到凝固点会发生凝固;达到沸点会发生沸腾。
2、压强压强的变化也会影响物态变化。
例如,在压力锅内,由于压强增大,水的沸点会升高。
四、物态变化中的吸热与放热1、吸热过程熔化、汽化、升华都需要吸热。
在这些过程中,物质从外界吸收热量,从而导致自身的温度升高或状态改变。
2、放热过程凝固、液化、凝华都属于放热过程。
物质在这些变化中向外界释放热量。
五、物态变化的应用1、制冷利用汽化吸热的原理来实现制冷。
例如,冰箱中的制冷剂通过汽化吸收冰箱内部的热量,然后在冰箱外部通过压缩机的作用液化,放出热量。
物态变化有关知识点总结一、固液相变固液相变是指物质从固态转变为液态或从液态转变为固态的过程。
在一定的温度下,物质的固态和液态能够平衡存在,这一温度称为物质的熔点。
当物质的温度低于熔点时,固体的粒子排列有序,形成了固体的结构,此时物质处于固态;当温度升高到熔点时,固体的结构开始解开,粒子的排列变得无序,此时物质处于液态。
固液相变的过程是一个吸热过程,熔化的过程中,固体吸收了热量,将固体的结构打破,成为无序的液体结构。
在温度升高时,一些物质的熔点会随着压力的增加而升高,这种现象称为升华现象。
升华是从固态直接变为气态的过程。
例如,二氧化碳就是一个常见的升华物质,它可以在常温下由固态直接变为气态,而不经过液态。
固体和液体的物态变化是由于固体分子之间的吸引力和排列结构的改变所导致的。
一般来说,固态的分子/原子排列较为紧密,具有较强的相互作用力,而液态的分子/原子排列则更为紊乱,相互作用力相对较弱。
二、液气相变液气相变是指物质从液态转变为气态或从气态转变为液态的过程。
在一定的温度下,物质的液态和气态能够平衡存在,这一温度称为物质的沸点。
当物质的温度低于沸点时,液体的分子之间有一定的相互作用力,形成了液体的结构;当温度升高到沸点时,液体的结构被打破,液体的分子开始脱离表面,进入气态状态。
这个过程是一个吸热过程,称为汽化。
汽化是指液态分子脱离液面进入气态的过程。
在物质的沸点以下,液体的分子之间的相互作用力很强,液体无法自由流动;温度升高到沸点时,液体内的分子吸收了热量,分子之间的相互作用力减弱,液体变成气体。
液气相变的过程是一个吸热过程,也就是液体变成气体时,吸收了热量。
液气相变也受到压力的影响,当压力足够高时,物质的沸点会上升,这种情况下称为高压沸点。
相反地,当压力足够低时,物质的沸点会下降,这种情况称为低压沸点。
三、固气相变固气相变是指物质从固态转变为气态或从气态转变为固态的过程。
在一定的温度下,物质的固态和气态能够平衡存在,这一温度称为物质的升华点。
物理物态变化知识点物态变化是物体或物质由一种物态转变为另一种物态的过程。
物理学中常用的物态变化有固态、液态和气态之间的转变。
本文将介绍物态变化的基本概念、常见的几种物态变化以及相关的知识点。
一、物态变化的基本概念1. 熔化:固态物质在一定温度下加热转变为液态,这个过程称为熔化。
熔化温度常用符号Tm表示。
2. 凝固:液态物质在一定温度下冷却转变为固态,这个过程称为凝固。
凝固温度常用符号Tg表示。
3. 汽化:液态物质在一定温度下加热转变为气态,这个过程称为汽化。
汽化温度常用符号Tv表示。
4. 凝结:气态物质在一定温度下冷却转变为液态,这个过程称为凝结。
凝结温度常用符号Tc表示。
5. 升华:固态物质在一定温度下加热转变为气态,而不经过液态阶段,这个过程称为升华。
二、常见的物态变化1. 固态变化为液态的过程称为熔化,液态变化为固态的过程称为凝固。
例如,将冰块加热后会融化成水,这是一个固态变化为液态的过程。
2. 液态变化为气态的过程称为汽化,气态变化为液态的过程称为凝结。
例如,将水烧开后会变成蒸汽,这是一个液态变化为气态的过程。
3. 固态变化为气态的过程称为升华,气态变化为固态的过程称为凝华。
例如,干冰(固态二氧化碳)在常压下加热后直接变为气态,这是一个固态变化为气态的过程。
三、其他相关知识点1. 相变图:相变图是用来描述物质在不同温度和压力下物态变化的图表。
常见的相变图有水的相变图和二氧化碳的相变图等。
2. 相变热:相变热是指物质在相变过程中吸收或释放的热量。
在相变过程中,物质的温度保持不变,因为吸收或释放的热量用于改变物质的内能。
3. 热力学第一定律:热力学第一定律也称为能量守恒定律,它表明在物态变化过程中,能量既不能创造也不能消失,只能转化为其他形式。
4. 临界温度和临界压力:临界温度是指在超过该温度时,物质无法再以液态存在而会变为气态。
临界压力是指在超过该压力下,物质无法再以气态存在而会变为液态。
物态变化知识点总结一、温度和温度计1、温度(1)温度:物体的冷热程度叫温度。
(2)我国的温度单位:°C(摄氏度)(3)摄氏温度的规定:在一标准大气压下,把冰和水的混合物温度规定为0C,把沸水的温度规定为100C,在0C到100C之间分100等份,每一份就是1C.2、温度计(1).原理:利用液体的热胀冷缩的性质来工作。
(注意根据不同的测温需要选择液体。
(2)种类:常见的有实验室用温度计、体温计、家庭用的寒暑表温度计。
它们的量程(即测量范围)不同,分度值(每小格代表的数值)也不同。
(3)使用方法:使用前先要两认清,一是认清量程,二是认清分度值(每小格代表的数值);测量时一是注意放:要使温度计的玻璃泡完全浸入被测的液体中,不能碰到容器底和容器壁(原因有:一是易碰破,二是容器底和容器壁处的温度与液体中间的温度有差异);二是注意等:放入后要稍等一会儿,待温度计的示数稳定后再读数(因为热传递需要过程,需要一段时间);三是注意正确的读:视线要与温度计中液柱的上表面相平。
二、熔化与凝固1、熔化(1)定义:固态变为液态。
例如①春天来了,雪山上的冰雪熔化。
②太阳出来路上积雪熔化。
(2)熔化吸热。
例如①下雪不冷化雪冷是因为化雪是熔化过程,要吸热造成气温降低。
②吃冰棍感到凉爽,是冰棍熔化时从人体吸热。
2、熔化规律:晶体熔化时吸热,但温度保持不变。
(熔化时不变的那个温度值就叫熔点);非晶体熔化时也吸热,但温度一直上升。
没有固定的熔化温度,即没有熔点。
(1)晶体熔化条件:①温度达到熔点;②能继续吸到热。
(2)熔化的图像:晶体熔化过程中有一段时间温度不变,反映图像上就是图像上有一段是平的,与时间轴平行。
画图讲解图像各段含义。
3、凝固:(1)定义:由液态变为固态的过程。
例如:水结成冰,工厂里用铁水浇铸成零件。
(2)凝固放热。
例如:北方在冬天时在菜窖里放几桶水,利用水结冰凝固时放出的热量来使窖内温度不至于降太低,以免菜被冻坏。
1.温度:是指物体的冷热程度。
测量的工具是温度计,温度计是根据液体的热胀冷缩的原理制成的。
2.摄氏温度(℃):单位是摄氏度。
1摄氏度的规定:把冰水混合物温度规定为0度,把一标准大气压下沸水的温度规定为100度,在0度和100度之间分成100等分,每一等分为1℃。
3.常见的温度计有(1)实验室用温度计;(2)体温计;(3)寒暑表。
体温计:测量范围是35℃至42℃,每一小格是0.1℃。
4.温度计使用:(1)使用前应观察它的量程和最小刻度值;(2)使用时温度计玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁;(3)待温度计示数稳定后再读数;(4)读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱的上表面相平。
5.固体、液体、气体是物质存在的三种状态。
6.熔化:物质从固态变成液态的过程叫熔化。
要吸热。
7.凝固:物质从液态变成固态的过程叫凝固。
要放热.
8.熔点和凝固点:晶体熔化时保持不变的温度叫熔点;。
晶体凝固时保持不变的温度叫凝固点。
晶体的熔点和凝固点相同。
9.晶体和非晶体的重要区别:晶体都有一定的熔化温度(即熔点),而非晶体没有熔点。
10.熔化和凝固曲线图:
11.(晶体熔化和凝固曲线图)(非晶体熔化曲线图)
12.上图中AD是晶体熔化曲线图,晶体在AB段处于固态,在BC段是熔化过程,吸热,但温度不变,处于固液共存状态,CD段处于液态;而DG是晶体凝固曲线图,DE段于液态,EF段落是凝固过程,放热,温度不变,处于固液共存状态,FG处于固态。
13.汽化:物质从液态变为气态的过程叫汽化,汽化的方式有蒸发和沸腾。
都要吸热。
14.蒸发:是在任何温度下,且只在液体表面发生的,缓慢的汽化现象。
15.沸腾:是在一定温度(沸点)下,在液体内部和表面同时发生的剧烈的汽化现象。
液体沸腾时要吸热,但温度保持不变,这个温度叫沸点。
16.影响液体蒸发快慢的因素:(1)液体温度;(2)液体表面积;(3)液面上方空气流动快慢。
17.液化:物质从气态变成液态的过程叫液化,液化要放热。
使气体液化的方法有:降低温度和压缩体积。
(液化现象如:“白气”、雾、等)
18.升华和凝华:物质从固态直接变成气态叫升华,要吸热;而物质从气态直接变成固态叫凝华,要放热。
19.水循环:自然界中的水不停地运动、变化着,构成了一个巨大的水循环系统。
水的循环伴随着能量的转移。
1、温度高于0℃时,水蒸汽液化成小水滴成为露;附在尘埃上形成雾;温度低于0℃时,水蒸汽凝华成霜;水蒸汽上升到高空,与冷空气相遇液化成小水滴,就形成云,大水滴就是雨;云层中还有大量的小冰晶、雪(水蒸汽凝华而成),小冰晶下落可熔化成雨,小水滴再与0℃冷空气流时,凝固成雹;“白气”是水蒸汽遇冷液化而成的
一、熔化和凝固:物质从固态变为液态叫熔化;从液态变为固态叫凝固<br>
(1)物质熔化时要吸热;凝固时要放热;<br> (2)熔化和凝固是可逆的两物态变化过程;<br> (3)固体可分为晶体和非晶体;晶体:熔化时有固定温度(熔点)的物质;非晶体:熔化时没有固定温度的物质。