初中数学竞赛指导:“平面几何”竞赛问题的简单剖析
- 格式:pdf
- 大小:265.72 KB
- 文档页数:9
平面几何竞赛之三角形的“五心”一、基本概念1、内心:与三角形所有边相切的圆叫做此三角形的内切圆,其圆心叫做此三角形的内心.内心是三角形三条内角平分线的交点.三角形的内心在三角形内部.内心有以下常用的性质:性质1:设I 是⊿ABC 内一点,I 为⊿ABC 内心的充要条件是:I 到三角形三边的距离相等. 证明: 性质2:设I 是⊿ABC 内一点,AI 所在直线交⊿ABC 的外接圆于D , I 为⊿ABC 内心的充要条件是:ID=DB=DC.证明:性质3:设I 是⊿ABC 内一点,I 为⊿ABC 内心的充要条件是: ∠BIC=900+21∠A ,∠AIC=900+21∠B ,∠AIB=900+21∠C. 证明:性质4:设I 是⊿ABC 内一点,I 为⊿ABC 内心的充要条件是: ⊿IBC 、⊿IAC 、⊿IAB 的外心均在⊿ABC 的外接圆上. 证明:性质5:设I 为⊿ABC 内心,BC=a ,AC=b ,AB=c ,I 在BC 、AC 、AB边上的射影分别为D 、E 、F ,内切圆的半径为r ,令p=21(a+b+c),则(1)ID=IE=IF=r ,S ⊿ABC =pr=))()((c p b p a p p ---=xyz z y x )(++;海伦公式推导:(2)r=cb a S ABC++∆2;M(3)abc ·r=p ·AI ·BI ·CI.性质6:设I 为⊿ABC 内心,BC=a ,AC=b ,AB=c ,∠A 的平分线交BC 于K ,交⊿ABC 的外接圆于D ,则IK AI =DI AD =DK DI =a c b .〖例1〗如图,设⊿ABC 的外接圆O 的半径为R ,内心为I ,∠B=600,∠A<∠C,∠A 的外角平分线交圆O 于E ,证明:(1)IO=AE,(2)2R<IO+IA+IC<(1+3)R. (1994高中联赛)〖例2〗如图,在⊿ABC 中,AB=4,AC=6,BC=5,∠A 的平分线交⊿ABC 的外接圆于K ,O 、I 分别是⊿ABC 的外心和内心,求证:IO ⊥AK. (1982四川省数学竞赛题)练习【练习1】如图,已知点I 是ABC ∆的内心,延长AI 交ABC ∆的外接圆于点D ,交BC 于点E .求证:DI 是DE 、AD 的比例中项.D654321IED CBA【解析】 连接BI .因为I 是ABC ∆的内心,所以1122BAC ∠=∠=∠,1342ABC ∠=∠=∠.所以()15132B AC ∠=∠+,()164242DBI BAC ABC ∠=∠+∠=∠+∠=∠+∠.所以5DBI ∠=∠,于是DB DI =.因为26∠=∠,所以16∠=∠.又因为BEA AEB ∠=∠,所以DBE DAB ∆∆∽,所以2BD DE DA =⋅.所以2DI DE AD =⋅,即DI 是DE 、AD 的比例中项.点评:本题用三角形内心的性质先证明DB DI =,再证明DBE DAB ∆∆∽.已知三角形的内心,通常连接内心和顶点,得角相等.本题很明显BD DC =,这个命题的逆命题也成立.【练习2】⑴ 如图,在ABC ∆中,A ∠、B ∠,C ∠的平分线分别交外接圆于点P 、Q 、R .证明:AP BQ CR BC CA AB ++>++.ABCRPQIB'C'A'ABCI⑵ 如图,设I 为ABC ∆的内心,且'A 、'B 、'C 分别为IBC ∆、IAC ∆、IAB ∆的外心,证明:ABC ∆与'''A B C ∆有相同的外心.⑶ 已知I 是ABC ∆的内心,AI 、BI 、CI 的延长线分别交ABC ∆的外接圆于D 、E 、F .求证:EF AD ⊥.MFEDICBAD⑷ 已知一等腰三角形的外接圆半径为R ,内切圆半径为r , 证明:两圆心的距离为d =【解析】 ⑴ 连接AR 、RB 、BP 、PC 、CQ 、QA .因为12∠=∠,34∠=∠,56∠=∠,所以AP 、BQ 、CR 相交于一点I ,即I 为ABC ∆的内心, 则PB PI PC ==,QA QI QC ==,RA RI RB ==. 在BPC ∆中,因为PB PC BC +>,所以2PI BC >. 同理可证2QI AC >,2RI AB >.将这三个式子相加并整理,得()12PI QI RI BC CA AB ++>++…①因为BI CI BC +>,AI BI AB +>,AI CI CA +>,所以()12AI BI CI BC CA AB ++>++ …②⑵ 作ABC ∆的外接圆,延长AI 交圆心于"A ,连接"A B 、"A C .因为I 是ABC ∆的内心,所以"""A B A I A C ==. 从而"A 为IBC ∆的外心.又因为'A 为IBC ∆外心,所以"A 与'A 两点重合, 即点'A 在ABC ∆的外接圆上.同理可证点'B 、'C 也都在ABC ∆的外接圆上. 所以A 、'C 、B 、'A 、C 、'B 六点共圆, 因此,ABC ∆与'''A B C ∆有相同的外心. ⑶ 连接DE .∵I 是ABC ∆的内心∴ADF ABF CBF ∠=∠=∠,BFE BCE ACE ∠=∠=∠,BFD BAD CAD ∠=∠=∠ ∴ADF BFE BFD ∠+∠+∠ ()1902ABC ACB BAC =∠+∠+∠=︒ ∴EF AD ⊥⑷ 如图,设AB AC =,O 为ABC ∆的外接圆圆心,I 为ABC ∆的123456ABCRPQIABCIDEFMICBAA'(A'')C'B'内切圆圆心(即I 为ABC ∆的内心),连接AI 并延长AI ,交圆O 于D ,则易知AD 是圆O 的直径.设AC 与圆O 相切于E ,连接IE 、DC ,则90AEI ACD ∠=∠=︒,所以IE DC ∥,从而AI IE AD DC=, 于是2AI DC AD IE Rr ⋅=⋅=,由此,得DC DI =. 因为AI OA OI R d =+=+,DI OD OI R d =-=-, 所以()()2R d R d Rr +-=,整理,得d点评:本题根据轴对称构造直径,使问题简化.本题的结论对任意三角形(不一定是等腰三角形)也成立,这就是著名的欧拉公式.【练习3】如图,ABC ∆的三边满足关系()12BC AB AC =+,O 、I 分别为ABC ∆的外心,内心,BAC ∠的外角平分线交圆O 于E ,AI 的延长线交圆O 于D ,DE 交BC 于H .求证:⑴ AI BD =;⑵ 12OI AE =.IH OEDCBABGACD EOH I【解析】 ⑴ 作IG AB ⊥,连接BI ,有()12AG AB AC BC =+-.因为()12BC AB AC =+,所以12AG BC =.由I 为ABC ∆的内心,BD CD =,且DE 为圆O 的直径,得DE BC ⊥,12BH BC =.所以AG BH =.易证:Rt Rt AGI BHD ∆∆≌.故AI BD =⑵ 因为IBD IBH HBD ∠=∠+∠ABI BAI BID =∠+∠=∠.由中位线定理,得12OI AE =. 点评:首先必须掌握三角形内心的性质,即内心是角平分线的交点,它到三边的距离都相等,所以通常作边的垂线;其次要掌握ID BD DC ==.【练习3】设ABC ∆的内切圆O 切BC 于点D ,过点D 作直径DE ,连接AE ,并延长交BC 于点F ,则BF CD =.F DC B F DCBH GI 1ABCDFE【解析】 解法1:如图,令圆O 分别切AB 、AC 于点M 、N . 过点E 作GH BC ∥,分别交AB 、AC 于点G 、H , 则GH 切圆O 于点E ,且AGE ABF ∆∆∽,AGH ABC ∆∆∽. 记AGH ∆与ABC ∆的周长分别为2'p 、2p ,则AG GE AG GM +=+AM AN =='AH HN AH HE p =+=+=.于是'2'2p p AG p p AB =='GF AG GE p BF AB BF AB BF+===++ 即有p AB BF =+,故BF p AB CD =-=. 解法2:设AB c =,AC b =,BC a =,则()12BD b a b c +=++,∴()12BD a c b =+- 下面仅需证明()12CF a c b =+-. 为此,作1FI BC ⊥交AI 的延长线于1I ,1I G AC ⊥于G , 即仅需证明1I 是ABC ∆旁切圆在A ∠内的旁心.事实上,由111I F AI I GIE AI IH==(H 是边AC 与圆I 的切点)但IE IH =,可知11I F I G =,即1I 确是旁心,∴()12CF a b c =+-,即BD CF =.2、外心:经过三角形各顶点的圆叫做此三角形的外接圆,其圆心叫做此三角形的外心.外心是三角形三条边的垂直平分线的交点. 锐角三角形的外心在三角形内部,直角三角形的外心在斜边中点,钝角三角形的外心在三角形外部.外心有以下常用的性质:性质1:⊿ABC 所在平面上一点是其外心的充要条件是:该点到三角形三顶点的距离相等.性质2:设O 是⊿ABC 所在平面内一点,则O 为⊿ABC 的外心的充要条件是: (1)∠BOC=2∠A ,∠ACC=2∠B ,∠AOB=2∠C.(2)OB=OC, 且∠BOC=2∠A.性质3:R=ABCS abc4或S ⊿ABC =R abc 4.〖例3〗如图,设AD 是⊿ABC 的∠BAC 的平分线,O 是⊿ABC 的外心,01是⊿ABD 的外接圆的圆心,02是⊿ADC 的外接圆的圆心.求证:OO 1=OO 2. (1990高中联赛)3、重心:三角形三条边中线的交点叫做此三角形的重心.重心在三角形内部.重心到顶点的距离等于它到对边中点距离的2倍(即:重心将每条中线分成1:2两部分).重心有以下常用的性质:性质1:设G是⊿ABC的重心,连AG并延长交BC于D,则D为BC的中点,AD2=21(AB2+AC2)-BC2,且AG:GD=2:1.性质2:设G是⊿ABC的重心,P为⊿ABC内任意一点,则(1)AP2+BP2+CP2=AG2+BG2+CG2+3PG2;(2)AG2+BG2+CG2=31(AB2+BC2+CA2).性质3:设G 是⊿ABC 内一点,G 是⊿ABC 的重心的充要条件是下列条件之一:(1)S ⊿GBC =S ⊿GCA =S ⊿GAB =31S ⊿ABC ;(2)当AG 、BG 、CG 的延长线交三边于D 、E 、F 时,S ⊿AFG =S ⊿BDG =S ⊿CEG .(3)当点G 在三边BC 、CA 、AB 上的射影分别为D 、E 、F 时,GD ·GE ·GF 值最大;(4)过G 的直线交AB 于P ,交AC 于Q 时,AP AB +AQAC=3;(5)BC 2+3AG 2=CA 2+3GB 2=AB 2+3GC 2.4、垂心:三角形三条边高线的交点叫做此三角形的垂心。
八年级数学竞赛辅导之面积问题平面几何学的产生起源于人们对土地面积的测量,面积是平面几何中一个重要的概念,联系着几何图形中的重要元素边与角.计算图形的面积是几何问题中一种常见问题,求面积的基本方法有: 1.直接法:根据面积公式和性质直接进行运算.2.割补法:通过分割或补形,把不规则图形或不易求解的问题转化为规则图形或易于求解的问题. 3.等积法:根据面积的等积性质进行转化求解,常见的有同底等高、同高等底和全等的等积转化.4.等比法:将面积比转化为对应线段的比. 熟悉以下基本图形中常见的面积关系:注 等积定理:等底等高的两个三角形面积相等.等比定理:同底(或等底)的两个三角形面积之比等于对应高之比,同高(或等高)的两个三角形面积之比等于对应底之比.1.如图,是一个圆形花坛,中间的鲜花构成了一个菱形图案(图中尺寸单位为米),如果每平方米种植鲜花20株,那么这个菱形图案中共有鲜花 株. 2.直角三角形斜边上中线长为1,周长为.3.如图,在四边形ABCD 中,∠A =135°,∠B =∠D =90°,BC =23,AD =2,则四边形ABCD 的面积为( )A .42B .43C .4D .6 (2001年湖北省荆州市中考题) 4.ABCD 是边长为1的正方形,△BPC 是等边三角形,则厶BPD 的面积为( )A .41B .413-C .81D .8132- (2001年武汉市选拔赛题)5.有一块缺角矩形地皮ABCDE (如图),其中AB =110m ,BC =80m ,CD =90m ,∠EDC =135°.现准备用此块地建一座地基为长方形(图中用阴影部分表示)的教学大楼,以下四个方案中,地基面积最大的是( ) 6.今有一块正方形土地,要在其上修筑两条笔直的道路,使道路将这块土地分成形状相同且面积相等的4部分.若道路的宽度可忽略不计,请设计4种不同的修筑方案.7.如图,已知梯形ABCD 的面积为34cm 2,AE =BF ,CE 与DF 相交于O ,△OCD 的面积为11cm 2,求蝶形(阴影部分)的面积.8.探究规律:如图a ,已知:直线m ∥ n ,A 、B 为直线n 上两点,C 、P 为直线m 上两点. (1)请写出图a 中,面积相等的各对三角形 ;(2)如果A 、B 、C 为三个定点,点P 在m 上移动,那么,无论P 点移动到任何位置,总有 与△ABC 的面积相等.理由是: . 解决问题:如图b ,五边形ABCDE 是张大爷十年前承包的一块土地的示意图.经过多年开垦荒地,现已变成如图c 所示的形状,但承包土地与开垦荒地的分界小路(即图c 中折线CDE )还保留着.张大爷想过正点修一条直路,直路修好后,要保持直路左边的土地面积与承包时的一样多,右边的土地面积与开垦的荒地面积一样多.请你用有关的几何知识,按张大爷的要求设计出修路方案.(不计分界小路与直路的占地面积) (1)写出设计方案,并在图c 中画出相应的图形; (2)说明方案设计理由. (2003年河北省中考题)9.如图,从等边三角形内一点向三边作垂线,已知这三条垂线段的长分别为1、3、5,则这个等边三角形的边长为 . (全国初中数学联赛试题)10.如图,E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连结AF 、CE ,设AF 与CE 的交点为G ,则AB C D A G C D S S 矩形四边形等于( ) A .65 B .54 C .43 D .32第9题图 第10题图11.已知菱形ABCD 的两条对角线AC 、BD 的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是( ) A .165° D .135° C . 150° D .120° (“希望杯”邀请赛试题)12.如图,设凸四边形ABCD 的一组对边AB 、CD 的中点分别为K 、M ,求证:S 四边形ABCD =S △ABM +S △DCK .13.如图,设G (也称重心)为△ABC 三条中线AD 、BE 、CF 的交点,则2===GFCGGE BG GD AG ,请读者证明.(14题图)14. 如图,在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD =4,CE =6,那么△ABC 的面积等于( )A .12B .14C .16D .18(全国初中数学联赛试题) 15. 如图甲,AB 、CD 是两条线段,M 是AB 的中点,S △DMC 、S △DAC 、S △DBC 分别表示△DMC 、△DAC 、△DBC的面积,当AB ∥CD 时,有S △DMC =2DBCDAC S S ∆∆+·(1)如图乙,若图甲中AB 不平行CD ,①式是否成立?请说明理由;(2)如图丙,若图甲中A 月与CD 相交于点O 时,问S △DMC 和S △DAC 和S △DBC 有何种相等关系?试证明你的结论. (2001年安徽省中考题)16.已知凸四边形ABCD 的对角线AC ,BD 相交于点O ,且△ABC ,△ACD ,△ABD 的面积分别为S 1=5,S 2=10,S 3=6.求△ABO 的面积17.如图2-129,AD ,BE ,CF 交于△ABC 内的一点P ,并将△ABC 分成六个小三角形,其中四个小三角形的面积已在图中给出.求△ABC 的面积.18.如图1,在直角坐标系中,点A是x 轴正半轴上的一个定点,点B 是双曲线y =(0x >)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会( A .逐渐增大 B .不变 C .逐渐减小 D .先增大后减小19.(2009·牡丹江)如图2,点A 、B 是双曲线3y x=上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段,若1S =阴影,则12S S += . 20.(2009莆田)在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345A A A A A 、、、、分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OP A A P A A P A A P A A P A 2、、、、,并设其面积分别为12345S S S S S 、、、、,则5S 的值为 . 21.在直角三角形ABC 中,∠A =90°,AD ,AE 分别是高和角平分线,且△ABE ,△AED 的面积分别为S 1=30,S 2=6,求△ADC 的面积S .22.如图,△ABC 的面积为1,分别延长AB 、BC 、CA 到D 、E 、F ,使AB =BD ,BC =CE ,CA =AF ,连DE 、EF 、FD ,求△DEF 的面积。
第10章 四边形§10.1 平行四边形与梯形10.1.1★如图(a),在四边形ABCD 中,AC 、BD 是对角线,已知ABC △是等边三角形,30ADC ∠=︒,3AD =,5BD =,求边CD 的长.DABC DAB CE(a)(b)解析 如图(b),以CD 为边向四边形ABCD 外作等边CDE △,连结AE .由于AC BC =,CD CE =, BCD BCA ACD ∠=∠+∠DCE ACD =∠+∠ACE ∠. 所以BCD △≌ACE △,从而BD AE =.又因为30ADC ∠=︒,5BD =,3AD =,于是90ADE ∠=︒,从而在Rt ADE △中,4DE =.所以4CD =.10.1.2★在ABCD 中,2AB AD =,F 为AB 中点,CE AD ⊥D 交AD (或延长线)于E .求证:3BFE AEF ∠=∠.解析 如图,取CD 中点G ,连结FG 、CF .A FBE DGC易知四边形ADGF 与FGCB 均为菱形,FG 垂直平分CE ,于是EFG ∠CFG CFB =∠=∠,于是33BFE EFG AEF ∠=∠∠=∠.10.1.3★AD 、BE 、CF 是ABC △的三条中线,FG BE ∥,EG AB ∥,四边形ADCG 是平行四边形. 解析 如图,连结EF ,则EF 是中位线.AGFEB D C由条件知EG BF ∥,故EG AF ∥,于是AG EF CD ∥∥,故结论成立. 10.1.4★延长矩形ABCD 的边CB 到E ,使CE CA =,F 是AE 的中点,求证:BF FD ⊥.解析 如图,取BD 中点G ,连结FG ,则()11112222FG AD BE CE CA BD =+===,于是BF FD ⊥. ADBCADFGEBC题10.1.4题10.1.510.1.5★菱形ABCD中,2BD AC -=120BAD ∠=︒,求菱形的面积. 解析 如图,易知ABC △与ACD △均为正三角形.设菱形边长为x ,则由120BAD ∠=︒,得BD ,AC x =,所以)12x =x =此菱形面积为212BD AC ⋅=. 10.1.6★在梯形ABCD 中,AD BC ∥,中位线MN 分别交AB 、CD 、AC 、BD 于M 、N 、P 、Q ,若延长AQ 、DP 的交点正好位于BC 上,求BCAD. ADMQPNB RC解析 设AQ 、DP 延长后交于R ,且R 在BC 上,则由中位线知2AD PQ =,2AD PN =,2BC QN =,故2BCAD=. 10.1.7★★四边形ABCD 中,135ABC ∠=︒,120BCD ∠=︒,AB =5BC =6CD =,求AD . 解析 如图所示,作AF BC ⊥,DE BC ⊥分别交BC 所在直线于F 、E ,作FG AD ∥交DE 于G ,则AFB △为等腰直角三角形,90AFB ∠=︒,AB =故FB A F =;90DEC ∠=︒,60DCE ∠=︒,6CD =,故3CE =,DE =.F BCEADG所以EF FB BC CE =++538+=,GE DE DG DE AF =-=-==从而AD FG ==10.1.8★★★已知ABC △中,90A ∠=︒,D 是BC 上一点,D 关于AB 、AC 的对称点分别为F 、E ,若BE CF =,12AD BC =.解析 如图,连结AF 、AE 、BF 、CE .FAEBDC由对称,有22180FAD EAD BAD CAD ∠+∠=∠+∠=︒,故F 、A 、E 共线.又180BFE FEC ADB ADC ∠+∠=∠+∠=︒,故FB ∥EC ,而BE CF =,所以梯ECBF 为等腰梯形.又AF AD AE ==,于是1122AD EF BC ==.10.1.9★★将梯形的各个顶点均作关于不包含该顶点的对角线的对称点,证明:如果所得到的四个像点也形成四边形,则必为一个梯形.B'C'ADBCA'D'O解析 如图,AD BC ∥,A 、B 、C 、D 关于对应对角线的对称点分别为A ′、B ′、C ′、D ′. 设AC 、BD 交于O ,连结A ′O 、B ′O 、C ′O 、D ′O .则A ∠′OB =AOB COD C ∠=∠=∠′OD ,故A ′、O 、C ′共线,且A O AO C O CO '=',同理B ′、O 、D ′共线,B O D O ''BO DO =,所以由1BO CODO AO=≠得1B O C OD O A O''=≠''. 故如A ′、B ′、C ′、D ′不位于同一直线上,则A ′D ′∥B ′C ′,即A ′B ′C ′D ′成梯形.10.1.10★已知:直角梯形ABCD ,AD BC ∥,AB BC ⊥,AB BC =,E 是AB 上一点,AE AD =,75CEB ∠=︒,求ECD ∠.A DE BC解析 如图,连结AC ,则由AB BC =,AB BC ⊥,得45BAC DAC ∠=︒=∠. 又AE AD =,故AEC △≌ADC ,EC CD =.又180754560DEC ∠=︒-︒-︒=︒,故DEC △为正三角形,于是60ECD ∠=︒.10.1.11★★在四边形ABCD 中,60A ∠=︒,90B D ∠=∠=︒,2AB =,1CD =,求BC 、AD 和BD 的长.ACED解析 如图,延长AD 、BC 至E ,则60DCE ∠=︒,22CE CD ==.又60A ∠=︒,故BE =2BC =,又4AE =,CE,故4AD =.至于求BD ,有多种方法,如勾股定理或余弦定理,也可用A 、B 、C 、D 四点共圆的性质:AC,sin 60BD AC =⋅︒=§10.2 正方形10.2.1★在正方形ABCD 中,E 为BC 的中点,F 为CD 上的点,且AF BC CF =+.求证:2BAF BAE ∠=∠.ADBECFP解析 如图,延长AE 、DC ,设交于P ,则B E C E =得CP AB BC ==,FP FC CP FC BC AF =+++=.于是BAE P FAP ∠=∠=∠,即2BAF BAE ∠=∠.10.2.2★正方形边长等于1,通过它的中心引一条直线,求正方形的四个顶点到这条直线的距离平方和的取值范围.AMDONBCl解析 如图,设O 是正方形ABCD 的中心,l 通过O ,AM 、DN 分别与l 垂直于M 、N . 由于90MAO AOM DON ∠=︒-∠=∠,AO OD =,故AMO △≌OND △,2222212AM DN AM MO AO +=+==.对B 、C 的垂线也有类似结论,因此所求距离的平方和是常数1.10.2.3★正方形ABCD 的对角线交于O ,BAC ∠的平分线交BD 于G ,交BC 于F ,求证:2CFOG =. 解析 如图,作OE FC ∥,交AF 于E ,OE 为ACF △中位线,2CF EO =. 问题变为证明EO GO =.因为么4545GEO OAF FAF OGE ∠=︒+∠=∠+︒=∠,于是结论成立.ADE OG BFC10.2.4★设M 、N 分别为正方形ABCD 的边AD 、CD 的中点,且CM 与BN 交于P ,求证:PA AB =. 解析 如图,由MD CN =知BNC △≌CMD △,故90PBC PCB NCM PCB ∠+∠=∠+∠=︒,故C M B N ⊥.延长CM 、BA ,设交于Q ,则QA CD AD ==,A 为直角三角形QPB 斜边BQ 之中点,于是AP AB =.QADMBCN P题10.2.410.2.5★已知两个正方形ABCD 、AKLM (顶点均按照顺时针方向排列),求证:这两个正方形的中心和BM 、DK 的中点组成一个正方形.题10.2.5MAQBP CDRSLK解析 如图,设DB 、BM 、MK 、KD 的中点分别为P 、Q 、R 、S .由于DA AB =,AK AM =,90DAM BAM BAK ∠=︒+∠=∠,于是DAM △≌BAK △,由此得KB 与DM 垂直且相等.由于12SR DM PQ ∥∥,12SP KB RQ ∥∥,故四边形PQRS 为正方形.10.2.6★★M 是正方形ABCD 内一点,若2222AB MA MB -=,90CMB ∠=︒,求MCD ∠.解析 如图,作MN AB ⊥于N ,则22222,2,AB AN BN AM BM AN BN AB ⎧-=-=⎪⎨⎪+=⎩ADBLCMN解得34AN AB =,14BN AB =. 不妨设3AN =,3BN =,MN x =,则 ()22229(4)DM AN AD MN x =+-=+-, ()2222()14CM BN CM MN x =+-=+-,由条件90CMD ∠=︒,知222DM CM CD +=,即()2102416x +-=,解得4x = 又作ML BC ⊥于L,于是4LC x =-1ML NB ==,故60MCD LMC ∠=∠=︒.10.2.7★O 是正方形ABCD 的两对角线的交点,P 是BD 上异于O 的任一点,PE AD ⊥于E ,PF AB⊥于F ,G 是EO 的延长线和BC 的交点,求OFG ∠.CGB OPFDEA解析 如图,易知AF EP ED ==,AO DO =,45FAO EDO ∠=︒=∠,于是AFO △≌DEO △≌BGO △,于是OF OG =,90AOB FOG ∠=︒-∠,故OFG △为等腰直角三角形,45OFG ∠=︒.10.2.8★★K 是正方形ABCD 的边AB 的中点,点L 分对角线AC 的比为:3AL LC =,证明:90KLD ∠=︒.解析 连结BL ,由正方形关于AC 对称,知BL DL =. 又作LJ AB ⊥于J ,由3AL LC =,易知1142JB AB KB ==,故J 为KB 中点,JL 垂直平分KB ,于是LK LB =,LKB LBK ADL ∠=∠=∠,或180AKL ADL ∠+∠=︒,故90KLD ∠=︒.A EDFPOB GC10.2.9★已知ABC △,向外作正方形ABEF 和ACGH .直线AK 垂直BC 于K ,反向延长交FH 于M ,求证:M 是FH 的中点.解析 如图,作FQ 、HP 分别与直线KA 垂直,垂足为Q 、P .P HMFQ AEBKC G易见,90QFA QAF BAK ∠=︒-∠=∠,又90FQA AKB ∠=︒=∠,FA AB =,故有AQF △≌BKA △,FQ AK =,同理PH AK =,于是FQ PH =,FM MH =.10.2.10★已知:正方形ABCD 中,E 、F 分别在BC 、CD 上,AG EF ⊥于G .若45EAF ∠=︒,求证:AG AB =.反之,若AG AB =,则45EAF ∠=︒.解析 如图,延长CB 至H ,使BH DF =,连结AH ,则AHB △≌AFD △,90HAF BAD ∠=∠=︒,904545HAE EAF ∠=︒-︒=︒=∠,又AH AF =,AE AE =,故AHE △≌AFE △,AB 、AG 为其对应 边上的高,于是AG AB =.A D F GH B E C反之,若AG AB =,则Rt ABE △≌Rt AGE △,EAG BAE ∠=∠,同理,FAG DAF ∠=∠,于是1452EAF BAD ∠=∠=︒.10.2.11★★在梯形ABCD 中,AD BC ∥(BC >AD ),90D ∠=︒,12BC CD ==,E 在边CD 上,45ABE ∠=︒,若10AE =,求CE 的长.解析 延长DA 至M ,使BM BE ⊥过B 作BG AM ⊥,G 为垂足.易知四边形BCDG 为正方形,所以BC BG =.又CBE GBM ∠=∠,Rt BEC △≌Rt BMG △,故BM BE =. 又45ABE ABM ∠=∠=︒,故ABE △≌ABM △,10AM AE ==. 设CE x =,则10AG x =-,()12102AD x x =--=+,12DE x =-.在Rt ADE △中,222AE AD DE =+,故()()22100212x x =++-,即210240x x -+=,解之,得14x =,26x =.故CE 的长为4或6.DEC BAGM10.2.12★★在正方形ABCD 的边BC 上任取一点M ,过C 作CQ DM ⊥于Q ,且延长交AB 于N ,设正方形对角线的交点为O ,连结OM 、ON ,求证:OM ON ⊥.解析 如图,易知MDC NCB ∠=∠,故DMC △≌CNB △,故NB MC =,又45NBO OCM ∠=︒=∠,BO CO =,于是ONB △≌OMC △,90NOM BOC ∠=∠=︒.\ADBCMQON10.2.13★★四边形ABCD 是正方形,四边形ACEF 是菱形,E 、F 、B 在一直线上.求证:AE 、AF 三等分CAB ∠.解析 如图,作BM 、FN 与AC 垂直,垂足为M 、N ,于是由AB BF ∥知1122FN BM AC AF ===,于是30FAC ∠=︒.又45CAB ∠=︒,于是15BAF ∠=︒,15FAE CAE ∠=∠=︒,AE 、AF 三等分CAB ∠. ADBCMNFE。
第17章 几何不等式与极值问题一个凸行边形的内角中,恰好有4个钝角,求n 的最大值.解析考虑这个凸行边形的n 个外角,有4n -个角90︒≥,故有()490360n -⨯︒<︒(严格小于是由于4个钝角的外角和大于0︒),因此8n <,n 的最大值是7.易构造这样的例子。
如果恰好有k 个钝角,则n 的最大值是3k +.在ABC △中,AB AC >,P 为BC 边的高AD 上的一点,求证:AB AC PB PC -<-. 解析 易知AB AC PB PC +>+,又2222AB AC BD CD -=- 22PB PC =-,故有AB AC PB PC -<-.评注 读者不妨考虑AD 是角平分线与中线的情况.17.1.3 已知四边形ABCD ,AC 、BD 交于O ,ADO △和BCO △的面积分别为3、12,求四边形ABCD 面积的最小值.解析 易知ABO BCOADO DCO S S BO S DO S ==△△△△,故36ABO CDO ADO BCO S S S S ⋅=⋅=△△△△.从而12ABO CDO S S +=△△≥,且当ABO CDO S S =△△(此时四边形ABCD 为一梯形)时等号成立,所以此时四边形ABCD 面积达到最小值27.已知:直角三角形ABC 中,斜边BC 上的高6h =. (1)求证:BC h AB AC +>+; (2)求()()22BC h AB AC ++-. 解析()()22BC h AB AC +-+222222BC h BC h AB AC AB AC =++⋅---⋅,由条件,知242ABC BC h S AB AC ⋅==⋅△,且222AB AC BC +=, 于是()()22236BC h AB AC h +-+==.注意:这同时解决了(1)和(2).设矩形ABCD ,10BC =,7CD =,动点F 、E 分别在BC 、CD 上,且4BF ED +=,求AFE △面积的最小值. 解析设 BF x=,()4DE y x ==-,则()()()117101077022ABF ADE ECF S S S x y x y xy ++=++--=+⎡⎤⎣⎦△△△。
八年级数学竞赛例题专题讲解:面积法阅读与思考平面几何学的产生源于人们测量土地面积的需要,面积关联着几何图形的重要元素边与角.所谓面积法是指借助面积有关的知识来解决一些直接或间接与面积问题有关的数学问题的一种方法.有许多数学问题,虽然题目中没有直接涉及面积,但由于面积联系着几何图形的重要元素,所以借助于有关面积的知识求解,常常简捷明快.用面积法解题的基本思路是:对某一平面图形面积,采用不同方法或从不同角度去计算,就可得到一个含边或角的关系式,化简这个面积关系式就可得到求解或求证的结果.下列情况可以考虑用面积法:(1)涉及三角形的高、垂线等问题;(2)涉及角平分线的问题.例题与求解【例1】如图,从等边三角形内一点向三边作垂线,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的边长为______________.(全国初中数学联赛试题) 解题思路:从寻求三条垂线段与等边三角形的高的关系入手.等腰三角形底边上任一点到两腰距离之和等于一腰上的高,那么等边三角形呢?等腰梯形呢?【例2】如图,△AOB中,∠O=,OA=OB,正方形CDEF的顶点C在DA上,点D在OB上,点F在AB上,如果正方形CDEF的面积是△AOB的面积的,则OC:OD等于( )A.3:1 B.2:1C.3:2 D.5:3解题思路:由面积关系,可能想到边、角之间的关系,这时通过设元,即可把几何问题代数化来解决.【例3】如图,在□ABCD中,E为AD上一点,F为AB上一点,且BE=DF,BE与DF交于G,求证:∠BGC=∠DGC.(长春市竞赛试题)解题思路:要证∠BGC=∠DGC,即证CG为∠BGD的平分线,不妨用面积法寻找证题的突破口.【例4】如图,设P为△ABC内任意一点,直线AP,BP,CP交BC,CA,AB于点D、E、F.求证:(1);(2).(南京市竞赛试题)解题思路:过P点作平行线,产生比例线段.【例5】如图,在△ABC中,E,F,P分别在BC,CA,AB上,已知AE,BF,CP相交于一点D,且,求的值.解题思路:利用上例的结论,通过代数恒等变形求值.(黄冈市竞赛试题)【例6】如图,设点E,F,G,H分别在面积为1的四边形ABCD的边AB,BC,CD,DA上,且(是正数),求四边形EFGH的面积.(河北省竞赛试题)解题思路:连对角线,把四边形分割成三角形,将线段的比转化为三角形的面积比.线段比与面积比的相互转化,是解面积问题的常用技巧.转化的基本知识有:(1) 等高三角形面积比,等于它们的底之比;(2) 等底三角形面积比,等于它们的高之比;(3) 相似三角形面积比,等于它们相似比的平方.能力训练1.如图,正方形ABCD的边长为4cm,E是AD的中点,BM⊥EC,垂足为M,则BM=______.(福建省中考试题)2.如图,矩形ABCD中,P为AB上一点,AP=2BP,CE⊥DP于E,AD=,AB=,则CE=__________.(南宁市中考试题)第1题图第2题图第3题图3.如图,已知八边形ABCDEFGH中四个正方形的面积分别为25,48,121,114,PR=13,则该八边形的面积为____________.(江苏省竞赛试题) 4. 在△ABC中,三边长为,,,表示边上的高的长,,的意义类似,则(++)的值为____________. (上海市竞赛试题)5.如图,△ABC的边AB=2,AC=3,Ⅰ,Ⅱ,Ⅲ分别表示以AB,BC,CA为边的正方形,则图中三个阴影部分的面积之和的最大值是__________.(全国竞赛试题) 6.如图,过等边△ABC内一点P向三边作垂线,PQ=6,PR=8,PS=10,则△ABC的面积是 ( ).A. B.C.D.(湖北省黄冈市竞赛试题)第5题图第6题图第7题图7.如图,点D是△ABC的边BC上一点,若∠CAD=∠DAB=,AC=3,AB=6,则AD的长是( ).A.2 B. C.3 D.8.如图,在四边形ABCD中,M,N分别是AB,CD的中点,AN,BN,DM,CM划分四边形所成的7个区域的面积分别为,,,,,,,那么恒成立的关系式是( ).A.+=B.+=C.+= D.+=9.已知等边△ABC和点P,设点P到△ABC三边AB,AC,BC的距离分别为,,,△ABC的高为.若点P在一边BC上(如图1),此时,可得结论:++=.请直接用上述信息解决下列问题:当点P在△ABC内(如图2)、点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立.请给予证明;若不成立,,,与之间又有怎样的关系?请写出你的猜想,不需证明.(黑龙江省中考试题)10.如图,已知D,E,F分别是锐角△ABC的三边BC,CA,AB上的点,且AD、BE、CF相交于P点,AP=BP=CP=6,设PD=,PE=,PF=,若,求的值.(“希望杯”邀请赛试题)11.如图,在凸五边形ABCDE中,已知AB∥CE,BC∥AD,BE∥CD,DE∥AC,求证:AE∥BD.(加拿大数学奥林匹克试题)12.如图,在锐角△ABC中,D,E,F分别是AB,BC,CA边上的三等分点. P,Q,R分别是△ADF,△BDE,△CEF的三条中线的交点.(1) 求△DEF与△ABC的面积比;(2) 求△PDF与△ADF的面积比;(3) 求多边形PDQERF与△ABC的面积比.13.如图,依次延长四边形ABCD的边AB,BC,CD,DA至E,F,G,H,使,若,求的值.(上海市竞赛试题)14.如图,一直线截△ABC的边AB,AC及BC的延长线分别交于F,E,D三点,求证:.(梅涅劳斯定理)15.如图,在△ABC中,已知,求的值.(“华罗庚金杯”少年数学邀请赛试题)。
初中数学竞赛应对技巧数学竞赛是检验学生数学综合素质的有效手段,对于提高学生的数学思维能力、解决问题能力具有重要的促进作用。
初中数学竞赛更是培养学生数学兴趣、挖掘数学潜能的重要途径。
为了帮助学生在初中数学竞赛中取得优异成绩,本文将从以下几个方面介绍应对初中数学竞赛的技巧。
一、了解竞赛特点,明确考查方向初中数学竞赛主要考查学生的数学基础知识、逻辑思维能力、空间想象能力和创新意识。
在竞赛中,学生需要熟练掌握以下几个方面的内容:1.初中数学基础知识,如代数、几何、概率等;2.数学逻辑思维,如归纳总结、推理证明等;3.空间想象能力,如立体几何、平面几何等;4.数学创新意识,如数学建模、数学探究等。
了解竞赛特点,有助于学生在备考过程中有的放矢,有针对性地进行复习。
二、培养良好的数学思维习惯1.细心阅读题目,理解题目要求,避免因粗心大意导致失分;2.分析题目,找出已知条件和求解目标,理清解题思路;3.运用合适的解题方法,注重数学公式、定理的灵活运用;4.检查答案,确保解题过程完整、逻辑清晰。
三、提高解题速度和准确性1.强化训练,提高解题熟练度;2.做好时间规划,合理分配解题时间,避免因时间不足导致题目无法完成;3.培养题目分析能力,快速找出解题关键点;4.注重基础,提高基本运算速度和准确性。
四、积极参加模拟竞赛,提高应试能力1.参加学校组织的模拟竞赛,熟悉竞赛环境和流程;2.分析模拟竞赛中的错误,总结经验教训,及时调整学习方法;3.参加各类数学竞赛培训班,提高专业指导;4.与同学交流学习心得,相互借鉴,共同进步。
五、注重创新能力培养1.参与数学课题研究,锻炼数学探究能力;2.多做创新性数学题,培养数学建模能力;3.参加数学竞赛研讨会,拓宽视野,激发创新思维;4.注重数学与实际生活的联系,培养解决实际问题的能力。
总之,要想在初中数学竞赛中取得好成绩,学生需要扎实的数学基础、良好的数学思维习惯、较高的解题速度和准确性以及创新能力的培养。
初中数学竞赛第二轮专题复习(2)几何证明的基本方法(1)一、常用定理梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则.1''''''=⋅⋅BC AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=⋅⋅BC AC A B CB C A BA 则',','C B A 三点共线。
塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=⋅⋅BC AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=⋅⋅BC AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。
角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠⋅∠∠⋅∠∠BAB CBB CBC ACC AC A BAA 广义托勒密定理 设ABCD 为任意凸四边形,则AB •CD+BC •AD ≥AC •BD,当且仅当A,B ,C ,D 四点共圆时取等号.斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有AP 2=AB 2•BC PC +AC 2•BCBP -BP •PC 。
浅谈数学竞赛中平面几何解题的小技巧作者:李昊然来源:《卷宗》2017年第31期摘要:当前,全国高中各学科联合竞赛已成为普遍现象,它不仅能发挥的学生们的特长,也是各类高校自主招生的一个参考依据。
对于那些学有余力的理科学生来说,积极参与数、理、化、生的全国联合竞赛更是他们展现能力的一个舞台。
笔者作为数学竞赛的参与者,从平面几何学习和竞赛中总结一些个人心得,以期对后来的参与者得到一些帮助,并希望与大家共同学习和交流。
关键词:全国高中;数学;联合竞赛;平面几何在平面几何中,有着一个非常重要的定理,梅涅劳斯定理,即(一种基本形式)。
这个定理在平面几何中用处之广不必多说,许多同学把其当作一个非常基础的定理,因为通过它可以推导出帕斯卡定理等。
但是梅氏定理真的是那么基本吗?我看并不是这样,梅氏定理也可以通过共边定理来证明。
证明如下:,即即这样说明了一个什么问题呢?即用梅涅劳斯定理证明的题目均可以使用共边定理来进行证明,有时只是解答复杂的问题,但是一定可以做出,而共边定理的本质即是三角形的面积比例,这应该算是一个非常基本的定理,下面我举一例子加以说明。
例一:(如图二)P为⊙O外一点,PA、PB分别切⊙O于A、B,C为⊙O上一点,过C作⊙O切线,分别交PA、PB于E、F,OC交AB于L,LP交EF于D,证明D为EF的中点。
(1991年四川队题)证明:=∴DE=DF #由此可以发现这道题可以用共边定理一口气解决。
但是对于竞赛,许多同学感到困惑,这个是怎么想到的呢?难道是天分吗?不对,这其中是有小技巧的。
从题目中,我们可以得到:A、B是圆上的两任意点,这两个点是没有任何限制的,因此可以理解为初始点,记做“0”,而P点是过B、C两切线的交点,只要BC位置确定,P点即确定,其中P与AB的关系为∠PBO=∠PAO=90°,即PB=PA,∴P由初始点确定,P也记做“0”级。
C为任意点,∴C记做“0”级,L由CO,AB确定,∵C、O、A、B均为初始点,∴L为“1”级,E、F由PB与PA和C点确定,∴E、F为“1”级,而D点由PL、EF确定,∴将D点记做“2”级,题目即证:DE=DF,不难发现,D为本题中最复杂的点,而题目正是要证明这东西的相关性质,利用共边定理,从D点出发一步一步还原,消去点D,当还原到基本点时,结果必定可以约掉,若约不掉,则题目有问题,下面举一例子加以说明。
数学竞赛平面几何讲座:四点共圆问题以下是查字典数学网为您推荐的数学竞赛平面几何讲座:四点共圆问题,希望本篇文章对您学习有所帮助。
数学竞赛平面几何讲座:四点共圆问题四点共圆问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以四点共圆作为证题的目的,二是以四点共圆作为解题的手段,为解决其他问题铺平道路.1 四点共圆作为证题目的例1.给出锐角△ABC,以AB为直径的圆与AB边的高CC及其延长线交于M,N.以AC为直径的圆与AC边的高BB及其延长线将于P,Q.求证:M,N,P,Q四点共圆.分析:设PQ,MN交于K点,连接AP,AM.欲证M,N,P,Q四点共圆,须证MKKN=PKKQ,即证(MC-KC)(MC+KC)=(PB-KB)(PB+KB)或MC2-KC2=PB2-KB2 . ①不难证明 AP=AM,从而有AB2+PB2=AC2+MC2.故 MC2-PB2=AB2-AC2=(AK2-KB2)-(AK2-KC2)=KC2-KB2. ②由②即得①,命题得证.例2.A、B、C三点共线,O点在直线外,O1,O2,O3分别为△OAB,△OBC,△OCA的外心.求证:O,O1,O2,O3四点共圆.分析:作出图中各辅助线.易证O1O2垂直平分OB,O1O3垂直平分OA.观察△OBC及其外接圆,立得OO2O1= OO2B=OCB.观察△OCA及其外接圆,立得OO3O1= OO3A=OCA.由OO2O1=OO3O1 O,O1,O2,O3共圆.利用对角互补,也可证明O,O1,O2,O3四点共圆,请同学自证.2 以四点共圆作为解题手段这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面.(1)证角相等例3.在梯形ABCD中,AB∥DC,ABCD,K,M分别在AD,BC 上,DAM=CBK.求证:DMA=CKB.分析:易知A,B,M,K四点共圆.连接KM,有DAB=CMK.∵DAB+ADC=180,CMK+KDC=180.故C,D,K,M四点共圆 CMD=DKC.但已证AMB=BKA,DMA=CKB.(2)证线垂直例4.⊙O过△ABC顶点A,C,且与AB,BC交于K,N(K与N不同).△ABC外接圆和△BKN外接圆相交于B和M.求证:BMO=90.分析:这道国际数学竞赛题,曾使许多选手望而却步.其实,只要把握已知条件和图形特点,借助四点共圆,问题是不难解决的.连接OC,OK,MC,MK,延长BM到G.易得GMC=BAC=BNK=BMK.而COK=2BAC=GMC+BMK=180CMK,COK+CMK=180 C,O,K,M四点共圆.在这个圆中,由OC=OK OC=OK OMC=OMK.但GMC=BMK,故BMO=90.(3)判断图形形状例5.四边形ABCD内接于圆,△BCD,△ACD,△ABD,△ABC 的内心依次记为IA,IB,IC,ID.试证:IAIBICID是矩形.分析:连接AIC,AID,BIC,BID和DIB.易得AICB=90ADB=90+ACB=AIDB A,B,ID,IC四点共圆.同理,A,D,IB,IC四点共圆.此时AICID=180ABID =180ABC,AICIB=180ADIB=180ADC,AICID+AICIB=360- (ABC+ADC)=360- 180=270.故IBICID=90.同样可证IAIBICID其它三个内角皆为90.该四边形必为矩形.(4)计算例6.正方形ABCD的中心为O,面积为1989㎝2.P为正方形内一点,且OPB=45,PA:PB=5:14.则PB=__________分析:答案是PB=42㎝.怎样得到的呢?连接OA,OB.易知O,P,A,B四点共圆,有APB=AOB=90.故PA2+PB2=AB2=1989.由于PA:PB=5:14,可求PB.(5)其他例7.设有边长为1的正方形,试在这个正方形的内接正三角形中找出面积最大的和一个面积最小的,并求出这两个面积(须证明你的论断).分析:设△EFG为正方形ABCD 的一个内接正三角形,由于正三角形的三个顶点至少必落在正方形的三条边上,所以不妨令F,G两点在正方形的一组对边上.作正△EFG的高EK,易知E,K,G,D四点共圆 KDE=KGE=60.同理,KAE=60.故△KAD也是一个正三角形,K必为一个定点.又正三角形面积取决于它的边长,当KF丄AB时,边长为1,这时边长最小,而面积S= 也最小.当KF通过B点时,边长为2 ,这时边长最大,面积S=2 -3也最大.例8.NS是⊙O的直径,弦AB丄NS于M,P为ANB上异于N 的任一点,PS交AB于R,PM的延长线交⊙O于Q.求证:RSMQ. 分析:连接NP,NQ,NR,NR的延长线交⊙O于Q.连接MQ,SQ.易证N,M,R,P四点共圆,从而,SNQ=MNR=MPR=SPQ=SNQ.根据圆的轴对称性质可知Q与Q关于NS成轴对称 MQ=MQ. 又易证M,S,Q,R四点共圆,且RS是这个圆的直径(RMS=90),MQ是一条弦(MSQ90),故RSMQ.但MQ=MQ,所以,RSMQ.练习题1.⊙O1交⊙O2 于A,B两点,射线O1A交⊙O2 于C点,射线O2A交⊙O1 于D点.求证:点A是△BCD的内心.(提示:设法证明C,D,O1,B四点共圆,再证C,D,B,O2 四点共圆,从而知C,D,O1,B,O2五点共圆.)2.△ABC为不等边三角形.A及其外角平分线分别交对边中垂线于A1,A2;同样得到B1,B2,C1,C2.求证:A1A2=B1B2=C1C2. (提示:设法证ABA1与ACA1互补造成A,B,A1,C四点共圆;再证A,A2,B,C四点共圆,从而知A1,A2都是△ABC 的外接圆上,并注意A1AA2=90.)3.设点M在正三角形三条高线上的射影分别是M1,M2,M3(互不重合).求证:△M1M2M3也是正三角形.4.在Rt△ABC中,AD为斜边BC上的高,P是AB上的点,过A点作PC的垂线交过B所作AB的垂线于Q点.求证:PD丄QD.(提示:证B,Q,E,P和B,D,E,P分别共圆)5.AD,BE,CF是锐角△ABC的三条高.从A引EF的垂线l1,从B引FD的垂线l2,从C引DE的垂线l3.求证:l1,l2,l3三线共点.(提示:过B作AB的垂线交l1于K,证:A,B,K,C四点共圆)查字典数学网。
初中数学竞赛:几何的定值与最值几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明. 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、 逻辑推理与合情想象相结合等思想方法.【例题就解】【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 .思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′,DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=21AB 一常数,当CQ 越小,CD 越小,本例也可设AP=x ,则PB=x 10,从代数角度探求CD 的最小值.注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:(1)中点处、垂直位置关系等;(2)端点处、临界位置等.【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度数( )A .从30°到60°变动B .从60°到90°变动C .保持30°不变D .保持60°不变⌒思路点拨 先考虑当圆心在正三角形的顶点C 时,其弧的度数,再证明一般情形,从而作出判断.注:几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题中的变量,考虑当变化的元素运动到特定的位置,使图形变化为特殊图形时,研究的量取得定值与最值.【例3】 如图,已知平行四边形ABCD ,AB=a ,BC=b (a >b ),P 为AB 边上的一动点, 直线DP 交CB 的延长线于Q ,求AP+BQ 的最小值.思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运用不等式ab b a 222≥+ (当且仅当b a =时取等号)来求最小值.【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M ,设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N ,证明:线段AK 和BN 的乘积与M 点的选择无关. 思路点拨 即要证AK ·BN 是一个定值,在图形中△ABC 的边长是一个定值,说明AK ·BN 与AB 有关,从图知AB 为△ABM 与△ANB 的公共边,作一个大胆的猜想,AK ·BN=AB 2,从而我们的证明目标更加明确.⌒注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.【例5】已知△XYZ是直角边长为1的等腰直角三角形(∠Z=90°),它的三个顶点分别在等腰Rt△ABC(∠C=90°)的三边上,求△ABC直角边长的最大可能值.思路点拨顶点Z在斜边上或直角边CA(或CB)上,当顶点Z在斜边AB上时,取xy的中点,通过几何不等关系求出直角边的最大值,当顶点Z在(AC或CB)上时,设CX=x,CZ=y,建立x,y的关系式,运用代数的方法求直角边的最大值.注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值;(2)构造二次函数求几何最值.专题训练1.如图,正方形ABCD的边长为1,点P为边BC上任意一点(可与B点或C点重合),分别过B、C、D作射线AP的垂线,垂足分别是B′、C′、D′,则BB′+CC′+DD′的最大值为,最小值为.2.如图,∠AOB=45°,角内有一点P,PO=10,在角的两边上有两点Q,R(均不同于点O),则△PQR的周长的最小值为.3.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到MN 的距离BD=5,CD=4,P 在直线MN 上运动,则PB PA -的最大值等于 . 4.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则AP+BP 的最小值为( )A .1B .22 C .2 D .13-5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )A .212π+B .2412π+C .214π+D .242π+6.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不改变D .线段EF 的长不能确定7.如图,点C 是线段AB 上的任意一点(C 点不与A 、B 点重合),分别以AC 、BC 为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE ,AE 与CD 相交于点M ,BD 与CE 相交于点N .(1)求证:MN ∥AB ;(2)若AB 的长为l0cm ,当点C 在线段AB 上移动时,是否存在这样的一点C ,使线段MN 的长度最长?若存在,请确定C 点的位置并求出MN 的长;若不存在,请说明理由.(2002年云南省中考题)8.如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足,求证:不管ST 滑到什么位置,∠SPM 是一定角.9.已知△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过点P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F .(1)当点P 在线段AB 上时(如图),求证:PA ·PB=PE ·PF ;(2)当点P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明,如果不成立,请说明理由.10.如图,已知;边长为4的正方形截去一角成为五边形ABCDE ,其中AF=2,BF=l ,在AB 上的一点P ,使矩形PNDM 有最大面积,则矩形PNDM 的面积最大值是( )A .8B .12C .225D .1411.如图,AB 是半圆的直径,线段CA 上AB 于点A ,线段DB 上AB 于点B ,AB=2;AC=1,BD=3,P 是半圆上的一个动点,则封闭图形ACPDB 的最大面积是( )A .22+B .21+C .23+D .23+12.如图,在△ABC 中,BC=5,AC=12,AB=13,在边AB 、AC 上分别取点D 、E ,使线段DE 将△ABC 分成面积相等的两部分,试求这样线段的最小长度.13.如图,ABCD是一个边长为1的正方形,U、V分别是AB、CD上的点,AV与DU相交于点P,BV与CU相交于点Q.求四边形PUQV面积的最大值.14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0米的圆,问如何设计(求出两喷水器之间的距离和矩形的长、宽),才能使矩形花坛的面积最大?15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图所示).其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800平方米.(1)设矩形的边AB=x(米),AM=y(米),用含x的代数式表示y为.(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元;在四个三角形区域上铺设草坪,平均每平方米造价为40元.①设该工程的总造价为S(元),求S关于工的函数关系式.②若该工程的银行贷款为235000元,仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由.③若该工程在银行贷款的基础上,又增加资金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积(精确到1m2).参考答案。
第一章 圆专题1巧构圆,妙解题知识解读在处理平面几何中的许多问题时,常常需要借助圆的性质,问题才能解决.而有时候我们需要的圆并不存在,这就需要我们能利用已知的条件,借助图形的特点把实际存在的圆找出来,从而运用圆中的性质来解决问题,往往有事半功倍的效果,使问题获得巧解或简解,这是我们解题必须要掌握的技巧. 作辅助圆的常用依据有以下几种:①圆的定义:若几个点到某个固定点的距离相等,则这几个点在同一个圆上; ②有公共斜边的两个直角三角形的顶点在同一个圆上;③对角互补的四边形四个顶点在同一个圆上,简记为:对角互补,四点共圆;④若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,则这两个三角形有公共的外接圆,简记为:同旁张等角,四点共圆.培优学案典例示范例1将线段AB 绕点A 逆时针旋转60°得到线段AC ,继续旋转(0120)αα<<得到线段AD ,连接CD . (1)连接BD .①如图1-1-1①,若α=80°,则∠BDC 的度数为;②在第二次旋转过程中,请探究∠BDC 的大小是否改变?若不变,求出∠BDC 的度数;若改变,请说明理由;(2)如图1-1-1②,以AB 为斜边作Rt △ABE ,使得∠B =∠ACD ,连接CE ,DE .若∠CED =90°,求α的值.图1-1-1②①EDCBADBA【提示】(1)①∠BDC =∠ADC -∠ADB ,利用“等边对等角及三角形内角和为180°”可求出∠BDC 为30°; ②由题意知,AB =AC =AD ,则点B ,C ,D 在以A 为圆心,AB 为半径的圆上,利用“一条弧所对的圆周角等于它所对的圆心角的一半”可快速求出∠BDC 仍然为30°;(2)过点A 作AM ⊥CD 于点M ,连接EM ,证明“点A ,C ,D 在以M 为圆心,MC 为半径的圆上”.跟踪训练如图1-1-2,菱形ABCD 中,∠B =60°,点E 在边BC 上,点F 在边CD 上.若∠EAF =60°,求证:△AEF 是等边三角形.角相等”获证.图1-1-2BFEDC A例2 (1)如图1-1-3①,正方形ABCD 中,点E 是BC 边上的任意一点,∠AEF =90°,且EF 交正方形外角平分线CF 于点F .求证:AE =EF ;(2)若把(1)中的条件“点E 是BC 边上的任意一点”,改为“点E 是BC 边延长线上的一点”,其余条件不变,如图1-1-3②,那么结论AE =EF 是否还成立?若成立,请证明;若不成立,请说明理由.①②图1-1-3A B E CFDFDCEBA【提示】连接AC ,AF ,显然∠ACF =∠AEF =90°,所以A ,E ,C ,F 四点在以AF 为直径的圆上. (1)如图1-1-4①,当点E 在BC 边上,则∠AFE =∠ACE =45°,于是△AEF 是等腰直角三角形,AE =EF 获证;(2)如图1-1-4②,当点E 在BC 边的延长线上,则∠F AE =∠FCE =45°,于是△AEF 是等腰直角三角形,AE=EF 获证.F图1-1-4②①【拓展】本题将“正方形”改为“正三角形”,“∠AEF =90°”相应改为“∠AEF =60°”,仍然可以运用构造“辅助圆”的思路.还可进一步拓展为“正n 边形”,360180AEF =-∠,仍然可延续这种思路,读者可自己完成.跟踪训练已知,将一副三角板(Rt △ABC 和Rt △DEF )如图1-1-5①摆放,点E ,A ,D ,B 在一条直线上,且D 是AB的中点.将Rt △DEF 绕点D 顺时针方向旋转角(090)αα<<,在旋转过程中,直线DE ,AC 相交于点M ,直线DF ,BC 相交于点N ,分别过点M ,N 作直线AB 的垂线,垂足为G ,H . (1)如图1-1-5②,当α=30°时,求证:AG =DH ; (2)如图1-1-5③,当α=60°时,(1)中的结论是否成立?请写出你的结论,并说明理由; (3)当090α<<时,(1)中的结论是否成立?请写出你的结论,并根据图1-1-5④说明理由.③④图1-1-5②①HGEAF D C (N )BFE DCBA【提示】本题除了常规解法外,还可考虑构造“辅助圆”.例3 已知,在△ABC 中,AB =AC ,过A 点的直线a 从与边AC 重合的位置开始绕点A 按顺时针方向旋转角θ,直线a 交BC 边于点P (点P 不与点B ,点C 重合),△BMN 的边MN 始终在直线a 上(点M 在点N 的上方),且BM =BN ,连接CN . (1)当∠BAC =∠MBN =90°时.①如图1-1-6①,当θ=45时,∠ANC 的度数为 ; ②如图1-1-6②,当45θ≠时,①中的结论是否发生变化?说明理由;(2)如图1-1-6③,当∠BAC =∠MBN ≠90°时,请直接写出∠ANC 与∠BAC 之间的数量关系,不必证明.③②C【提示】由于在旋转过程中不变的关系是:∠BAC =∠MBN ,AB =AC ,BM =BN ,易知∠ABC =∠ACB =∠BMN =∠BNM .由∠ACB =∠BNM 可知A ,B ,N ,C 四个点在同一个圆上(如图1-1-7),则∠ANC =∠ABC =1902BAC -∠,这样思考,所有问题都会迎刃而解.跟踪训练在△ABC 中,BA =BC ,∠BAC =α,M 是AC 的中点,P 是线段BM 上的动点,将线段P A 绕点P 顺时针旋转2α得到线段PQ . (1)若α=60°且点P 与点M 重合(如图1-1-8①),线段CQ 的延长线交射线BM 于点D ,请补全图形,并写出∠CDB 的度数;(2)在图1-1-8②中,点P 不与点B ,M 重合,线段CQ 的延长线与射线BM 交于点D ,猜想∠CDB 的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P 在线段BM 上运动到某一位置(不与点B ,M 重合)时,能使得线段CQ 的延长线与射线BM 交于点D ,且PQ =QD ,请直接写出α的范围.①图1-1-8②DP BACMQQM (P )CB A例4如图1-1-9,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使∠APB=30°的点P有个;(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB最大的理由;若没有,也请说明理由.图1-1-9【提示】(1)已知点A、点B是定点,要使∠APB=30°,只需点P在过点A、点B的圆上,且弧AB所对的圆心角为60°即可,显然符合条件的点P有无数个.(2)结合(1)中的分析可知:当点P在y轴的正半轴上时,点P是(1)中的圆与y轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P的坐标;当点P在y轴的负半轴上时,同理可求出符合条件的点P的坐标.(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,然后结合切线的性质、三角形外角的性质、矩形的判定与性质、勾股定理等知识即可解决问题.跟踪训练已知,如图1-1-10①,,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=43,在∠MON的内部,△AOB的外部有一点P,且AP=BP,∠APB=120°.(1)求AP的长;(2)求证:点P在∠MON的平分线上.(3)如图1-1-10②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,P A的中点,连接CD,DE,EF,FC,OP.若四边形CDEF的周长用t表示,请直接写出t的取值范围.图1-1-10例5已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.、① ②③图1-1-11【提示】本题除了建立方程模型,将问题转化为方程是否有解的判断外,还可以通过构造辅助圆,将问题转化为直线与圆的位置关系来讨论.跟踪训练1.如图1-1-12,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).(1)求该反比例函数的关系式;(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;①求△A′BC的周长和sin∠BA′C的值;②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC1m .图1-1-12【提示】(1)①由直线y=-x+3写出OA=3,OB=3;由等腰直角三角形的边长关系,可得AB2;由PC⊥y轴,可得QC=1,BC=2;由对称知A'B=AB2,OA'=0A=3,然后用勾股定理求出A'C的长,也就可以求出△A'BC的周长;(2)②如果选用上一题的思路求∠BMC的正弦值,会陷入计算的麻烦,这里采用转化的思想,找到外接圆的半径,另外还应分类讨论。
初中数学竞赛图形讲解教案教学目标:1. 了解初中数学竞赛中常见的图形及其性质;2. 学会分析图形,解决相关问题;3. 培养学生的逻辑思维能力和观察能力。
教学内容:1. 常见图形及其性质;2. 图形的分析与解决方法;3. 实际例题讲解与练习。
教学步骤:一、导入(5分钟)1. 引导学生回顾已学的平面几何知识,如点、线、面的基本概念,以及直线、圆的性质等;2. 提问:同学们在平时的学习中遇到过哪些有趣的图形问题?大家可以分享一下。
二、讲解常见图形及其性质(15分钟)1. 讲解初中数学竞赛中常见的图形,如三角形、四边形、五边形等;2. 分析图形的性质,如边长、角度、对角线等;3. 引导学生发现图形的内在联系和规律。
三、图形的分析与解决方法(15分钟)1. 讲解如何分析图形,如观察图形的大小、形状、位置关系等;2. 介绍解决图形问题的方法,如画图、列方程、运用性质等;3. 强调解决问题的过程中要注意审题和转化。
四、实际例题讲解与练习(15分钟)1. 讲解典型的图形问题例题,分析解题思路和方法;2. 让学生独立完成练习题,巩固所学知识;3. 对学生的解答进行点评和指导。
五、总结与拓展(5分钟)1. 总结本节课的主要内容和解决图形问题的方法;2. 鼓励学生课后多观察、多思考,提高自己的逻辑思维能力;3. 提出拓展问题,激发学生的学习兴趣。
教学评价:1. 学生能掌握常见图形的性质和解决图形问题的方法;2. 学生能独立完成图形问题练习题,并对答案进行解释;3. 学生能灵活运用所学知识,解决实际问题。
教学反思:本节课通过讲解常见图形及其性质,引导学生学会分析图形,掌握解决图形问题的方法。
在教学过程中,要注意关注学生的学习情况,及时进行点评和指导,提高学生的解题能力。
同时,要培养学生的观察能力和逻辑思维能力,使他们在面对复杂图形问题时能迅速找到解决思路。
奥林匹克数学题型高级平面几何转化技巧平面几何是数学中的一个重要分支,也是奥林匹克数学竞赛中常见的题型。
为了在平面几何题中取得良好的成绩,学生需要掌握一些高级的转化技巧。
本文将介绍一些常用的奥林匹克数学题型中的高级平面几何转化技巧,并给出相应的例题讲解。
1. 全等三角形转化技巧全等三角形在奥林匹克数学竞赛中经常出现,通过运用一些转化技巧,可以简化问题求解的过程。
例题1:已知在△ABC中,∠ACB = 90°。
点D是AC边上的一个动点,且AD = 5, CD = 12。
点P在AB边上,且∠DPB = 90°。
求∠CPD的最大值。
解析:我们可以通过全等三角形的转化技巧简化问题的求解过程。
首先,连接BP,连接CP,然后延长BP交AC于点E,延长CP交AB于点F。
易得△BPC与△BDA全等。
通过全等三角形的性质可知,∠PBC = ∠ADB。
进一步地,由于∠ADC = 90°,我们可以得到∠ADB = ∠CDE。
因此,我们只需要证明△CDE是等腰三角形,即可求得∠CPD的最大值。
通过等腰三角形判定定理,我们可得CE = CD = 12,结合△CDE的直角,可知△CDE是等腰三角形,所以∠CPD的最大值为60°。
2. 相似三角形转化技巧在解决一些相似三角形问题时,通过一些转化技巧,可以简化问题的求解过程。
例题2:已知在△ABC中,∠C = 90°,D是AC边上的一个点,且AD = DC。
E是BC边上的一个点,且BE = 2EC。
若∠AEB = 60°,求∠EDB的度数。
解析:我们可以通过相似三角形的转化技巧简化问题的求解过程。
首先,连接AD,连接BD,然后延长BD交AC于点F,连接FE。
易得△EDA与△FDB相似。
进一步地,由于∠AEB = 60°,我们可以得到∠AED = ∠BFD。
因此,我们只需要证明△EDF是等腰三角形,即可求得∠EDB的度数。
平面几何最值问题的几种求解方法曹永启 (深圳清华实验学校 518126)平面几何最值问题在近几年数学竞赛中频频出现。
第十六届希望杯数学全国邀请赛初二2试最后一题就是一例。
此类问题求解方法多,涉及知识面广,这对于初涉平面几何的初中学生来说,处处受限,难度较大。
本文旨在通过实例介绍几种初中生能接受的求解方法。
一,平移法平移法一般是寻求特殊位置的几何图形,结合图形的平移来解决问题。
其基本依据有:两点之间线段最短,(三角形两边之和大于第三边,两边之差小于第三边)。
直角三角形中斜边大于直角边,(从直线外一点到直线的所有线段中垂线段最短等)。
例1,(一个古老的问题)假设河岸为两条平行线,在河岸两侧有A 村和B 村,要在河上架一座垂直河岸的桥,使A 村到B 村路程最短,如何确定架桥的位置? 解:设河岸为L 1、 L 2,则L 1∥L 2,两岸距离为d ,过A 点作AA ′⊥L 1,且AA ′=d,连结BA ′交L 2于D ,过D 作CD ⊥L 2交L 1于C ,则CD 即为架桥的位置。
(如图1)由作法可知,四边形AA ′DC 是平行四边形,(AA ′∥DC 且AA ′=DC )所以AC= A ′D.即AC+BD= A ′B ,而A ′、B 两点以A ′B 最短,故AC+CD+BD 为最短。
例2,在XOY 的边OX 、OY 上分别取一点A 、B ,使OA+OB 为定长L ,试证:当OA=OB 时AB 的长最短。
(如图2)分析:设OA=OB ,OA+OB=L (定长)为了证明AB 的长最短,可在OX 和OY 上分别另取一点A ′、B ′,使O A ′+OB ′=L ,连A ′B ′,则问题变为证明AB <A ′B ′。
证明:把A ′B ′平移到AC ,则A ′B ′CA 为平行四边形 ∵OA+OB=O A ′+OB ′ ∴A A ′=BB ′而A A ′=CB ′∴BB ′=CB ′ ∠B ′BC=∠B ′CB ∴∠ B ′BC=XOY Y CB ∠=∠2121' ∴∠B ′BC+∠OBA=90˙∴∠ABC=90˙ ∴AB <AC=A ′B ′(直角三角形斜边大于直角边) 二,反射法反射法主要可解决以下两个类型问题。
第9章三角形§9.1全等三角形9.1.1★已知等腰直角三角形ABC ,BC 是斜边.B ∠的角平分线交AC 于D ,过C 作CE 与BD 垂直 且交BD 延长线于E ,求证:2BD CE =.解析如图,延长CE 、BA ,设交于F .则FBE ACF ∠=∠,AB AC =,得ABD ACF △△≌,CF BD =. 又BE CF ⊥,BE 平分FBC ∠,故BE 平分CF ,E 为CF 中点,所以2CE FC BD ==.9.1.2★在ABC △中,已知60A ∠=︒,E 、F 、G 分别为AB 、AC 、BC 的中点,P 、Q 为ABC △形外两点,使PE AB ⊥,2AB PE =,QF AC ⊥,2ACQF =,若1GP =,求PQ 的长. F AE DBC解析如图,连结EG 、FG ,则EG AC ∥,FG AB ∥,故150PEG QFG ∠=︒=∠.又12QF AC EG ==,12PE AB FG ==,故PEG GFQ △△≌,所以PG GQ =,30EGP FGQ FQG FGQ ∠+∠=∠+∠=︒,又60EGF ∠=︒,所以90PGQ ∠=︒,于是PQ ==.ACG QPEF9.1.3★在梯形ABCD 的底边AD 上有一点E ,若ABE △、BCE △、CDE △的周长相等,求BCAD. 解析作平行四边形ECBA ',则A BE CEB '△△≌,若A '与A 不重合,则A '在EA (或延长线)上,但由三角形不等式易知,A '在EA 上时,ABE △的周长>A BE '△的周长;A '在EA 延长线上时,ABE △的周长A BE '<△周长,均与题设矛盾,故A 与A '重合,AE BC ∥,同理ED BC ∥,12BC AD =.B CEDAA'9.1.4★★ABC △内,60BAC ∠=︒,40ACB ∠=︒,P 、Q 分别在边BC 、CA 上,并且AP 、BQ 分别是BAC ∠、ABC ∠的角平分线.求证:BQ AQ AB BP +=+.解析延长AB 到D ,使BD BP =,连结DP .易知80ABC ∠=︒,所以40QBC ACB ∠=︒=∠,AC AQ QC AQ QB =+=+.ABCDQP因1402BDP BPD ABC ACB ∠=∠=∠=︒=∠,所以ADP ACP △△≌,AC AD AB BD AB BP ==+=+. 于是BQ AQ AB BP +=+.9.1.5★★设等腰直角三角形ABC 中,D 是腰AC 的中点,E 在斜边BC 上,并且AE BD ⊥.求证: BDA EDC ∠=∠.解析如图,作BAD ∠的平分线AF ,F 在BD 上.ABCEFD由于45BAF ACE ∠=︒=∠,AB AC =,ABF CAE ∠=∠,故ABF CAE △△≌,故EC AF =. 又45C FAD ∠=∠=︒,AD CD =,于是AFD CED △△≌,于是ADB EDC ∠=∠.9.1.6★★设ABE △、ACF △都是等腰直角三角形,AE 、AF 是各自的斜边,G 是EF 的中点,求证:GBC △也是等腰直角三角形.解析如图,作AQ 、GP 、EM 、FN 分别垂直于直线BC ,垂足为Q 、P 、M 、N .AE FGMBQ PCN由90EBM ABQ BAQ ∠=︒-∠=∠,AB BE =,EMB BQA △△≌,故有EM BQ =,BM AQ =.同理FN QC =,CN AQ =,所以BM CN =, EM FN BQ QC BC +=+=. 又EG GF =得BP CP =,且()1122GP EM FN BC =+=,故GP BP CP ==.又由GP BC ⊥,故 结论成立.9.1.7★★已知AB AC ⊥,AB AC =,D 、E 在BC 上(D 靠近B ),求证:222DE BD CE =+的充要条件是45DAE ∠=︒.ABEFC解析如图,作FC BC ⊥,且FC BD =,则45ACF B ∠=︒=∠,又AB AC =,故ABD ACF △△≌,AD AF =,且490D F BAC ∠=∠=︒.若45DAE ∠=︒,则45EAF ∠=︒,因AD AF =,得ADE AFE △△≌,则222222DE EF EC FC EC BD ==+=+.反之,若222DE EC BD =+,由222EF EC FC =+得EF DE =.又AD AF =,故ADE AEF △△≌,又90DAF ∠=︒,于是45DAE ∠=︒.9.1.8★★两三角形全等且关于一直线对称,求证:可以将其中一个划分成3块,每一块通过平移、 旋转后拼成另一个三角形.解析如图,设ABC △与A B C '''△关于l 对称,分别找到各自的内心I 、I ',分别向三边作垂线ID 、IE 、 IF 与I D ''、I E ''、I F '',于是6个四边形AFIE ……均为轴对称的筝形,且四边形AFIE ≌四边形A E J F '''',所以两者可通过平移、旋转后重合;同理,另外两对筝形也可通过平移、旋转后重合.AECDF BA'B'C'D'F'E'l l'l9.1.9★★★已知:两个等底等高的锐角三角形,可以将每个三角形分别分成四个三角形,分别涂上红色、蓝色、黄色和绿色,使得同色三角形全等. 解析如图,设BC B C ''=,A 至BC 距离等于A '至B C ''距离,取各自的中位线FE 、F E '',则FE FE '=.由ABC △、A B C '''△均为锐角三角形,可在BC 、B C ''上各取一点D 、D ',使图中标相同数字的角相等,于是AEF D E F '''△△≌,DEF A E F '''△△≌,FBD FD B ''△△≌,EDC E C D '''△△≌. 评注还有一种旋转而不是对称的构造法.A BC DEF A'B'D'C'E'F'123451465264152432519.1.10★已知ABC △与A B C '''△中,A A '∠=∠,BC B C ''=,ABC A B C S S '''=△△,ABC △与A B C '''△是否一定全等?A B CA'解析如图,让B 与B '重合,C 与C '重合,A 、A '在BC 同侧,若A 与A '重合,则ABC A B C '''△△≌;否则由条件知四边形ABCA '为梯形和圆内接四边形,于是它是一个等腰梯形,于是ABC A CB '∠=∠,AB A C '=,ABC A C B '''△△≌.综上,可知ABC △与A B C '''△全等. 评注本题也可以运用三角形面积公式、余弦定理结合韦达定理来证明.9.1.11★★如图所示,已知ABC △、CED △均为正三角形,M 、N 、L 分别为BD 、AC 和CE 的中点,求证:MNL △为正三角形.ABEDM TS CN L解析如图,设BC 、CD 中点分别为S 、T ,连结NS 、SM 、MT 、TL .则四边形CSMT 为平行四 边形,设BCD θ∠=,则60180240NSM LTM θθ∠=︒+︒-=︒-=∠,360120240NCL θθ∠=︒-︒-=︒-,又NC SN SC MT ===,LC LT CT SM ===,故CNL SNM TML △△△≌≌, NL NM ML ==,于是MNL △为正三角形.评注注意有时S 在MN 另一侧,此时120NSM LTM NCL θ∠=∠=∠=︒+,不影响最终结论.9.1.12★★★ABC △中,90A ∠=︒,AB c =.6AC =,BC a =,M 是BC 中点,P 、Q 分别在AB 、AC 上(可落在端点),满足MP MQ ⊥,求22BP CQ +的最小值(用a 、b 、c 表示). 解析如图,延长QM 至N ,使QM MN =,连结PN 、BN 、PQ 、AM 由于M 是BC 、NQ 的中点,故BN CQ =,BN AC ∥,BN BP ⊥,又PM 垂直平分NQ ,故222222BP CQ BP BN PN PQ +=+==.取PQ 中点K (图中未画出),则2a PQ AK MK AM =+=≥,于是22BP CQ +的最小值为24a ,取到等号仅当PQ AM =即四边形APMQ 为矩形时.NMP CBQA9.1.13★★★已知P 为ABC △内一点,PAC PBC ∠=∠,由P 作BC 、CA 的垂线,垂足分别是L 、M .C ABDEFMP L设D 为AB 中点,求证:DM DL =.解析如图所示,取AP 中点E ,BP 中点F ,连ME 、ED 、DF 、FL .显然四边形DEPF 是平行四边形,所以EP DF =,FP DE =.DEP DFP ∠=∠.又由PM AC ⊥,所以EM EA EP DF ===,2PEM PAC ∠=∠;同理FL DE =,2PFL PBC ∠=∠.由PAC PBC ∠=∠,所以DEM DEP PEM DFP PFL DFL ∠=∠+∠=∠+∠=∠,从而DFM LFD △△≌,所以DM DL =.9.1.14★★在ABC △中,已知60CAB ∠=︒,D 、E 分别是边AB 、AC 上的点,且60AED ∠=︒,ED DB CE +=,2CDB CDE ∠=∠,求DCB ∠的度数. 解析如图,延长AB 到F ,使BF ED =,连CF 、EF .CEA DB F因为60EAB AED ∠=∠=︒,所以60FDA ∠=︒,120EDB CED ∠=∠=︒, AD AE ED BF ===.CE ED DB DB BF DF =+=+=.于是,AC AF =,60ACF AFC ∠=∠=︒. 又因为120EDB ∠=︒,2CDB CDE ∠=∠, 所以40CDE ∠=︒,80CDB ∠=︒,18020ECD CED EDC ∠=︒-∠-∠=︒.在CDA △和CBF △中,CA CF =,60CAD CFB ∠=∠=︒,AD BF =,所以CDA CBF △△≌,故 20FCB ACD ∠=∠=︒.于是,6020DCB CDE FCB ∠=︒-∠-∠=︒. 9.1.15★★在ABC △中,B ∠、C ∠为锐角,M 、N 、D 分别为边AB 、AC 、BC 上的点,满足AM AN =,BD DC =,且BDM CDN ∠=∠.求证:AB AC =.解析若DM DN >,则在DM 上取一点E ,使DN DE =.连结BE 并延长交AC 于F ,连结EN .在BED △与CND △中,BD DC =,BDE CDN ∠=∠,DE DN =,故BDE CDN △△≌.于是有EBD NCD ∠=∠,BE NC =,所以FB FC =.又易知EN BC ∥,因此ENF ACB ∠=∠. 但另一方面,由DM DN >,知ABC FBC ACB ∠>∠=∠,所以AFM NE BDC1(180)2ANM BAC ∠=︒-∠()12ABC ACB =∠+∠ ()12ACB ACB ACB >∠+∠=∠. 从而ENF MNA ACB ∠>∠>∠.矛盾,故假设DM DN >不成立. 若DM DN <,同法可证此假设不成立.综上所述DM DN =,于是由BDM CDN △△≌ 知DBM DCN ∠=∠,从而AB AC =.9.1.16★★如图,ABC △为边长是1的等边三角形,BDC △为顶角()BDC ∠是120︒的等腰三角形,以D 为顶点作一个60︒角,角的两边分别交AB 、AC 于M 、N ,连结MN ,形成一个AMN △. 求AMN △的周长.AM NBC DE解析延长AC 到E ,使CE BM =,连结DE .易知在BMD △与CED △中有BD DC =,90MBD ECD ∠=∠=︒,BM CE =,从而MBD ECD △△≌.所以MD DE =,MDB EDC ∠=∠. 于是在DMN △与DEN △中有DN DN =,MD DE =,60MDN MDB CDN EDC CDN EDN ∠=︒=∠+∠=∠+∠=∠.从而MDN EDN △△≌,故NE MN =. 所以AM MN AN AM NE AN AM NC CE AN AM MB NC AN ++=++=+++=+++= 2AB AC +=.9.1.17★★★ABC △为等腰直角三角形,90C ∠=︒,点M 、N 分别为边AC 和BC 的中点,点D 在射线BM 上,且2BD BM =,点E 在射线NA 上,且2NE NA =,求证:BD DE ⊥. 解析取AD 中点F ,连EF .EADF MBNC在BMC △与DMA △中,AM MC =,12BM BD MD ==,BMC DMA ∠=∠,故AMD CMB △△≌.于是有ADM CBM ∠=∠,AD BC =,AD BC ∥.同样易知BMC ANC △△≌,于是有CBM CAN ∠=∠.在ANC △与EAF △中,12NA NE AE ==,1122AF AD BC NC ===,由AD BC ∥知EAF ANC ∠=∠,所以FAF ANC △△≌.于是有AEF NAC ∠=∠,90EFA ACN EFD ∠=∠=︒=∠.从而在EAF △与EDF △中有AF FD =,EF EF =,故FAF EDF △△≌.于是有EDF EAF ∠=∠, FED FEA ∠=∠.总之,90EDF MDA EDF NAC EDF AEF EDF FED ∠+∠=∠+∠=∠+∠=∠+∠=︒,即 BD DE ⊥.9.1.18★★★已知ABCD Y ,延长DC 至P ,使DP AD =,连结PA 与BC 交于Q ,O 为PQC △的外心,则B 、O 、C 、D 共圆.ADBC O PQ解析如图连好辅助线,由于DPA BAP PAD CQP ∠=∠=∠=∠,故CQ CP =,设OCP OCQ OQC θ∠=∠=∠=,则180BQO DCO θ∠=︒-=∠,又BQ AB CD ==,QO CO =,故BQO DCO △△≌,于是QOB COD ∠=∠,于是2BOD QOC QPC BCD ∠=∠=∠=∠,因此B 、O 、C 、D 共圆.9.1.19★★★已知ABC △和A B C '''△,A A '∠=∠,且BC B C ''=,D 和D '分别是BC 、B C ''的中点,AD A D ''=,问两个三角形是否必定全等?解析如图,作出ABC △外心O (A B C '''△及相应的O '、D '图中未画出). 若O 在BC 上,则90A A '∠=︒=∠,此时ABC △与A B C '''△未必全等. 若O 不与D 重合,则2sin 2sin BC B C AO A O A A ''''===', cos cos OD BO A AO A == cos A O A O D '''''==,AD A D ''=.当A 、O 、D 共线,则AD BC ⊥,A D B C ''''⊥,所以ABD A B D '''△△≌,ACD A C D '''△△≌,从而 ABC A B C '''△△≌. 当A 、O 、D 不共线,则AOD A O D '''△△≌,ODA O D A '''∠=∠,于是'ADC A D C ''∠=∠(或A D B '''∠),于是由三角形全等可得AC A C ''=(或A B ''),AB A B ''=(或A C ''),故有ABC A B C '''△△≌(或A CB '''△). 评注此题亦可用中线长公式证明.9.1.20★★如果两个三角形满足“ASS ”,它们不一定全等,此时称它们是相近的,现在有一三角形1△,作2△与之“相近”,……一般有1n +△与n △相近,问是否存在一个k ,使1△与k △相做且不全等? 解析这是不可能的.因为由正弦定理,1△与2△有等大的外接圆(它们有一对内角相等或互补),从而 推出1△与x k △有等大的外接圆,它们不可能只相似不全等.9.1.21★★★是否存在两个全等的三角形△与'△,△可划分为两个三角形1△与2△,'△可划分成两个三角形1'△与2'△,使12△△≌,2△与2'△却不全等?解析这样的两个三角形是存在的,如图(a)、(b),设不等边三角形ABC A B C '''△△≌,其中22''BC AB AC A B A C B C ''''=⋅=⋅=,不妨设AC A C ''=是各自的最长边,则AB 、A B ''为各自的最短边.在AC 、B C ''上分别找D 、D ',使CD AB =,BA D C ''∠=∠,则由于2BC AB AC CD AC =⋅=⋅,故ABC BDC △∽△,所以'BDC ABC A B C ''∠=∠=∠,又因为C B A D '''∠=∠,CD A B ''=,因此BDC D B A '''△△≌,而ABD △显然不与A C D '''△全等.(若90B B '∠=∠=︒,还可避免相似.) ABCDA'B'D'图(a)图(b)9.1.22★★★已知ABC △中,60A ∠=︒,I 是ABC △内心,AI 的垂直平分线分别交AB 、AC 于M 、N ,E 、F 在BC 上,BE EF FC ==,求证:ME NF ∥.解析如图,连结MI 、BI 、CI 、NI .易诮AMN △与IMN △为全等之正三角形,120BIC ∠=︒, 180MIB NIC ∠+∠=︒.ANMTB E F CIS两端延长MN 至S 与T ,使SM MN NT ==,则60SMB AMN BMI ∠=∠=∠=︒,于是SMB IMB △△≌,同理NTC NIC △△≌,因此180S T MIB NIC ∠+∠=∠+∠=︒,SB TC ∥.而M 、N 将ST 三等分,E 、F 将BC 三等分,于是由平行线分线段成比例,知ME NF ∥(SB ∥). 评注读者可以考虑:如果ME NF ∥是否有60BAC ∠=︒.9.1.23★★★已知锐角三角形ABC ,60BAC ∠=︒,AB AC >,ABC △的垂心和外心分别为M 和O ,OM 分别与AB 、AC 交于X 、Y ,证明:AXY △的周长为AB AC +,OM AB AC =-.解析如图,连结AO 、BO 、CO 、AM .由AB AC >可知O 在AB 一侧,M 在AC 一侧.因120BOC ∠=︒,故AO =,而tan BC AM BAC ==∠AO AM =,AOM AMO ∠=∠. 又90OAB C YAM ∠=︒-∠=∠,故AXY AYX ∠=∠,AXY △为正三角形.又60XOB YOC YOC OCY ∠+∠=︒=∠+∠,故XOB YCO ∠=∠,120BXO CYO ∠=︒=∠,又BO CO =,故XBO YOC △△≌,XY XO YO BX YC =+=+.于是AX XY YA AB AC ++=+.又XO MY YC ==,做()()112233OM XY YC AB AC AC AB AC AB AC ⎡⎤=-=+--+=-⎢⎥⎣⎦.§9.2特殊三角形9.2.1★在直角三角形ABC 中,BC 是斜边,5AC =,D 是BC 中点,E 是AC 上一点,2DE AE ==,求AB .BADEC解析如图,连结AD .设AD CD x ==,因2DE =,2AE =,3CE =,则 22223x -=⨯,x =AB ==9.2.2★已知ABC △中,14AB =,16BC =,28CA =,P 为B 在A ∠平分线上的射影,M 为BC 中 点,求PM .解析延长BP 交AC 于Q .由BAP QAP ∠=∠.AP BQ ⊥知BP QP =,AB AQ =.又BM CM =,故()()11128147222PM CQ AC AQ =-=⨯-=∥.ABCQ P M9.2.3★等腰三角形ABC 中,AB AC =,D 为直线BC 上一点,则22AB AD BD CD -=⋅(D 在BC 上), 22AD AB BD CD -=⋅(D 在BC 外). 解析如图,设D 在BC 上且较靠近B .作AE BC ⊥于E ,则E 为BC 中点,于是AB D E C()()BD CD BE DE CE DE ⋅=-⋅+2222BE DE AB AD =-=-.当D 在BC 外时的结论同理可证.评注这是斯图沃特定理在等腰三角形的特殊情形,具有十分广泛的用途(例如题9.2.1),亦可用相 交弦定理证明.9.2.4★★已知锐角三角形ABC 中,AD 、CE 是高,H 为垂心,AD BC =,F 是BC 的中点,求证:12FH DH BC +=.AEBFDCH解析如图,连结EF ,则12EF CF BC ==.于是2222FH EF EH CH EF AH HD EF =-⋅=-⋅=- 222AH HD HD HD EF HD AD ⋅-+=-⋅+22222HD EF HD BC HD EF HD =-⋅+=-⋅ ()22EF HD EF HD +=-.由于EF FH HD >>,故12FH EF DH BC DH =-=-. 9.2.5★已知斜边为AC 的直角三角形ABC 中,B 在AC 上的投影为H .若以AB 、BC 、BH 为三边可以构成一个直角三角形,求AHCH的所有可能值. BHAC解析显然由AB 、BC 、BH 构成的直角三角形中,BH 不是斜边,且AB BC ≠.若AB BC >,则AB 为斜边.设AB c =,BC a =,BH h =,则由ABC △的面积知h ac ,又h =,故4422c a a c -=.易知2222AH AB c kCH BC a ===,则由前式知21k k -=,得k ,故AH CH =同理,若AB BC <,可得AH CH =.所以AHCH9.2.6★★已知ABC △中,AD 为高,D 在BC 上, 以下哪些条件能判定AB AC =: (1)AB CD AC BD +=+: (2)AB CD AC BD ⋅=⋅;(3)1111AB CD AC BD+=+. AB D C解析设BD x =,CD y =,AD h =,则AB ,AC =先看条件(1)y x =.若x y =,则AB AC =;否则不妨设x y >,则22x y -=x y =+,于是0h =,矛盾. 故AB AC =.再看见条件(2):=22222222h y x y h x x y +=+,于是x y =,故AB AC =. 最后条件(3):11y x =+.于是22x y xy -=.若x y ≠,则()xy x y =+,仍有0h =,矛盾,故AB AC =.所以三个条件都能判定AB AC =.9.2.7★已知P 是等腰直角三角形ABC 的斜边BC 上任意一点,求222BP CP AP +.解析如图,作AD BC ⊥于D .AB D CP不妨设1AD BD CD ===.P 在CD 上,PD a =,则1BP BD PD a =+=+,1CP CD PD a =-=-,于是()()222221122BP CP a a a +=++-=+.又22221AP AD PD a =+=+.故2222BP CP AP +=.评注请读者考虑,若对BC 上任一点P ,有222BP CP AP+为定值,是否可认为ABC △为等腰直角三角形. 9.2.8★★在ABC △中,19AB =,17BC =,18CA =,P 是ABC △内一点,过点P 向ABC △的 三边BC 、CA 、AB 分别垂线PD 、PE 、PF ,垂足分别为D 、E 、F ,且27BD CE AF ++=,求BD BF + 的长.解析如图,由于2222220BD CD CE AE AF BF -+-+-=,于是AFEPBDC()()222222(17)18190BD BD CE CE AF AF --+--+--=,此即171819487BD CE AF ++=.而181818486BD CE AF ++=,故1AF BD -=.所以118BD BF BD AB AF AB +=+-=-=. 9.2.9★★已知ABC △中,AB AC =,AE 是BC 的中垂线,AE BC =,3BDC BAC ∠=∠, 求ADDE.AF DBEC解析如图,不妨设1BE CE ==,则2AE =,AB .作ABD ∠的平分线BF ,由于3BDE BAE ABD BAE ∠=∠=∠+∠,故ABF DBF BAE ∠=∠=∠.因此AF BF =,ABD BFD △∽△, AB AD BD BF BD DF ==,从而2BD DF DA =⋅,DB ADDF AB DB⋅=+,所以()2DA BD BD AB =⋅+. 设DE x =,则221BD x =+,2DA x =-,因此()2221x x -=+,()223455x x -=+,2112440x x -+=,211x =(2x =舍).于是2011AD =,10ADDE=. 9.2.10★★正三角形ABC 内有一点P ,P 关于AB 、AC 的对称点分别为Q 、R ,作平行四边形QPRS ,求证:AS BC ∥.A SMRQBCP解析如图,设QS 与AB 交于M ,连结MP ,则60Q ∠=︒,AB 垂直平分PQ ,QM PM =,MPQ △ 为正三角形,MP PQ SR ==,于是四边形MPRS 为等腰梯形,PR 的中垂线即MS 的中垂线. 于是60SAC MAC C ∠=∠==∠,AS BC ∥.9.2.11★★AB 与O e 相切于点B ,AC 与O e 相交于C 、D ,若45C ∠=︒,60BDA ∠=︒,CD =求AB .BC D AK T解析如图,由题意可得45ABD ∠=︒,作BK AC ⊥于K ,则BK CK=,又CK CD DK =+,故32BK =,BD =.再作AT BD ⊥于T ,设BT AT x ==,则DT ,x =x =.于是6AB ==.9.2.12★已知大小相等的等边ABC △与等边PQR △有三组边分别平行,一个指向上方,一个指向 下方,相交部分是一个六边形,则这个六边形的主对角线共点.A D KR QEHBFGCP解析如图,设两个三角形的边的交点依次为D 、E 、F 、G 、H 、K .设ABC △、PQR △的高为h ,则正ADK △的高h =(RQ 与BC 的距离)=正FPG △的高,于是DK FG ∥,DG 、KF 互相平分,同理DG 、EH 互相平分,于是DG 、EH 、KF 的中点为同一点,结论成立.9.2.13★★★★求证:过正三角形ABC 的中心O 任作一条直线l ,则A 、B 、C 三点至l 的距离平方和为常数.AlB'A'OC'B QC P解析如图,不妨设l 与AB 、AC 相交,且与BC 延长线交于P (平行容易计算).由中位线及重心性质,知BB CC AA '''+=.故222222()B B C C A A B B C C B B C C '''''''++=++⋅. 连结OB 、OC ,作OQ BC ⊥,易知B BP QOP C CP ''△∽△∽△,故C C CP OQ OP '=,B B BPOQ OP'=. 对于等腰三角形OBC ,有22OP OC CP BP -=⋅.因此()()222222222223OQ OQ B B C C B B C C CP BP CP BP BC CP BP OP OP''''++⋅=++⋅=+⋅= ()222222333OQ BC OP OC OQ OP+-=(定值),这里用到了BC . 于是A 、B 、C 三点至l 的距离平方和为22162OQ BC =,结论得证.§9.3三角形中的巧合点9.3.1★已知:H 是ABC △内一点,AH 、BH 、CH 延长后分别交对边于D 、E 、F ,若AH HD BH HE CH HF ⋅=⋅=⋅,则H 是ABC △的垂心,解析如图,由条件知AHE BHD △∽△,故AEH BDH ∠=∠,同理,AFH CDH ∠=∠,故180AFH AEH ∠+∠=︒.A FEHBDC又FBH ECH △∽△,故BFH CEH ∠=∠,这样可得90AFH AEH ∠=∠=︒,故H 为ABC △之垂 心.9.3.2★★求证:到三角形三顶点的距离平方和最小的点是三角形的重心.解析设ABC △中,AD 、BE 、CF 是中线,G 是重心,M 是任一点.由斯图沃特定理,并考虑到 结论成立. 123DG GA AD =∶∶∶∶,得2222122339MG AM DM AD =+-22212233AM DM GD =+-.① 又由中线长公式,有 ()22221124MD BM CM BC =+-, ()22221124GD BG CG BC =+-. 代入式①,得()()222222230MG MA MB MC GA GB GC =++-++≥.结论成立.9.3.3★★★已知,H 是锐角ABC △的垂心,D 是BC 中点,过H 作DH 的垂线,交AB 、AC 于M 、N ,求证:H 是MN 中点.AQ NMHBD PC解析设ABC △两条高为AP 、CQ .又不妨设D 在BP 上.由于HAM DCH ∠=∠,90AHM DHP HDC ∠=︒-∠=∠,故AMH CHD △∽△,于是MH AH HD CD =,同理NH AHHD BD=, 又CD BD =,故MH NH =.9.3.4★★★ABC △的边BC 、CA 、AB 上分别有点D 、E 、F ,且BD CE AFDC EA FB==,求证:ABC △的重心与DEF △的重心是同一点.解析在AB 上取一点M ,使MD AC ∥,则MD BD CEAC BC AC==,所以MD CE =,四边形MDCE 为平行四边形,设MC 与DE 交于N ,又设BC 的中点为,P 连结PN 、AP 、FN ,AP 与FN 交于G ,于是由 BM BD CE AF AB BC AC AB ===,得RM AF =,于是1122PN BM AF ∥∥,于是12PG GN PN GA FG AF ===,所以G 为ABC △与DEF △之重心.AFMG EBDPCN9.3.5★★★已知ABC △,60A ∠=︒,G 是ABC △重心,120BGC ∠=︒,求证:ABC △是正三角形. 解析设ABC △三条中线分别为AD 、BE 、CF .连EF 为中位线.于是由条件知A 、F 、G 、E 共圆,故GBD FEG BAD ∠=∠=∠,于是2BD GD DA =⋅.由于12BD BC =,13GD AD =,代入,得AD =. 在ABC △外作等腰BCP △,使BP CP =,120BPC ∠=︒,连结DP ,DP BC ⊥.由圆心角与圆周角的关系,211333GP BP AD AD AD GD PD ====+=+,故G 、D 、P 三点共线,故AD BC ⊥,于是AB AC =,又60RAC ∠=︒,故ABC △为正三角形.AFEBD CPG9.3.6★★★已知D 是BC 上一点,ABD △、ECD △、BCF △都是正三角形,A 、E 在BC 同侧,F在另一侧,求证:以这三个正三角形的中心为顶点的三角形是正三角形,且它的中心在BC 上.又问此题如何推广?A BCEFR R'DQ'P'Q解析如图,设P 、Q 、R 分别为BCF △、DCE △和ABD △的中心,则由题11.2.25知PQR △为正三角形.过P 、Q 、R 分别作BC 的垂线PP '、QQ '、RR ',则RR QQ PP BD CD BC ⎛'''=== ⎝⎭,又BD CD BC +=, 故RR QQ PP '''+=.又设RQ 中点为S (图中未画出),SS BC '⊥于S ',则SS PP ''∥,且()1122SS RR QQ PP ''''=+=.设SP 与BC 交于G ,则12SG SS GP PP '==',所以G 为PQR 的中点. 评注此题不难推广,只需AB DE CF ∥∥,AD CE BF ∥∥,此时ABD DC FCB △∽△∽△, P 、Q 、R 为各自对应的重心,则必有PQR △之重心位于BC 上. 9.3.7★★★ABC △内有一点P ,连结AP 、BP 、CP 并延长,分别与对边相交,把ABC △分成六个小三角形,若这六个小三角形中有三个面积相等,则点P 是否必为ABC △之重心? 解析如图,设AD 、BE 、CF 交于P .由对称性,可分四种情况讨论.AFEPBDC(1)BPD CDP BPF S S S ==△△△.于是BD CD =,2CPPF=,由梅氏定理(或添平行线),得AF BF =,P 为中心.(2)BPD CDP APF S S S ==△△△.此时FD AC ∥,故D 、F 分别为BC 、AB 中点,P 为重心. (3)BPD BPF APE S S S ==△△△.此时有DE AB ∥,由塞瓦定理,AF BF =,于是APF BPF S S =△△,回到情形(1).(4)APF BPD CPE S S S ==△△△,见题15.1.58.综上所知,答案是肯定的.9.3.8★★★设有一个三角形三角之比为124∶∶,作两较大角的平分线,分别交对边于M 、N .求证:这个三角形的重心在MN 上.解析如图(a),设A ∠为最小角,作中线AD ,交MN 于G ,于是只要证明2AG GD =.分别作EB AD CF ∥∥,E 、F 在直线MN 上,则2GD EB CF =+,故问题变成1EB FCAG AG+=,或 1BC BC CM BN CF BEAB AC AM AN AG AG+=+=+=. 不妨设A θ∠=,2C θ∠=,4B θ∠=,7180θ=︒,在AC 上找一点P ,使ABP θ∠=,又作PQ BC ∥,Q 在AB 上,则各角大小如图(b)所示.于是BC BP AP BQ ===,故 11BC AP CP BQ BCAC AC AC AB AB==-=1-=-. ABCD E FNMGA QP B C2θ3θ2θ3θ3θθθ图(a)图(b)9.3.9★★★不等边锐角ABC △中,H 、G 分别是其垂心和重心,求证:若112HABHACHBCS S S +=△△△,AG HG ⊥.ABDECGH解析设ABC △的一条中线与高分别为AD 、AE ,则欲证结论等价于AG AD AH AE ⋅=⋅.熟知cot AH BC A =⋅,23AG AD =.于是结论变为22cot cos 3AD BC AE A AB AC A =⋅⋅=⋅⋅. 设AB c =,BC a =,CA b =,则由中线长及余弦定理,知欲证式左端()2221226b c a =+-, 右端2222b c a +-=,整理,得2222b c a +=,于是剩下的任务是证明这个等价条件.1cos 2BHC S BH BC C =⋅⋅⋅△1cot cos 2AC BC B C =⋅⋅⋅⋅ cot cot ABC S B C =⋅⋅△,同理有另两式,于是条件变为cot cot 2cot C B A +=,由正弦及余弦定理,知上式即cos cos ab C ac B +=2cos bc A ,或()()22222222262()ac a c b b c a +-++-=+-,化简即得2222b c a +=.9.3.10★★已知凸四边形ABCD 中,2BAC BDC ∠=∠,2CAD CBD ∠=∠,A 是否一定为BCD △之外心?ABDC解析当BCD △固定.由题设BAC ∠、CAD ∠固定,于是BAC △、ACD △外接圆固定,它们的交点 C 、A '固定,又若A 为BCD △外心时,确为BAC △的外接圆和ACD △的外接圆之异于C 的交点,因此A A '=,结论成立.9.3.11★★★已知锐角ABC △的外接圆与内切圆的半径分别为R 、r ,O 是外心,O 至三边距离之和为L ,试用R 、r 表示L . 解析易知()cos cos cos L R A B C =++.设ABC △三边分别为a 、b 、c ,由于cos cos a B b A c +=等,则()()cos cos cos a b c A B C ++⋅++=cos cos cos a b c a A b B c C +++++,于是 cos cos cos 1A B C ++-cos cos cos a A b B c Ca b c++=++.①又1cos 2BOC Ra A S =△等,可得()()11cos cos cos 22ABC R a A b B c C S r a b c ++==++△,故式①的右端r R =. 于是L R r =+.9.3.12★★★★:已知ABC △,D 、E 分别在AC 、AB 上,BD 、CE 交于F ,ED BC ∥,求证:AEF △、ADF △、EFB △、DFC △的外心四点共圆.AED BCOKO 1O 2解析如图,设BEF △、DFC △的外心分别为1O 、2O ,O 为EFD △的外心,于是1OO 垂直平分EF .2OO 垂直平分DF .设EFB DFC θ∠=∠=,则由垂径定理知11sin 2OO BD θ=,21sin 2OO CE θ=,于是12OO BD FD OO CE EF ==. 易知AF 过ED 中点(由塞瓦定理或面积比),作KD EF ∥,K 在AF 上,则KD EF =,又 12180KDF EFD O OO ∠=︒-∠=∠,故12O OO FDK △∽△.又设AEF △,ADF △的外心分别为3O 、4O (图中未画出),于是3O 、4O 分别在直线1O O 与2O O 上, 且34O O AF ⊥,于是4312OO O KFD OO O ∠=∠=∠,于是1O 、2O 、3O 、4O 四点共圆.9.3.13★★★已知:ABC △中,AB AC =,D 是AB 中点,F 为ADC △重心,O 为ABC △外心,求证:FO CD ⊥.解析1如图,延长DF 交AC 于E ,则AE CE =,2DF EF =.连结AO 并延长,分别交CD 、BC 于G 、H ,则G 为ABC △重心,BH CH =,2233DF DE BH ==,易见2323BHDO BH DF AD AH AG AH ===. ADEF OGB H C又OD AB ⊥,90ODF ADE DAG ∠=︒-∠=∠,ODF DAG △∽△,对应边垂直,所以FO CD ⊥. 解析2O 为ABC △外心,故22222CO DO AO DO AD -=-=; 而由中线公式,CF =DF 于是22222CF DF AD CO DO -==-,于是FO CD ⊥.9.3.14★★★设I 和O 分别是ABC △的内心和外心,求证:90AIO ∠︒≤的充分必要条件是2BC AB AC +≤.解析延长AI 与外接圆交于点D ,连结BD 、CD 、OD ,则 90AIO ∠︒≤ AI ID ⇔≥.2ADDI⇔≤D由内心性质知,DI DB DC ==,结合托勒密定理得 AD BC AB CD AC BD ⋅=⋅+⋅ AB DI AC DI =⋅+⋅, 所以AD AB ACDI BC+=, 所以902AB ACAIO BC+∠︒⇔≤≤, 故90AIO ∠︒≤的充要条件是2BC AB AC +≤.评注本题的关键是先把90AIO ∠︒≤转换为AI ID ≥,然后再用托勒密定理.托勒密定理是:圆内接四边形的对角线的乘积等于对边乘积的和.9.3.15★★★设O e 是ABC △的外接圆,G 是三角形重心,延长AG 、BG 、CG ,分别交O e 于D 、E 、F ,则3AG BG CGGD GE GF++=. AF ERQGBP DC解析设BC 、CA 、AB 的中点分别为P 、Q 、R ,则由中线长公式及相交弦定理,有(此处ABC △三边分别设为a 、b 、c ) AG AG AGBP CPGD GP PD GP AP==⋅++22223133APAP BP CP AP BP CP AP AP ==⋅+⋅+ 2222222222222122211132244b c a b c a a b c b c a a +-+-==+++-+. 同理,有22222222BG c a b GE a b c +-=++ , 22222222CG a b c GF a b c +-=++. 三式相加,即得结论.9.3.16★★I 在ABC △内,AI 平分BAC ∠,1902BIC A ∠=︒+∠,求证:I 是ABC △内心.解析如图,作EIF AI ⊥,E 在AB 上,F 在AC 上,则AE AF =,LE IF =,AEF BCI1902BEI IFC A BIC ∠=∠=︒+∠=∠.又1902EBI EIB A EIB FIC ∠+∠=︒-∠=∠+∠,故EBI FIC ∠=∠,于是EBI FIC △∽△,BI BE BEIC IF EI==.而BEI BIC ∠=∠,故BEI BIC △∽△,ABI IBC ∠=∠,所以I 为ABC △内心.9.3.17★★已知:ABC △中,2BC AB AC =+,D 是内心,DE 与BC 垂直于E ,求2DE BE CE⋅的值.解析设ABC △三边长分别为a 、b 、c ,则2a b c =+. 易知若设DE r =,()12p a b c =++,则BE p b =-,CE p c =-.r =于是2133DE P a b c a a BE CE p a b c a -+-====⋅++. 9.3.18★★设ABC △中,AB 最长,在其上分别找两点M 、N ,使AN AC =,BM BC =,又设I 为ABC △内心,求MIN ∠(用A ∠、B ∠、C ∠及其组合表示). 解析如图,连结CM 、CN 、CI 、AI .CABM NI易知ACI ANI △△≌,CI NI =,同理CI MI =,I 为CMN △的外心,因此 MCN ACN BCM C ∠=∠+∠-∠11909022A B C =︒-∠+︒-∠-∠1902C =︒-∠,2180MIN MCN C ∠=∠=︒-∠.9.3.19★★★★ABC △的边BC 上有一点D ,ABD △与ACD △的内心与B 、C 四点共圆,求证: AD BD ABAD CD AC+=+. AMNE FBDCPI 1I 2解析如图,设ABD △与ACD △的内心分别为1I 与2I .连结1AI 、2AI 、1BI 、2CI 、12I I ,两端延长12I I ,分别交AB 、AC 于E 、F ,则由条件知()1112AEF ABI EI B ABC ACB ∠=∠+∠=∠+∠,同理AFE ∠也是此值,于是AE AF =. 又设12I I 与AD 交于P ,则由角平分线性质知1212EI FI AE AF I P AP AP I P ===,故由梅氏定理(直线AB 截1PDI △及直线AC 截2PDI △),得1212I D I DI M I N=(此处M 、N 分别为1DI 、2DI 延长后与AB 、AC 之交点),又由角平分线性质,知11I D AD BD I M AB +=,22I D AD CDI N AC+=于是结论成立. 9.3.20★★★已知ABC △中,AB AC =,O 、I 分别为其外心与内心,D 在AC 上,DI AB ∥,求证:OD CI ⊥.解析如图,不妨设O 在ABC △内,且在I “之上”(O 在形外、I 之下类似处理),连结AOI 、OC ,则IOC BAC IDC ∠=∠=∠,故O 、I 、C 、D 共圆,于是ODC ICD OIK ICD ∠+∠=∠+∠.这里K 为DO 、CI 直线之交点.AD O KIBC由于AOI BC ⊥,故9090OIK ICD BCI ICD ∠+∠=︒-∠+∠=︒,于是90DKC ∠=︒.9.3.21★★设G 为ABC △的重心,已知GA =GB =且2GC =,求ABC △的面积.解析1由题意可画出图(a),令D 为AB 中点,GE AB ⊥,垂足为点E ,因G 为重心,可知112GD GC ==. 由勾股定理可知222222222GE GB EB GE GA EA GE GD DE ⎧=-⎪=-⎨⎪=-⎩①②③,C ABD E G22322(a)令AD BD c ==.由①与②可得(()(()2222c DE c DE -+=--,化简后可得1c DE ⨯=,即1DE c =,代入③得2211GE c=-,再代入①式可得 22118c c c ⎛⎫1-=-- ⎪⎝⎭, 解方程可得3c =,GE =,故 ABC △的面积=6GBD ⨯△的面积1632=⨯⨯= 解析2由题意可画出图(b),令D 为AB 中点,在GD 的延长线上取E 点使得GD DE =,因此GBD △ 之面积为AEG △之面积的一半.此时因AB 与GE 互相平分,可知四边形AEBG 为平行四边形,也因此可知AE GB ==,即AEG △的三边长为2、故可知AEG △为直角三角形,故GBD△的面积为11222⨯⨯=ABC△的面积6GBD =⨯△的面积=(b)22232GD BAC 22E 119.3.22★★★已知120AFB BFC CFA ∠=∠=∠=︒,P 为异于F 的任一点,求证: PA PB PC FA FB FC ++>++.解析如图,在ABC △外作正三角形ABD ,由于ABC ∠,120BAC ∠<︒,故四边形DBCA 的内角均小于180︒,是凸四边形.ADF F'PP'BC对于ABC △中任一异于F 的点P ,将ABP △、ABF △均以点A 为中心顺时针旋转60︒,至ADP '△ 和ADF '△,则AFF △与APP '△均为正三角形.由全等知AP BP CP PP DP CP CD DF F F FC AF BF CF ''''++=++>=++=++,这是因为DP PC '是一条折线,而120DF A AFC '∠=∠=︒,60AFF AF F ''∠=∠=︒,D 、F '、F 、C 四点共线且仅对于F 满足四点共线.评注当ABC △内角均小于120︒时,满足条件的点F 称为ABC △的费马点(当ABC △有内角比如120A ∠︒≥时,到A 、B 、C 距离之和最小的点正是点A ).。
七年级数学竞赛几何试题在七年级数学竞赛中,几何题目通常涉及平面几何的基本定理和性质,包括但不限于角度、线段、三角形、四边形和圆的性质。
以下是一些可能的几何试题:1. 角度问题:在一个三角形ABC中,如果∠A = 50°,∠B = 70°,求∠C的度数。
2. 线段问题:在直线上给定两点A和B,点C是AB的中点,点D是BC的中点。
如果AB的长度是10厘米,求CD的长度。
3. 三角形问题:已知三角形ABC是等边三角形,且AB = AC = BC = 6厘米。
求三角形ABC的面积。
4. 四边形问题:在平行四边形ABCD中,对角线AC和BD相交于点E。
如果AB = 8厘米,BC = 6厘米,且AC = 10厘米,求BD的长度。
5. 圆的问题:圆的半径为7厘米,圆心为O点。
点A在圆上,OA的长度为7厘米。
求圆的周长和面积。
6. 相似三角形问题:三角形ABC和三角形DEF是相似的,且AB/DE =2/3,BC/EF = 4/5。
如果AC = 12厘米,求DF的长度。
7. 几何构造问题:在给定的三角形ABC中,构造一个点P,使得PA = PB + PC。
8. 几何证明问题:证明在一个直角三角形中,斜边的中线等于斜边的一半。
9. 坐标几何问题:在坐标平面上,点A(-3, 2),点B(1, -1),点C(4, 5)。
求三角形ABC的面积。
10. 几何变换问题:一个正方形在平面直角坐标系中,其顶点坐标为(0,0),(1,0),(1,1),(0,1)。
求将此正方形绕原点顺时针旋转90度后的顶点坐标。
这些问题覆盖了七年级学生在几何学中应该掌握的基本概念和技能。
在解答这些问题时,学生需要运用几何定理、性质以及逻辑推理能力。
知乎数学竞赛平面几何二级结论全文共四篇示例,供读者参考第一篇示例:知乎数学竞赛平面几何二级结论在数学竞赛中,平面几何是一个重要的考查内容,特别是在高中阶段的数学竞赛中,平面几何题目占据了相当大的比例。
而在平面几何的题目中,二级结论是一类比较常见且有一定难度的题型。
本文将介绍一些关于知乎数学竞赛平面几何二级结论的知识点和解题技巧。
一、直线的性质1. 平行线的性质:若两条直线平行,则其上的任意一点到两直线距离相等;平行线间的距离相等;同一直线上的两角互为补角,则说明两条线平行。
两条直线相互垂直,则说明两条直线的斜率之积为-1;垂直平分线相交于两条垂直线中点;垂直角相等。
二、三角形的性质三角形的中位线相互平行,且每条中位线是另外两顶点的中点。
三角形的三条中线相交于一个点,称为三角形的重心。
5. 内切圆的性质:1. 弦长定理在一个圆上,相交于同一弧的两条弦长之积相等。
圆心角相等的两条弧所对的圆周角相等。
3. 垂径定理在一个圆上,垂直的直径和弦之间的关系。
4. 圆的切线切线和半径垂直,切线与切点间的切线长度相等。
以上就是关于知乎数学竞赛平面几何二级结论的介绍,希望大家能够通过这些知识点和解题技巧,更好地应对数学竞赛中的平面几何题目,取得优异的成绩。
同时也希望大家能够在学习数学的过程中保持耐心和坚持,相信你们一定会有所收获的!第二篇示例:知乎数学竞赛平面几何二级结论在数学竞赛中,平面几何是一个非常重要的考察点,尤其是在二级难度的考试中,涉及的知识点更加深入和复杂。
掌握平面几何的结论是解题的关键,下面将列举一些知乎数学竞赛平面几何二级结论,供参赛者参考和学习。
1. 同位角相等:在平行线的两边被截取的两个角称为同位角,如果这两个角相等,那么这两条直线是平行的。
2. 内错角相等:当两条直线被一条第三条直线截取时,产生的两组内错角是相等的。
4. 三角形内角和等于180度:任何一个三角形的三个内角之和都等于180度。