复变函数第2讲
- 格式:pdf
- 大小:271.73 KB
- 文档页数:42
《复变函数》课程教学大纲一、课程基本信息课程代码:16183703课程名称:复变函数英文名称:Complex Variables课程类别:专业课学时:48学分:3适用对象: 数学与应用数学考核方式:考查先修课程:《数学分析》、《解析几何》、《高等代数》二、课程简介本课程是数学与应用数学专业的一门专业选修课. 课程主要讲授单复变函数的一些基本知识,分别从导数、积分、级数、留数、映射五个方面来刻画解析函数的性质及其应用。
首先从复数域开始,引入复变函数,再给出解析函数的概念,再以它为研究对象,介绍解析函数的导数、积分、解析函数的幂级数表示法,解析函数的罗朗展式与孤立奇点,留数理论及其应用。
《复变函数论》主要讲单复变中的解析函数理论:内容包括解析函数的概念、性质、柯西一黎曼条件。
柯西积分定理及柯西积分公式。
解析函数的泰勒展式和罗朗展式。
利用留数理论求积分,保形映射等内容。
This course is a specialized elective course in mathematics an applied mathematics. The course mainly introduces some basic knowledge of single complex functions describing the properties and applications of analytical functions from five aspects: derivative, integral, series, residue and mapping, respectively. First of all, from the complex domain, the complex variable function is introduced, and then the concept of analytic function is given. Taking it as the research object, we introduce the derivative, integral, power series representation, Laurent expansions, isolated singularity, residue theory of analytic function and its application. The theory of complex variable mainly focuses on the analytic function theory of simple complex variables: the content includes the concept and property of analytic function, Cauchy-Riemann condition. Cauchy integral theorem and Cauchy integral formula.Taylor Expansion and Roland Expansion of Analytic Functions. Using the theory of residue for integration, conformal mapping and other contents.三、课程性质与教学目的复变函数论是数学系各专业的一门重要课程,同时又是数学分析的后继课。
第一讲 复数与复变函数复变函数论的出发点是复数.复数的基本定义及结论每个复数z 具有iy x +的形状,其中x 和R y ∈,1-=i 是虚数单位;x 和y 分别称为z 的实部和虚部,x ,y 分别记作z x Re =,z y Im =.复数111iy x z +=和222iy x z +=相等是指它们的实部与虚部分别相等.复数的四则运算定义为:)()()()(21212211b b i a a ib a ib a ±+±=+±+)()())((122121212211b a b a i b b a a ib a ib a ++-=++22222112222221212211)()(b a b a b a i b a b b a a ib a ib a +-+++=++复数在四则运算这个代数结构下,构成一个复数域,记为C .C 也可以看成平面2R ,我们称为复平面.复数的模定义为:22||y x z +=;复数的辐角定义为:i x yz π2arctanArg +=;复数的共轭定义为:iy x z -=;复数的三角表示定义为:)sin (cos ||Argz i Argz z z +=;在复平面中,我们可以定义一些基本集合.设),0(, +∞∈∈r C a ,a 的r -邻域),(r a U 定义为},,|| |{C z r a z z ∈<-设E a C E ∈⊂,为E 的极限点,若E r a U r ⋂>∀),(,0中有无穷个点;E a ∈为E 的内点,若0>∃r ,使得E r a U ⊂),(.开集:所有点为内点的集合;闭集: 开集的余集我们称为闭集.区域:1、D 是开集;2、D 中任意两点可以用有限条相衔接的线段所构成的折线连起来,而使这条折线上的点完全属于D .复变函数的定义:设C G⊂,如果对于G 中任意以点z ,有确定的复数w 同它对应,则称在G 上定义了一个复变函数,记为)(z f w =.注1 此定义与传统的定义不同,没有明确指出是否只有一个w 和z 对应;注2 同样可以定义函数的定义域与值域; 注3 复变函数等价于两个实变量的实值函数. 复变函数的极限:设函数)(z f w =在集合E 上确定,0z 是E 的一个聚点,a 是一个复常数.如果任给0>ε,可以找到一个与ε有关的正数0)(>=εδδ,使得当E z ∈,并且δ<-<||00z z 时,ε<-|)(|a z f ,则称a 为函数)(z f 当z 趋于0z 时的极限,记作:)()()(lim 0,0z z A z f A z f Ez z z →→=∈→当或复变函数连续性的定义: 如果)()(lim 00z f z f z z =→成立,则称)(z f 在0z 处连续;如果)(z f 在E 中每一点连续,则称)(z f 在E 上连续.如果),(),()(y x iv y x u z f +=,000iy x z +=,)(z f 在0z 处连续的充要条件为:,,),(),(lim),(),(lim00,,00,,0000y x v y x v y x u y x u y y x x y y x x ==→→→→复变函数的导数: 设函数)(z f w =在点z 的某邻域内有定义,zz ∆+0是邻域内任意一点,对于)()(00z f z z f w -∆+=∆,如果极限z z f z z f z wz z ∆-∆+=∆∆→∆→∆)()(limlim0000存在,为复数A ,则称)(z f 在0z 处可导,极限A 称为)(z f 在0z 处的导数,记作:)('0z z dz dw z f =或.解析函数: 如果)(z f 在0z 及0z 的某个邻域内处处可导,则称)(z f 在0z 处解析;如果)(z f 在区域D 内处处解析,则我们称)(z f 在D 内解析,也称)(z f 是D 的解析函数.导数的四则运算:)(')()()(')]'()([)(')('))'()((z g z f z g z f z g z f z g z f z g z f +=±=±[]2)]([)(')()()(')()('z g z g z f z g z f z g z f -=.关于解析函数的定义,有下面的注解:注解1 解析性与可导性:在一个点的可导性是一个局部概念,而解析性是一个整体概念;注解2 函数在一个点解析,是指在这个点的某个邻域内解析,因此在此点可导;反之,在一个点的可导性不能得到在这个点解析.注解3 闭区间上的解析函数是指在包含这个区域的一个更大的区域上解析; 注解4 解析性区域;注解5 四则运算法则、复合函数求导法则、反函数求导法则等可以推广到复变函数求导的情形. 关于函数的解析性,有著名的Cauchy-Riemann 条件:函数),(),()(y x iv y x u z f +=在区域D 内解析的充要条件是:1、实部),(y x u 和虚部),(y x v 在D 处可微;2、),(y x u 和),(y x v 满足:柯西-黎曼条件(简称C-R 方程)x v y u y v x u ∂∂-=∂∂∂∂=∂∂ ,关于柯西-黎曼条件,有下面的注解:注解1 解析函数的实部与虚部不是完全独立的,它们是C-R 方程的一组解; 注解2 解析函数的导数形式更简洁. 基本初等函数: 指数函数: 对于复数iy x z+=,定义)sin (cos exp y i y e z e w x z +===为指数函数由此有Euler 公式: y i y e iysin cos +=;指数函数的基本性质:1、函数ze w =在整个复平面内有定义并且解析,z z e e =)'(;2、指数函数ze w =是实指数函数在复平面上的解析推广;3、定义得 ,2,1,02||±±=+==k k y Arge e e z x z ,π4、0≠ze;5、指数函数的代数性质(加法定理):2121z z z z e e e +=;6、指数函数是周期i π2为的周期函数;7、指数函数的几何性质:对数函数:对数函数的基本性质:定义复对数函数是指数函数的反函数:满足方程)0(≠=z z e w 函数)(z f w =称为对数函数,记为z w Ln =.注解 1、由于对数函数是指数函数的反函数,而指数函数是周期为i π2 的周期函数,所以对数函数必然是多值函数;注解 2、0 iArg |z |ln Lnz ≠+==z z,w .多值函数的单值化:、由于iArgz z z +=||ln Ln ,而是Argz 通常正数的自然 对数,Argz 是多值函数,所以对数函数的多值性是由于幅角函数的多值性引起的,每两个函数值相差的整数倍;、象Argz 一样,取主值arg z ,则得到Ln z 的一个单值分支,记为ln z ,也称为Ln z 的主值,即z i z z arg ln ln +=,所以,,...)2,1,0(2ln ln ±±=+=k k z z π注解:当0>=x z 时,主值x z ln ln =就是实变量的对数函数. 对数函数的基本性质:1、对数函数的定义域为整个复平面去掉原点,是一个多值解析函数;2、对数函数的代数性质:Ln Ln )/Ln(2121z z z z -= Ln Ln )Ln(2121z z z z +=3、对数函数的解析性质:对数函数的主值分支在除去原点和负实数轴的复平面上解析,并且有:z zz 1d d ln =4、对数函数的几何性质: 幂函数的定义:利用对数函数,可以定义幂函数:设a 是任何复数,则定义z 的a 次幂函数为:z a ae z Ln =当a 为正实数,且0=z 时,还规定0=az .幂函数的基本性质: 1、对应于对数函数的多值性,幂函数一般是一个多值函数; 2、当a 是正整数时,幂函数是一个单值函数;3、当n 1=α(当n 是正整数)时,幂函数是一个n 值函数; 4、当n 1=α(当n 是正整数)时,幂函数是一个n 值函数; 5、当q p a =是有理数时,幂函数是一个q 值函数; 6、当a 是无理数时,幂函数是一个无穷值多值函数三角函数三角函数的定义:利用Euler 公式,我们有:y i y eiysin cos +=,y i y e iysin cos -=-,所以定义2iziz e e -+和ie e iziz 2--分别为复变量的余弦函数z cos 和正弦函数z sin .三角函数的基本性质:1、z cos 和z sin 是单值函数;2、z cos 和z sin 是以π2为周期的周期函数;3、z cos 是偶函数,z sin 是奇函数;4、212121sin cos cos sin )sin(z z z z z z ±=± 212121sin sin cos cos )cos(z z z z z z =±;5、;1cos sin22=+z z6、z cos 和z sin 在整个复平面解析,并且有:.cos )'(sin ,sin )'(cos z z z z =-=第二讲 利用积分研究解析函数----复变函数的积分设C 是复平面一条光滑简单曲线,其起点为A ,终点为B 。