核酸化学
- 格式:docx
- 大小:815.16 KB
- 文档页数:23
核酸的理化性质及应用核酸是一类含有大量核苷酸单元的生物大分子,在细胞中起着重要的生物学功能。
核酸分为两类:脱氧核酸(DNA)和核糖核酸(RNA)。
下面我将介绍核酸的理化性质及应用。
一、核酸的理化性质:1. 化学成分:核酸由核苷酸单元组成,单个核苷酸由一个五碳糖(脱氧核糖或核糖)、一个含氮碱基和一个磷酸基团组成。
2. 结构:DNA是由两条互补的链以双螺旋结构排列而成,RNA是以单链形式存在。
DNA的碱基对是按照互补规则特异性配对的,腺嘌呤(A)与胸腺嘧啶(T)之间有两个氢键相连,鸟嘌呤(G)与胞嘧啶(C)之间有三个氢键相连,保持了DNA分子的稳定性。
3. 酸碱性:核酸是一种多酸性物质,可与碱性染料结合。
通过电泳技术可将核酸分离,由于核酸是多酸性的,具有负电荷,在电场中可被迁移,从而实现其分离和纯化。
4. 稳定性:由于DNA中的碱基对通过氢键相连,DNA分子具有较高的稳定性,可在适宜条件下长期储存。
二、核酸的应用:1. 遗传学研究:核酸是遗传物质的重要组成部分,在遗传学研究中发挥着关键作用。
通过对DNA或RNA的序列进行分析,可以揭示生物个体之间的遗传差异,并研究基因与功能的关系。
例如,人类基因组计划(Human Genome Project)使用DNA测序技术对人类整个基因组进行了测序,从而为深入研究人类遗传学奠定了基础。
2. 诊断医学:核酸在疾病诊断中的应用日益重要。
通过PCR(聚合酶链式反应)技术可以在体液或组织中检测到微量的病原体DNA或RNA,从而实现病原体的快速检测和诊断。
例如,在新冠疫情中,核酸检测成为最常用的方法之一。
3. 基因工程:核酸在基因工程领域具有重要应用。
通过将外源DNA或RNA导入细胞中,可以实现基因的插入、删除或替换,从而实现基因改造或修复。
这种技术在生物技术、农业、医学等领域中有着广泛的应用,如转基因作物的培育、基因治疗等。
4. 疾病治疗:核酸药物被广泛应用于疾病的治疗。
1.核苷(nucleoside):是由嘌呤或嘧啶碱基通过共价键与戊糖连接组成的化合物。
核糖与碱基一般都是由糖的异头碳与嘧啶的N-1或嘌呤的N-9之间形成的β-N-糖苷键连接的。
2.核苷酸(nucleotide):核苷的戊糖成分中的羟基磷酸化形成的化合物。
3.cAMP(cyclic AMP):3ˊ,5ˊ-环腺苷酸,细胞内的第二信使,由于某些激素或其它分子信号刺激激活腺苷酸环化酶催化ATP环化形成的。
4.磷酸二酯键(phosphodiester linkage):一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的两个酯键。
该酯键成了两个醇之间的桥梁。
例如一个核苷的3ˊ羟基与另一个核苷的5ˊ羟基与同一分子磷酸酯化,就形成了一个磷酸二酯键。
5.脱氧核糖核酸(DNA , deoxyribonucleic acid):含有特殊脱氧核糖核苷酸序列的聚脱氧核苷酸,脱氧核苷酸之间是通过3ˊ,5ˊ-磷酸二酯键连接的。
DNA是遗传信息的载体。
6.核糖核酸(RNA , ribonucleic acid):通过3ˊ,5ˊ-磷酸二酯键连接形成的特殊核糖核苷酸序列的聚核糖核苷酸。
7.查格夫法则(Chargaff's rules):所有DNA中腺嘌呤与胸腺嘧啶的摩尔含量相等,(A=T),鸟嘌呤和胞嘧啶的摩尔含量相等(G=C),即嘌呤的总含量与嘧啶的总含量相等(A+G=T+C)。
DNA的碱基组成具有种的特异性,但没有组织和器官的特异性。
另外生长发育阶段、营养状态和环境的改变都不影响DNA的碱基组成。
8.DNA双螺旋(DNA double helix):一种核酸的构象,在该构象中,两条反向平行的多核苷酸链围绕彼此缠绕形成一个右手的双螺旋结构。
碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二酯键相连,形成核酸的骨架。
碱基平面与假想的中心轴垂直,糖环平面则与轴平行。
两条链皆为右手螺旋。
双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核苷酸之间的夹角是36°,每对螺旋由10对碱基组成,碱基按A-T, G-C配对互补,彼此以氢键相连系。
高中化学核酸的教案设计随着科技的不断发展,生物化学领域的研究日益深入,其中核酸作为生命活动的重要物质基础,更是受到了广泛关注。
在高中化学教学中,核酸的教学同样占据了重要的地位。
今天,我们就来分享一份高中化学核酸的教案设计范本,帮助大家更好地理解和掌握这一知识点。
一、教学目标1. 知识与技能:理解核酸的基本概念、结构和功能,掌握核酸的化学组成和性质。
2. 过程与方法:通过实验操作,培养学生观察、分析和解决问题的能力,提高学生的实践操作能力。
3. 情感态度与价值观:激发学生对生物化学的兴趣,培养学生探索科学的精神。
二、教学内容1. 核酸的基本概念、结构和功能。
2. 核酸的化学组成和性质。
3. 核酸在生命活动中的作用。
三、教学方法1. 采用讲授法,讲解核酸的基本概念、结构和功能,以及核酸的化学组成和性质。
2. 采用实验法,让学生亲自动手进行核酸提取实验,观察和分析实验现象,加深对核酸性质的理解。
3. 采用讨论法,引导学生探讨核酸在生命活动中的作用,培养学生的思考和表达能力。
四、教学过程1. 引入:通过讲述生物体内的遗传信息传递过程,引出核酸的概念和重要性。
2. 讲解:详细讲解核酸的基本概念、结构和功能,以及核酸的化学组成和性质。
3. 实验:指导学生进行核酸提取实验,观察和分析实验现象,加深对核酸性质的理解。
4. 讨论:组织学生讨论核酸在生命活动中的作用,引导学生思考和表达自己的观点。
5. 总结:对本节课的内容进行总结,强调核酸的重要性和作用。
五、教学评价1. 过程评价:观察学生在实验过程中的操作和表现,了解学生对实验方法和步骤的掌握情况。
2. 结果评价:通过课堂提问、小组讨论等方式,了解学生对核酸基本概念、结构和功能的理解程度。
3. 综合评价:结合学生的学习表现、实验结果和讨论内容,对学生的核酸知识掌握情况进行综合评价。
六、教学反思1. 优点:本节课采用了多种教学方法,既有讲授又有实验和讨论,使学生在多方面得到了锻炼和提高。
生物化学第5章复习题(核酸化学)第四章核酸化学课外练习题一、名词解释1、核苷酸:是构成核酸分子的基本结构单位2、核酸的一级结构:是指单核苷酸之间通过磷酸二酯键相连接以及单核苷酸的数目及排列顺序3、增色效应:是指当双链DNA变性“熔化”为单链DNA时,在260nm的紫外吸收值增加的现象4、DNA变性:DNA受到一些理化因素的影响,分子中的氢键、碱基堆积力等被破坏,双螺旋结构解体,分子由双链变为单链的过程5、Tm值:加热变性使DNA双螺旋结构失去一半时的温度称为融点,用Tm表示二、符号辨识1、DNA脱氧核糖核酸2、RNA核糖核酸;3、mRNA信使核糖核酸;4、tRNA转运核糖核酸;5、rRNA核糖体核糖核酸;6、A腺嘌呤;7、G鸟嘌呤;8、C胞嘧啶;9、T胸腺嘧啶;10、U尿嘧啶;11、AMP腺嘌呤核苷一磷酸(一磷酸腺苷);12、dADP脱氧二磷酸腺苷;13、ATP腺嘌呤核苷三磷酸(三磷酸腺苷);14、NAD尼克酰胺腺嘌呤二核苷酸(辅酶Ⅰ);15、NADP尼克酰胺腺嘌呤二核苷酸磷酸(辅酶Ⅱ);16、 FAD黄素腺嘌呤二核苷酸;17、CoA辅酶A;18、DNase脱氧核糖核酸酶;19、RNase核糖核酸酶;20、Tm熔点温度;三、填空1、RNA有三种类型,它们是(),()和();2、除()只含有DNA或者只含有RNA外,其它生物细胞内既含有DNA也含有RNA;3、核酸具有不同的结构,()通常为双链,()通常为单链;4、原核生物染色体DNA和细胞器DNA为()状双链,真核生物染色体DNA为()双链;5、核苷酸由核苷和()组成,核苷由()和()组成;6、构成核苷酸的碱基与戊糖连接的类型属于()连接,糖的构型为()型;7、稀有碱基在RNA中的含量比在DNA中的丰富,尤其在()中最为突出,约占10%左右;8、具有第二信使功能的核苷酸是()和();9、辅酶类核苷酸包括()、()、()和();10、多聚核苷酸是通过核苷酸的C5’-()与另一分子核苷酸的C3’-()形成磷酸二酯键相连而成的链状聚合物。
1.核苷(nucleoside):是由嘌呤或嘧啶碱基通过共价键与戊糖连接组成的化合物。
核糖与碱基一般都是由糖的异头碳与嘧啶的N-1或嘌呤的N-9之间形成的β-N-糖苷键连接的。
2.核苷酸(nucleotide):核苷的戊糖成分中的羟基磷酸化形成的化合物。
3.cAMP(cyclic AMP):3ˊ,5ˊ-环腺苷酸,细胞内的第二信使,由于某些激素或其它分子信号刺激激活腺苷酸环化酶催化ATP环化形成的。
4.磷酸二酯键(phosphodiester linkage):一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的两个酯键。
该酯键成了两个醇之间的桥梁。
例如一个核苷的3ˊ羟基与另一个核苷的5ˊ羟基与同一分子磷酸酯化,就形成了一个磷酸二酯键。
5.脱氧核糖核酸(DNA , deoxyribonucleic acid):含有特殊脱氧核糖核苷酸序列的聚脱氧核苷酸,脱氧核苷酸之间是通过3ˊ,5ˊ-磷酸二酯键连接的。
DNA是遗传信息的载体。
6.核糖核酸(RNA , ribonucleic acid):通过3ˊ,5ˊ-磷酸二酯键连接形成的特殊核糖核苷酸序列的聚核糖核苷酸。
7.查格夫法则(Chargaff's rules):所有DNA中腺嘌呤与胸腺嘧啶的摩尔含量相等,(A=T),鸟嘌呤和胞嘧啶的摩尔含量相等(G=C),即嘌呤的总含量与嘧啶的总含量相等(A+G=T+C)。
DNA的碱基组成具有种的特异性,但没有组织和器官的特异性。
另外生长发育阶段、营养状态和环境的改变都不影响DNA的碱基组成。
8.DNA双螺旋(DNA double helix):一种核酸的构象,在该构象中,两条反向平行的多核苷酸链围绕彼此缠绕形成一个右手的双螺旋结构。
碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二酯键相连,形成核酸的骨架。
碱基平面与假想的中心轴垂直,糖环平面则与轴平行。
两条链皆为右手螺旋。
双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核苷酸之间的夹角是36°,每对螺旋由10对碱基组成,碱基按A-T, G-C配对互补,彼此以氢键相连系。
核酸化学名词解释1.中心法则(central dogma):生物体遗传信息流动途径。
最初RNA A 由Crick(1958)提出,经后人的不断补充和修改,现包括反转录和RN 复制等内容。
2.半保留复制(简称复制)(semiconservative replication):亲代双链DNA以每条链为模板,按碱基配对原则各合成一条互补链,这样一条亲代DNA双螺旋,形成两条完全相同的子代DNA螺旋,子代DNA分子中都有一条合成的“新”链和一条来自亲代的旧链,称为半保留复制。
polymerase):指以脱氧核苷三磷酸为底物,3.DNA聚合酶(DNA(DNApolymerase)按5’→3’方向合成DNA的一类酶,反应条件:4种脱氧核苷三磷酸、Mg+、模板、引物。
DNA聚合酶是多功能酶,除具有聚合作用外,还具有其它功能,不同DNA聚合酶所具有的功能不同。
DNA A 4.解旋酶(helicase):是一类通过水解ATP提供能量,使DN 双螺旋两条链分开的酶,每解开一对碱基,水解2分子ATP。
5.拓扑异构酶(topoisomerase):是一类引起DNA拓扑异构反应的酶,分为两类:类型I的酶能使DNA的一条链发生断裂和再连接,反应无需供给能量,类型Ⅱ的酶能使DNA的两条链同时发生断裂和再连接,当它引入超螺旋时,需要由ATP供给能量。
6.单链DNA结合蛋白(single-strand binding protein,SSB):是一类特异性和单链区DNA结合的蛋白质。
它的功能在于稳定DN A 解开的单链,阻止复性和保护单链部分不被核酸酶降解。
ligase):是专门催化双链DNA中缺口共价(DNAligase)7.DNA连接酶(DNA连接的酶,不能催化两条游离的单链DNA链间形成磷酸二酯键。
反应需要能量。
8.引物酶及引发体(primase&primosome):以DNA为模板,以核糖核苷酸为底物,在DNA合成中,催化形成RNA引物的酶称为引物酶及引物体。
核酸的生物化学结构和功能解析核酸是构成生物体的重要分子之一,它在细胞内担负着存储和传递遗传信息的重要功能。
本文将深入探讨核酸的生物化学结构和功能,揭示核酸在生命活动中的重要作用。
一、核酸生物化学结构核酸是由核苷酸组成的大分子化合物。
核苷酸是由碱基、糖和磷酸基团组合而成。
碱基分为嘌呤和嘧啶两类,嘌呤包括腺嘌呤(A)和鸟嘌呤(G),嘧啶则包括胸腺嘧啶(T)、尿嘧啶(U)和胞嘧啶(C)。
糖分为核糖(在RNA中)和脱氧核糖(在DNA中)。
磷酸基团连接在糖的3'位和5'位,形成磷酸二酯键,从而将核苷酸链接成链状结构。
核酸的主要类型包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
DNA是双链结构,由两条互补的核苷酸链缠绕而成,通过碱基配对形成稳定的螺旋结构。
RNA则是单链结构,可以形成类似DNA的二级结构,也可以形成各种不同的三维结构。
二、核酸的功能1. 存储遗传信息DNA是细胞中的遗传物质,它编码了细胞中合成蛋白质所需的遗传信息。
每个生物体细胞核内都包含一段完整的DNA,称为基因组。
基因组中的基因决定了生物的遗传特征,包括形态、功能和行为等。
2. 转录和翻译DNA通过转录过程生成RNA,而RNA通过翻译过程转化为蛋白质。
这一过程被称为中心法则。
在细胞内,DNA通过转录酶酶解,使其中的一条链作为模板,合成相应的RNA分子。
这一过程可以是一次性的(即合成的RNA直接用于蛋白质合成)或经过修饰后再转化为蛋白质。
通过这种机制,细胞可以根据需要合成特定的蛋白质,发挥不同的功能。
3. 调控基因表达RNA具有多种功能,其中包括调控基因表达。
在基因调控过程中,某些RNA分子可以与DNA的调控区结合,阻止或促进基因的转录。
这种调控方式可以调整细胞内基因的表达水平,对细胞功能的稳定和适应具有重要影响。
4. 催化反应核酸具有催化某些生物化学反应的能力。
在细胞中,一类特殊的RNA分子称为酶RNA(ribozyme),它能够催化化学反应,如自身剪切、肽键形成等。
核酸是生物体的主要遗传物质,是遗传变异的控制者,绝大多数生物的遗传信息贮存在DNA中。
核酸的基本结构单位是核苷酸,核苷酸通过3.5-磷酸二酯键连接成链状结构。
核苷酸可进一步水解生成含氮碱基(嘌呤或嘧啶)、戊糖(核糖或脱氧核糖)和磷酸。
核酸分为DNA和RNA,DNA主要作为遗传信息的载体,由脱氧核糖核苷酸构成;RNA主要有tRNA、IRNA、mRNA等,由核糖核苷酸构成,在蛋白质的生物合成中起重要作用。
核酸链中的核苷酸排列顺序称为一级结构,核酸链在空间发生缠绕、折叠,形成高级结构。
DNA的二级结构主要为双螺旋结构,三级结构主要为超螺旋结构;tRNA的二级结构为“三叶草”模型,三级结构为倒写的字母L状。
维持核酸高级结构的作用力主要为氢键、碱基堆积力和离子键。
核酸和核苷酸均为两性电解质,可用离子交换法、电泳法进行分离。
碱基具有名紫外吸收特性,可用于核酸含量的测定。
利用核酸具有的变性和复性性质,可进行核酸分子的杂交,此技术在科学研究中具有重要的意义。
二、自测题(一)单项选择题:1.[]核糖核酸RNA碱水解的产物是:A.5'-核苷酸B.2'和3'-核苷酸C.核苷D.寡聚核苷酸2.[]连接核苷与磷酸之间的键为:A.磷酸二酯键;B.糖苷键C.氢键D.磷酸酯键3.[]不参与DNA组成的是:A.dUMP;B.dAMP;C.dTMP;D.dGMP4.[]关于B型DNA双螺旋模型的叙述,错误的是:A.两条链方向相反B.是一种右螺旋结构,每圈螺旋包括10个碱基对C.两条链间通过碱基间氢键保持稳定D.碱基平面位于螺旋外侧5.[]在DNA中,A与T间存在有:A.3个氢键;B.2个肽键;C.2个氢键;D.I个磷酸二酯键6.[]下列关于DNA分子中的碱基组成的关系,哪项不正确?A.C+A=G+T;B.C=G;C.C+G=A+TD.A=T7.[]维持DNA分子中双螺旋结构的主要作用力是:C.疏水键A.范德华力B.磷酸二酯键D.氢键8.[]螺旋数为120个的DNA分子长度为:A.408nmB.204nmC.20.4nmD.4nm9.[]下面关于Watson-Crick DNA双螺旋结构模型的叙述中,正确的是:A.磷酸戊糖主链位于双螺旋内侧B.碱基A和G配对C.碱基之间共价结合D.两条单链的走向是反平行的10.[]DNA双螺旋每上升一圈包括大约多少个碱基对?A.5;B.10;C.3.6;D.1311.[]下列关于RNA的描述,哪项是错误的?A.rRNA是核糖体的重要组分,核糖体是蛋白质合成的场所B.mRNA是蛋白质合成的模板,是遗传信息的载体C.tRNA是所有RNA分子中最小的一类D.只有mRNA存在于胞浆中12.[]稀有碱基主要存在于下列哪种分子中?A.mRNA;B.tRNA;C.rRNA;D.DNA13.[]下列分子中有互补链的是:A.RNA;B.NAD+;C.DNA;D.FAD14.[]反密码环存在于哪种分子中?A.DNA;B.mRNA;C.rRNA;D.tRNA15.[]人体内最重要的直接供能的核苷酸是:A.GTP;B.ATP;C.UTP;D.CTP16.[]在适宜条件下,核酸分子两条链通过杂交作用可自行形成双螺旋,取决于:A.DNA的Tm值B.碱基序列的互补C.核酸链的长短D.序列的重复程度17.[]tRNA的分子结构特征是:A.有反密码环和3'-端有-CCA序列 B.有反密码环和5'-端有-CCA序列C.有密码环D.3'-端有-OH序列18.[]下列复合物中除哪个外,均是核酸与蛋白质组成的复合物?A.核糖体;B.病毒C.端粒酶D..核酶19.[]胸腺嘧啶除了作为DNA的主要组分外,还经常出现在下列哪种RNA分子中A.mRNAB.tRNA;C.rRNA;D.所有RNA20.[]反密码子5'-UGA-3'所识别的密码子是:A.ACU;B.ACT;C.UCA;D.TCA21[]热变性的DNA具有下列哪种特征?A.核苷酸间的磷酸二酯键断裂C.260nm处的光吸收下降B.形成三股螺旋D.GC对含量直接影响Tm值22.[]双链DNA的Tm较高是由于下列哪组核苷酸含量较高所致:A.A+G;B.C+T;C.A+T;D.G+C 23.[]图中,哪一点代表双链DNA的Tm值?A.A;C.C;B.B;D.D(二)判断题(用Vx表示):1.[]DNA分子基本组成单位有AMP、GMP、CMP和TMP。
核酸名词解释生物化学
核酸是一类重要的生物分子,是构成生物体的基本遗传物质。
它们由核苷酸单元组成,每个核苷酸由一个糖分子、一个碱基和一个磷酸基团组成。
在生物体内,核酸分为两种类型:脱氧核酸(DNA)和核糖核酸(RNA)。
DNA是一种双链结构,由两根互补的单链组成,形成了著名的双螺旋结构。
RNA则是单链结构。
DNA负责储存和传递遗传信息,而RNA则在蛋白质合成中起着重要的作用。
核酸的碱基是决定其遗传信息的关键部分。
DNA中有四种碱基:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)。
RNA中胸腺嘧啶(T)被一个类似的碱基尿嘧啶(U)取代。
这些碱基的顺序以及它们在核酸链中的排列方式决定了生物体的遗传信息。
除了遗传信息的储存和传递,核酸还参与了许多生物化学过程。
例如,RNA可以作为一种酶的形式存在,称为核酸酶(RNA酶),它们能够催化和调控生物体内的化学反应。
此外,核酸还参与了细胞信号传导、蛋白质合成、基因调控等许多生物过程。
由于核酸在生物体内的重要作用,对核酸的研究也成为生物化学领域的重要研究方向。
通过研究核酸的结构和功能,科学家们可以更好地
理解生命的本质,并为疾病的诊断和治疗提供新的思路和方法。
核酸的二级结构名词解释生物化学
核酸的二级结构是指在核酸分子中,由于碱基间的氢键相互作用,使得核酸链形成稳定的空间结构。
核酸的二级结构包括双螺旋结构和发夹结构。
1. 双螺旋结构:是指DNA分子呈现出的经典的螺旋状结构。
DNA分为两条链,由碱基对通过氢键连接起来。
这里的碱基对有规则的配对方式,即腺嘌呤(A)始终与胸腺嘧啶(T)形成两个氢键,鸟嘌呤(G)始终与胞嘧啶(C)形成三个氢键。
双螺旋结构能够提供DNA分子的稳定性,同时还能保护内部的碱基。
2. 发夹结构:是指RNA分子可形成的一种结构,其形状类似一个发夹。
这种结构主要是依靠碱基间的氢键相互作用以及链间的碱基与骨架之间的氢键相互作用所稳定。
发夹结构多见于RNA分子的单链区域,在核酸的折叠和功能中起到重要的作用。
核酸的生物化学特性与功能研究进展核酸是生物体中非常重要的生物大分子之一,它在生命活动中发挥着关键的作用。
在过去的几十年里,科学家们对核酸的生物化学特性与功能进行了广泛研究,取得了许多重要的进展。
本文将综述这些研究进展,探讨核酸的结构特性、功能和应用前景。
一、核酸的结构特性1. DNA的双螺旋结构DNA(脱氧核糖核酸)以其独特的双螺旋结构而为人所熟知。
DNA 双螺旋结构的发现为进一步研究核酸的功能奠定了基础。
该结构由两个互补的单链DNA通过氢键相互缠绕形成,有序排列的碱基序列包含有机体的遗传信息。
2. RNA的多样结构RNA(核糖核酸)具有多种结构,包括单链RNA(ssRNA)和双链RNA(dsRNA)等。
ssRNA能够通过特定的碱基配对形成次级结构,其中重要的类型包括折叠RNA(folded RNA)和发夹RNAs(hairpin RNAs)。
dsRNA则在某些生物过程中起到调节基因表达等重要功能。
二、核酸的功能1. 遗传信息的传递DNA是遗传物质的载体,它能够储存和传递有机体的遗传信息。
DNA通过基因表达机制,指导蛋白质的合成过程,从而决定生物的性状和功能。
RNA则在转录和翻译过程中参与基因表达调控,与DNA共同完成遗传信息的传递。
2. 酶的催化作用核酸既可以作为催化酶(核酸酶)的组成部分,也可以与其他分子一起形成复合酶。
核酸酶负责DNA、RNA的降解和修复,对维持遗传信息的完整性和稳定性起到至关重要的作用。
3. 基因调控和表达核酸在基因调控和表达过程中发挥重要功能。
例如,miRNA (microRNA)通过与靶基因mRNA结合,调控基因的转录和翻译水平。
这种调控方式在植物和动物的发育、免疫和疾病中具有重要作用。
4. 药物与基因治疗核酸作为药物分子具有广泛的应用前景。
例如,寡核苷酸和寡核苷酸合成物可以用于抑制特定基因的表达,用于疾病的治疗。
此外,基因治疗(gene therapy)也利用核酸修复和替代缺陷基因,为某些疾病的治疗带来新的可能性。
1 / 23 1.4.3 第三章 核酸化学 第三章 核酸化学
学习目标 知识目标 (1)阐述核酸的元素组成、组成成分及组成单位。 (2)描述DNA、mRNA、tRNA和rRNA的结构特点。 (3)阐述核酸的变性、复性、杂交等基本概念,并列举其应用。 (4)了解核酸的性质、体内重要的游离核苷酸及其衍生物的功能。 (5)概括核酸提取的有关原理和注意事项。 能力目标 (1)至少会用一种方法完成核酸的含量测定。 (2)具备核酸类药物在使用、储存和运输中的基本技能。 核酸是生物体的基本组成物质,是重要的生物大分子,从高等的动物、植物到简单的病毒都含有核酸。核酸是遗传信息的载体。
1869年,年轻的瑞士科学家Miescher从脓细胞核中分离出一种含有C、H、O、N和P的物质,当时称为核素。因发现核素显酸性,后又改称为核酸,意即来自细胞核的酸性物质。随后,Hoppe-Seyler从酵母中分离出一种类似的物质,即现在的RNA。自那之后,核酸研究并非非常顺利。直到1909年,美国生物化学家Owen发现核酸中的糖分子是由5个碳原子组成的核糖。1930年,他又发现Miescher在绷带上发现的核酸中的糖分子比2 / 23
Hoppe-Seyler发现的“酵母核酸”中的糖分子少了1个氧原子,因此将这种糖分子称为脱氧核糖,含两种不同糖分子的核酸分别称为脱氧核糖核酸(DNA)和核糖核酸(RNA)。1934年,Owen将核酸水解,证明核酸的基本组成单位是核苷酸。同时,在这一时期还证明了核苷酸是由碱基、戊糖和磷酸组成。20世纪50年代初,Chargaff发现DNA的嘌呤和嘧啶组成有其特殊规律。1953年,Watson和Crick提出了DNA的双螺旋结构模型。从此,核酸的研究经历了基因克隆、人类3×109个碱基对(base pair,bp)的基因测序,开始进入基因组学研究阶段。 1.4.3.1 第一节 核酸的化学组成 第一节 核酸的化学组成
一、核酸的元素组成 组成核酸的元素有C、H、O、N、P 5种,其中磷的含量在各种核酸中变化范围不大,平均含磷量为9%~10%。因而,可通过测定生物样品中磷的含量来计算样品中核酸含量。
二、核酸的基本组成单位——核苷酸 核酸在核酸酶的作用下水解为核苷酸,因此核酸的基本组成单位是核苷酸。为区别多、寡核苷酸,故将核苷酸也称为单核苷酸。核苷酸完全水解可释放出等摩尔量的碱基、戊糖和磷酸。
知识链接 核苷酸的利用 3 / 23
调味料:鸟苷酸(GMP)、肌苷酸(IMP)等核苷酸属于呈味性核苷酸,除了本身具有鲜味之外,在和左旋谷氨酸(味精)组合时,还有提高鲜味的作用,可作为调料、汤料的原料使用。
食品添加剂:母乳中含有尿苷酸(UMP)、胞苷酸(CMP)、腺苷酸(AMP)、鸟苷酸(GMP)、肌苷酸(IMP)等多种核苷酸,对提高婴儿的免疫调节功能和记忆力发挥着作用。在欧美等国家生产的婴儿奶粉均按照母乳中的含量添加微量核苷酸,也有添加RNA的例子。 药物:核苷酸作为药物,可抑制尿道发炎,在美国也有作为免疫调节剂给手术后的患者使用的例子。
(一)核苷酸的组成成分 1.碱基 核酸中的碱基主要有嘧啶碱(pyrimidine base)和嘌呤碱(purine base)两种。 (1)嘧啶碱:嘧啶碱是含有两个相间氮原子的六元杂环化合物。核酸中主要的嘧啶碱衍生物有三种:胞嘧啶(cytosine,C)、胸腺嘧啶(thymine,T)和尿嘧啶(uracil,U)。
(2)嘌呤碱:嘌呤碱由嘧啶环与咪唑环合并而成。核酸中的嘌呤碱主要有两种,即腺嘌呤(adenine,A)和鸟嘌呤(guanine,G)。 4 / 23
(3)稀有碱基:核酸中还有一些含量甚少的碱基,称为稀有碱基(或修饰碱基)。常见的稀有嘧啶碱基有5-甲基胞嘧啶、5,6-二氢尿嘧啶等;常见的稀有嘌呤碱基有7-甲基鸟嘌呤、N6-甲基腺嘌呤等。
知识链接 20世纪90年代,人类基因工程启动,科学家每天人工测序5000对碱基。21世纪初期,自动测序仪每天可以测序10万对碱基,而现在,每天可以测序250亿对碱基。但是,目前要分析人类所有的基因仍然需要至少几周的时间。
韩国KAIST的研究人员让一个DNA通过纳米通道,每个碱基就会附着在石墨纳米带状体上几微秒。通过改变石墨导电性能的方式分离四种碱基——腺嘌呤、胸腺嘧啶、胞嘧啶和鸟嘌呤。这样基因测序可以通过观察导电性变化,更快更准确地进行。预计可以在1h内分析30亿对碱基,这对于基因组测序研究而言具有重要的意义。
这项研究对于基因和生物工程领域研究意义重大,而且还能够为疑难杂症的治疗提供解决方案。这种方法还将推进基于基因信息的医疗、基因突变、遗传性疾病、个体和适应性疾病的发展,甚至推进人类进化研究的进程。
2.戊糖 核酸中所含的糖是核糖(D-ribose)和脱氧核糖(deoxy-D-ribose),均属于戊糖。戊糖都是以β-D-呋喃糖的环状形式存在。由于环状糖中的第1位碳原子(C1′)是5 / 23
不对称碳原子,所以有α-及β-两种构型。核酸中所含的戊糖均为β-型。核糖中的C2′—OH脱氧后形成脱氧核糖(2′-deoxy-D-ribose)。核糖上的碳原子序号上加“′”,是为了区别于碱基上的碳原子序号。
(二)核苷酸的分子结构 1.核苷 由一个戊糖(核糖或脱氧核糖)和一个碱基(嘌呤碱或嘧啶碱)缩合而成。 戊糖第1位碳原子(C1′)上的羟基与嘌呤碱第9位氮原子(N9)或嘧啶碱第1位氮原子(N1)上的氢缩合脱水形成糖苷键。核糖与碱基通过糖苷键连成核糖核苷,脱氧核糖与碱基通过糖苷键连成脱氧核糖核苷。
2.核苷酸 核苷酸由磷酸与一分子核苷通过磷酸酯键连成。 核苷中戊糖的羟基与磷酸作用形成磷酸酯键,核苷与磷酸通过磷酸酯键连接成的化合物即为核苷酸。核苷酸分为核糖核苷酸(nucleoside monophosphate,NMP)和脱氧核糖核6 / 23
苷酸(deoxynucleoside monophosphate,dNMP),分别由核糖核苷和脱氧核糖核苷与磷酸作用形成。体内通常由核糖核苷的戊糖C5′的自由羟基(—OH)与磷酸形成酯键,构成5′-核苷酸。
构成DNA和RNA的8种常见核苷酸的组成比较如表3-1所示。 表3-1 两类核酸的主要碱基、核苷及核苷酸组成
三、体内重要的游离核苷酸及其衍生物 1.多磷酸核苷酸 结合一个磷酸的核苷酸称为核苷一磷酸(NMP),因此,游离的5′-腺苷酸(AMP)和5′-脱氧腺苷酸(dAMP)分别称为腺苷一磷酸和脱氧腺苷一磷酸。结合两个和三个磷酸的,则分别称为核苷二磷酸(NDP)和脱氧核苷三磷酸(NTP),又统称为多磷酸核苷酸,结构如图3-1所示。 7 / 23
图3-1 AMP、ADP、ATP的结构示意图 核苷三磷酸(NTP和dNTP)是合成核酸(DNA和RNA)的直接原料。 2.体内重要的核苷酸衍生物 (1)环化核苷酸:细胞中普遍存在两种环化核苷酸:3′,5′-环腺苷酸(cAMP)和3′,5′-环鸟苷酸(cGMP),其结构如下:
环化核苷酸不是核酸的组成成分,在细胞中含量很少,但有重要的生理功能。现已证明,两者均可作为激素的第二信使,在细胞的代谢调节中有重要作用。
(2)辅酶类核苷酸:一些核苷酸的衍生物是重要的辅酶(辅基),如辅酶NAD+
(烟酰胺腺嘌呤二核苷酸,辅酶Ⅰ)、NADP+(烟酰胺腺嘌呤二核苷酸磷酸,辅酶Ⅱ)、FAD(黄素腺嘌呤二核苷酸)等。 1.4.3.2 第二节 核酸的结构与功能 第二节 核酸的结构与功能 8 / 23
核酸是生物体内重要的生物大分子化合物,参与遗传信息的储存、转录和表达。这些生物学功能都与其复杂的化学结构密切相关。
核酸是核苷酸的多聚化合物。一个核苷酸C3′上的羟基与另一个核苷酸C5′上的磷酸缩合脱水形成3′,5′-磷酸二酯键,多个核苷酸经3′,5′-磷酸二酯键构成一条没有分支的线性大分子,称为多聚核苷酸链,3′,5′-磷酸二酯键是核酸的主键。
由核糖核苷酸或脱氧核糖核苷酸通过3′,5′-磷酸二酯键相连组成的多聚核苷酸链是所有RNA或DNA的共同结构。这一连接方式决定了多聚核苷酸链具有方向性,每条多聚核苷酸链上具有两个不同末端,戊糖5′磷酸基指向的一端称为5′末端,戊糖3′羟基指向的一端称为3′末端。习惯上将5′端写在左边,将3′端写在右边,即按5′→3′书写。 5′……ACTACGGUA……3′ 一、DNA的结构
(一)DNA的一级结构 多数DNA分子是由两条多聚脱氧核苷酸链构成的双链分子,两条链中脱氧核苷酸可按一定的顺序通过磷酸二酯键相连而成,从而形成了每一种DNA分子特定的核苷酸序列。DNA分子的核苷酸排列顺序,称为DNA的一级结构。
DNA分子的序列特征代表其一级结构特征,同时记录有相应的遗传信息。分析DNA分子的一级结构对阐明DNA结构与功能的关系具有重要的意义。
(二)DNA的二级结构 9 / 23
1953年,Watson和Crick根据DNA的X线衍射分析数据和碱基分析数据,提出了DNA的双螺旋结构模型(图3-2),确定了DNA的二级结构形式,大大推动了生物学的发展。
图3-2 DNA的双螺旋结构的三种结构模型 知识链接 DNA分子双螺旋结构模型的诞生 20世纪50年代初,英国科学家威尔金斯(Wilkins)等用X线衍射技术对DNA结构研究了3年,意识到DNA是一种螺旋结构;另一方面,女物理学家富兰克林拍到一张十分清晰的DNA的X线衍射照片。1952年5月,威尔金斯向克里克(Crick)介绍了这张照片。当时克里克正与美国青年生物学家沃森(Watson)在卡文迪许实验室研究DNA结构。美国的查尔加夫(Chargaff)在脱氧核糖核酸的研究中,发现A(%)=T(%)、G(%)=C(%)的事实,克里克立即意识到,嘌呤碱和嘧啶碱的数目相等意味着只有一种可能,那就是他们之间互相以配对的形式存在,于是他提出了DNA中嘌呤碱与嘧啶碱的碱基配对的假设。1953年4月25日,克里克与沃森在《自然》杂志上发表了一篇短文,