核酸的化学
- 格式:doc
- 大小:1.05 MB
- 文档页数:27
核酸化学知识点总结一、核酸的化学结构1. 核酸的基本结构核酸是由核苷酸组成的,核苷酸又由碱基、糖和磷酸组成。
碱基分为嘌呤和嘧啶两类,嘌呤包括腺嘌呤(A)和鸟嘌呤(G),嘧啶包括胞嘧啶(C)和胸腺嘧啶(T)或尿嘧啶(U)。
糖分为核糖和脱氧核糖,其中RNA中的糖为核糖,DNA中的糖为脱氧核糖。
核苷酸是由碱基和糖组成的核苷,再与磷酸结合形成核苷酸。
2. 核酸的二级结构核酸的二级结构是指单条核酸链上碱基序列所具有的空间结构。
DNA分子具有双螺旋结构,由两条互补的DNA链通过氢键相互缠绕形成。
RNA分子没有固定的二级结构,但在一些情况下也可以形成双链结构。
3. 核酸的三级结构核酸的三级结构是指单条核酸链在立体空间上所呈现的结构。
DNA分子呈现出右旋的螺旋结构,RNA分子则可以形成各种复杂的结构。
4. 核酸的四级结构核酸的四级结构是指多条核酸链相互作用所形成的更为复杂的结构。
在一些特定情况下,核酸分子可以形成四级结构,并参与到一些生物学过程中。
二、核酸的功能1. 遗传信息的储存与传递核酸是生物体内遗传信息的携带者,DNA分子储存着生物体的遗传信息,RNA分子则在转录和翻译过程中参与到遗传信息的传递和表达中。
2. 蛋白质合成核酸通过转录和翻译的过程,参与到蛋白质的合成过程中。
DNA分子在转录过程中产生mRNA,mRNA再通过翻译过程将基因信息翻译成蛋白质。
3. 调节基因表达在一些生物学过程中,核酸可以通过转录调控、剪接调控和甲基化调控等方式来参与到基因的表达调节中。
4. 氧化磷酸化核酸分子参与到细胞内氧化磷酸化过程中,通过释放出磷酸来提供细胞内化学能量,并维持细胞内正常生理活动。
三、核酸的合成1. DNA的合成(DNA合成)DNA的合成是DNA聚合酶在DNA模板的引导下,将合适的脱氧核苷酸三磷酸酶与新合成的核甙核苷酸通过磷酸二酯键连接,使DNA链不断延长的过程。
DNA合成是细胞分裂前的准备工作,也是基因工程和分子生物学研究中的重要技术手段。
核酸的化学组成:核酸-----核苷酸-----核苷+ 磷酸-----戊糖+ 碱基染色体(chromosome):是指存在于细胞核中的棒状可染色结构,由染色质(chromatin)构成。
真核细胞染色体的特征:(1)分子结构相对稳定;(2)能够自我复制,使亲子代间保持连续性;(3)能够指导蛋白质合成,控制整个生命过程;(4)能够产生可遗传的变异。
染色体上的蛋白质主要包括组蛋白和非组蛋白。
非组蛋白包括酶类及细胞分裂有关的一些蛋白。
它们可能与DNA的结构、复制及转录等有关。
C-值(C-value):一种生物单倍体基因组DNA的总量。
C-值矛盾(C-value paradox):基因组大小与机体的遗传复杂性缺乏相关性。
真核细胞DNA的种类:不重复序列、中度重复序列、高度重复序列(卫星DNA)核小体是组成染色质的重复单位,每个核小体由约200(160~250)bp的DNA,和H2A、H2B、H3、H4各2个,以及一个H1组成。
核心颗粒结构:放出H1;剩余的颗粒称为核心颗粒,由H2A、H2B、H3、H4组成DNA-----核小体-----30nm纤丝----中期染色质-----染色体单体真核生物基因组的结构特点:1、基因组庞大;2、大量重复序列的存在;3、大部分序列为非编码序列;4、转录产物为单顺反子;5、真核基因是断裂基因;6、真核基因存在大量的顺式作用元件;7、DNA存在多态性;8、具有端粒结构DNA多态性:指DNA序列中发生变异而导致的个体间核苷酸序列的差异,主要包括单核苷酸多态性、串联重复序列多态性原核生物的遗传物质只以裸露的核酸分子存在,且与少量的非组蛋白结合,但不形成染色体结构,习惯上把原核生物的核酸分子也称为染色体。
原核生物基因组的特点(1)结构简练其DNA分子绝大多数用于编码蛋白质,不翻译的序列只占4%,并且编码序列是连续的;(2)存在转录单元功能上密切相关的基因构成操纵子或高度集中,并且可被一起转录;(3)重叠基因和基因内基因即同一段DNA序列能携带两种不同蛋白质的遗传信息。
生物化学要点 _第二章核酸化学第二章核酸化学一、核酸的化学构成 :1、含氮碱 : 参加核酸与核苷酸构成的含氮碱主要分为嘌呤碱与嘧啶碱两大类。
构成核苷酸的嘧啶碱主要有三种——尿嘧啶 (U) 、胞嘧啶 (C)与胸腺嘧啶 (T),它们都就是嘧啶的衍生物。
构成核苷酸的嘌呤碱主要有两种——腺嘌呤 (A) 与鸟嘌呤 (G),它们都就是嘌呤的衍生物。
2、戊糖 :核苷酸中的戊糖主要有两种,即β-D- 核糖与β-D-2- 脱氧核糖 ,由此构成的核苷酸也分为核糖核苷酸与脱氧核糖核酸两大类。
3、核苷 :核苷就是由戊糖与含氮碱基经脱水缩合而生成的化合物。
由“罕有碱基”所生成的核苷称为“罕有核苷”。
如 :假尿苷 (ψ)二、核苷酸的构造与命名:核苷酸就是由核苷与磷酸经脱水缩合后生成的磷酸酯类化合物,包含核糖核苷酸与脱氧核糖核酸两大类。
核苷酸又可按其在 5’位缩合的磷酸基的多少 ,分为一磷酸核苷 (核苷酸 )、二磷酸核苷与三磷酸核苷。
别的 ,生物体内还存在一些特别的环核苷酸 ,常有的为环一磷酸腺苷 (cAMP) 与环一磷酸鸟苷 (cGMP),它们往常就是作为激素作用的第二信使。
核苷酸往常使用缩写符号进行命名。
第一位符号用小写字母 d 代表脱氧 ,第二位用大写字母代表碱基 ,第三位用大写字母代表磷酸基的数量 ,第四位用大写字母 P 代表磷酸。
三、核酸的一级构造 :核苷酸经过 3’ ,5-磷’酸二酯键连结起来形成的不含侧链的多核苷酸长链化合物就称为核酸。
核酸拥有方向性,5’-位上拥有自由磷酸基的尾端称为5’-端,3’-位上拥有自由羟基的尾端称为3’-端。
DNA 由 dAMP 、dGMP、dCMP 与 dTMP 四种脱氧核糖核苷酸所构成。
DNA 的一级构造就就是指 DNA 分子中脱氧核糖核苷酸的摆列次序及连结方式。
RNA由AMP,GMP,CMP,UMP 四种核糖核苷酸构成。
四、 DNA 的二级构造 :DNA 双螺旋构造就是 DNA 二级构造的一种重要形式 ,它就是 Watson与 Crick 两位科学家于 1953 年提出来的一种构造模型 ,其主要实验依照就是 Chargaff 研究小组对 DNA 的化学构成进行的剖析研究,即 DNA 分子中四种碱基的摩尔百分比为 A=T 、 G=C、 A+G=T+C(Chargaff 原则 ),以及由 Wilkins 研究小组达成的 DNA晶体 X 线衍射图谱剖析。
核酸的化学式核酸是生命的基础分子之一,是构成基因的重要物质。
其化学式为C10H12N5O3,是由核苷酸组成的长链分子。
核苷酸是核酸的单体,由糖、碱基和磷酸组成。
糖和碱基是核苷酸的基本结构单元,磷酸则是连接核苷酸的桥梁。
核酸的化学式的研究对于了解其结构和功能具有重要意义。
核酸的化学结构核酸由核苷酸组成,核苷酸是由糖、碱基和磷酸三个部分组成的。
糖是核苷酸的主要组成部分之一,有两种,分别是脱氧核糖和核糖。
核糖的化学式为C5H10O5,脱氧核糖的化学式为C5H10O4。
在核酸中,DNA中的糖为脱氧核糖,而RNA中的糖为核糖。
碱基是核苷酸的另一个组成部分,是核酸中最为重要的化学结构之一。
碱基有两类,分别是嘌呤和嘧啶。
嘌呤有两个环,其化学式为C5H4N4,包括腺嘌呤和鸟嘌呤;嘧啶有一个环,其化学式为C4H4N2,包括胸腺嘧啶和尿嘧啶。
在DNA中,碱基有四种,分别为腺嘌呤、鸟嘌呤、胸腺嘧啶和鸟嘌呤;在RNA中,碱基有三种,分别为腺嘌呤、鸟嘌呤和尿嘧啶。
磷酸是连接核苷酸的桥梁,其化学式为PO4。
在核苷酸中,磷酸连接糖和碱基,形成核苷酸的长链结构。
核酸中的磷酸基团是负电荷,因此,核酸的结构呈现出负电的特性。
核酸的功能核酸是生命的基础分子之一,其功能非常重要。
DNA是生命的遗传物质,可以传递父母亲的遗传信息给下一代,因此,DNA是生命的基础。
RNA则是DNA的转录产物,可以将DNA中的遗传信息转化为蛋白质的合成指令,因此,RNA是生命的重要组成部分。
除了遗传功能外,核酸还具有调节基因表达、参与细胞分裂等重要功能。
在细胞周期中,DNA需要不断地复制,以保证细胞的正常分裂。
RNA则参与蛋白质的合成,调节细胞的代谢活动。
结语核酸是生命的基础分子之一,其化学式为C10H12N5O3。
核酸由核苷酸组成,核苷酸是由糖、碱基和磷酸三个部分组成的。
核酸的化学结构对于了解其功能具有重要意义,对于生命科学领域的研究有着重要的意义。
第二章核酸的结构与功能第一节核酸的概念和化学组成一、核酸的发现及研究进展1、最早1868年,瑞士科学家Miescher从绷带脓细胞中发现含磷2.5%的化合物,称为核素。
2、1881年,Altmann从小牛胸腺、酵母中得到,它不含Pro,命名为核酸。
3、1914年,把小牛胸腺中得到的核酸称胸腺核酸(动物核酸),把从酵母中分离得到的核酸称酵母核酸(植物核酸)。
又根据戊糖分为脱氧核糖核酸——DNA和核糖核酸——RNA4、1944年,Avery研究肺炎球菌转化实验,证明DNA是遗传物质的结论。
最初是1928年,Gniffith以肺炎球菌作为转化的材料。
肺炎球菌光滑型(S型):菌落光滑、有荚膜、有毒性。
粗糙型(R型):菌落粗糙、无荚膜、无毒性。
活体转化,四组实验:①活S型菌—→Rat—→die②活R型菌—→Rat—→live③加热杀死的S型菌—→Rat—→live④加热杀死的S型菌—→Rat—→die活R型菌说明R型菌可以转化为活S型菌,加热杀死的S型菌中有一种物质可使活R型菌转化为S型菌。
1944年美国科学家Avery做了大量实验确定这种物质是DNA (转化因子)。
5、1953年,沃森和克里克提出DNA的双螺旋模型结构,不但阐明了DNA结构,而且对DNA的复制、遗传物质的传递、都作了重要的说明。
6、20世纪70年代,DNA重组技术应用——基因工程诞生。
7、2000~2002年人类基因组计划完成。
二、核酸的概念和重要性核酸是由核苷酸组成的具有复杂三维结构的大分子物质,包括DNA和RNA。
DNA主要分布在细胞核中;RNA分布在细胞质和细胞核中,主要有三种信使RNA(mRNA)、核蛋白体(rRNA)、转运(tRNA)。
真核生物中还有HnRNA和SnRNA,HnRNA是mRNA 的前体,SnRNA参与RNA的修饰加工等。
DNA是遗传的物质基础。
(一)核酸是遗传物质细胞核内DNA含量恒定,不受外界环境的影响。
生物遗传特征的延续和生物进化都由基因所决定的。
基因是具有遗传效应的DNA 片段。
(二)核酸参与蛋白质的生物合成mRNA是蛋白质合成材料,rRNA是核糖体的成分。
三、核酸在医药上的应用1、RNA:来源与微生物发酵,动物内脏,可用于改善精神迟缓,记忆衰退,刺激造血,促进白细胞再生,治疗初级癌症。
2、DNA:来源于微生物发酵,可用于改善疲劳,提高抗癌疗效。
3、免疫核糖核酸(iRNA):来源于免疫的动物内脏,用于肿瘤的免疫治疗。
4、多聚核苷酸(polyC,polyI):来源于微生物发酵和化学合成,作为干扰素的诱导剂。
5、核苷-磷酸(IMP、CMP、UMP):来源于微生物发酵。
IMP:治疗肝炎、肾炎、白血球升高等症CMP;治疗肝炎、肾炎、白血球、血小板升高四、核酸的基本结构单位——单核苷酸(一)核苷酸的概念核酸水解生成核苷酸,核苷酸进一步水解生成核苷和磷酸,核苷再水解生成碱基和戊糖。
核苷酸:由碱基、戊糖和磷酸组成和化合物,是核酸的基本结构单位。
核酸分子中的碱基有两类:嘌呤碱和嘧啶碱,嘌呤碱主要有腺嘌呤A、鸟嘌呤G;嘧啶碱主要有胞嘧啶C、尿嘧啶U和胸腺嘧啶T,称为基本碱基。
有些核酸分子中还有1-甲基腺嘌呤、次黄嘌呤、N6-甲基腺嘌呤等,它们在核酸分子中并不多见,称为稀有碱基。
核酸分子中的戊糖有两种:D-核糖、D-脱氧核糖,结构式如下:DNA和RNA分子的化学组成为RNA DNA碱基AGCU AGCT戊糖R dR磷酸磷酸磷酸(二)核苷酸的分子结构1、核苷核苷:由碱基和戊糖缩合形成的化合物。
碱基与核糖缩合形成核糖核苷,碱基与脱氧核糖核苷缩合形成脱氧核糖核苷,如腺嘌呤与核糖缩合生成腺嘌呤核苷,简称腺苷,其它核苷可依此命名,它们的分子结构如下:(投影膜)在核苷分子中,嘌呤碱基的N9与戊糖的C1连接,连接键为N-C 键,一般称为N-糖苷键,并且戊糖环的C1-OH为β构型,所以碱基与戊糖的连接为β-糖苷键。
为了与碱基相区别,将核苷分子中戊糖上原子的定位加“‘”表示。
2、核苷酸核苷分子中戊糖环上的羟基磷酸酯化,形成核苷酸,也可称磷酸核苷。
根据核苷酸分子中戊糖的不同,核苷酸可分为核糖核苷酸和脱氧核糖苷酸两类。
核糖有3个游离羟基(2,3,5)因此可形成三种核苷酸;脱氧核糖只有两个游离羟基(3,5)。
自然界中存在的游离核苷酸多为5‘-核苷酸(代号可略)。
如5‘-腺嘌呤核苷酸,简称腺苷酸。
,其它核苷酸的命名依次类推。
(投影膜)五、核苷酸的衍生物(一)多磷酸核苷酸凡含有一个磷酸基的核苷酸称为一磷酸核苷。
其中5‘-一磷酸核苷的磷酸基可进一步磷酸化,生成5‘-二磷酸核苷和5‘-三磷酸核苷。
以腺苷酸为例,结构式如下:(投影)常用的核苷酸及其简化符号见投影:常用的核苷酸及简化符号见表2-2一磷酸二磷酸三磷酸腺苷AMP ADP ATP鸟苷GMP GDP GTP胞苷CMP CDP CTP尿苷UMP UDP UTP 脱氧胸苷dTMP dTDP dTTP生物体内多磷酸核苷具有重要的生物学作用。
四种三磷酸核苷是合成RNA的重要原料,四种三磷酸脱氧核苷是合成DNA的重要原料。
ATP在生物体内化学能的储存和利用中起重要的作用。
(二)环核苷酸5‘-核苷酸的磷酸基可与戊糖上的3‘-OH缩合形成3‘,5‘-环核苷酸。
重要的环核苷酸有3‘,5‘-环腺苷酸(cAMP)和3‘,5‘-环鸟苷酸(cGMP),它们在组织细胞中起着传递信息的作用,称为“第二信使”。
(三)辅酶类核苷酸一些辅酶属于核苷酸类衍生物。
辅酶Ⅰ(NAD+)和辅酶Ⅱ(NADP+)都是腺嘌呤与尼克酰胺组成化合物,黄素单核苷酸(FMN)是异咯嗪、核醇和磷酸组成的化合物,黄素腺嘌呤二核苷酸(FAD)是由黄素单核苷酸与腺嘌呤核苷酸组成的化合物。
辅酶A(CoA-SH)是由腺嘌呤、氨基乙硫醇和叶酸组成的化合物,它们在糖、脂肪和蛋白质代谢中起着重要的作用。
第二节核酸的分子结构一、DNA的分子结构(一)DNA的碱基组成参与DNA组成主要四种碱基:A、C、G、T,还有少量稀有碱基。
20世纪50年代应用纸层析及紫外分光光度计对各种生物DNA 的碱基组成进行定量测定,发现如下规律:1、所有DNA中A和T的摩尔含量相等,即A=T,G和C的摩尔含量相等,即G=C,因此A+G=C+T。
2、DNA的碱基组成具有种的特异性,即不同生物种的DNA具有独特的碱基组成,但无组织和器官的特异性,且生长发育阶段、营养状态、环境都不会影响DNA的碱基组成。
(二)DNA的一级结构1977年,英国科学家Sanger首次测定噬菌体ΦX174的DNA,它是单链,由5386个碱基组成。
现已测定的最大噬菌体为λ-噬菌体。
DNA一级结构的定义:构成DNA的各个单核苷酸的数目和排列顺序。
实验分子表明,核酸分子中相邻核苷酸之间通过3‘,5‘-磷酸二酯键连接。
因为3‘,5‘-磷酸二酯键是在一个核苷酸的3‘-羟基与另一个核苷酸的5‘-磷酸之间形成的,所以由此连接的开链多核苷酸具有两端,戊糖3‘-羟基指向的一端称为3‘-末端,5‘-羟基指向的末端称为5‘-末端。
DNA的一级结构即是DNA分子中核苷酸的排列。
多核苷酸的分子结构书写格式可以写成线条式或文字缩写式如图:(投影膜)P和斜线代表3‘,5‘-磷酸二酯键,竖线表示核糖的碳链。
(三)DNA的二级结构1953年,Waston and Crick提出DNA的双螺旋结构模型。
(投影膜)1、DNA双螺旋模型提出的依据1)DNA碱基组成的分析:发现腺嘌呤和胸腺嘧啶含量相同(摩尔含量)A=T,C=G,说明可能A和T,G和C是配对的。
2)碱基的理化数据分析:嘌呤碱大,嘧啶碱小,因此A-T,G-C 配对是较合理的。
3)DNA纤维X-光衍射结构分析:Franklin制得精致的DNA纤维X-光衍射图,表明DNA分子中3.4Á和34Á的周期性结构,说明DNA可能存在着双螺旋性。
2、DNA双螺旋结构的特点1)DNA双螺旋分子由两条多核苷酸链组成,反向平行,即一条链走向3‘→5‘,另一条链为5‘→3‘,两条链均为右手螺旋,围绕同一中心轴形成右手螺旋。
2)脱氧核苷酸和磷酸基形成的链为基本骨架,在螺旋外侧,碱基分布在螺旋内侧3)内侧互补的碱基通过氢键性形成,A-T之间形成三个氢键,G-C之间形成两个氢键。
4)每个碱基对位于同一个平面内,碱基平面与中心轴垂直,相邻两个碱基距离为0.34nm,每螺旋一圈有10对碱基,相邻碱基平面距离为3.4 nm。
5)双螺旋结构上有二条螺形凹槽,一条较深,一条较浅。
较深的沟称大沟,较浅的沟称小沟。
3、维持DNA结构稳定的作用力1)碱基平面之间堆积力是维持双螺旋结构的主要力量。
2)碱基对之间的氢键。
3)磷酸基团上的负电荷和介质中的阳离子形成的离子键。
4、DNA双螺旋结构种类1)右手螺旋结构:由于DNA纤维的含水量不同,可分为三种:B-DNA、A-DNA、C-DNA。
①B-DNA:Waston and Crick提出的DNA双螺旋结构为B-DNA,另外溶液和细胞中天然状态的DNA可能是B-DNA。
②A-DNA:碱基与中心轴不相垂直,而呈20倾角。
③C-DNA:可能存在于染色体与某些病毒的DNA中。
三者区别见书本P91。
2)左手螺旋DNA1979年,美国麻省理功学院Rich从d(GpCpGpCpGpCp)一段脱氧核苷酸链X衍射中发现,糖与磷酸的走向是曲折的,又把左手螺旋称为Z-DNA螺旋。
Z-DNA和B-DNA的区别见P92。
(五)DNA的三级结构定义:指DNA双螺旋链的扭曲或压缩。
常见的形成超螺旋结构。
1、DNA超螺旋结构形成原因由于某种原因使双螺旋多旋转或少旋转几圈,这样双螺旋内的原子偏离正常位点,产生额外压力,能量增大。
如果双螺旋末端是开放的,这种张力可通过链的转动释放出来,DNA就恢复到原来正常状态。
如果螺旋双端是闭和或固定(不能转动),那么这些张力就不能释放出来,只能在DNA分子内部,使原子位置重新排列,这样使得DNA发生扭曲,即超螺旋结构。
2、生物体内的超螺旋结构在细菌、真核生物中的环状DNA,叶绿体DNA是超螺旋结构。
生物的细核内DNA是线形双螺旋DNA,当两端固定时,可形成,例如:人的染色体DNA与组蛋白结合,成环状DNA,形成核小体,许多核小体串联在一起,再经过反复折叠缠绕、压缩形成超螺旋结构。
二、RNA的种类和分子结构生物细胞内含有三种主要的RNA,即转运RNA(tRNA)、核糖体RNA(rRNA)信使RNA(mRNA)。
(一)转运RNA(tRNA)占全部RNA的15%,分子量较小,在2.5×104左右,由70—90个核苷酸组成。
tRNA在蛋白质生物合成过程中具有转运氨基酸的作用。
细胞内tRNA种类很多,每一种氨基酸都有相应的一种或几种tRNA。