立体几何-点线面位置关系+线面位置关系-定理+图
- 格式:doc
- 大小:90.00 KB
- 文档页数:4
立体几何常考定理总结(八大定理)一、线面平行的判定定理:线线平行线面平行文字语言:如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行、符号语言:关键点:在平面内找一条与平面外的直线平行的线二、线面平行的性质定理:线面平行线线平行文字语言:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行、符号语言:关键点:需要借助一个经过已知直线的平面,接着找交线。
三、面面平行的判定定理:线面平行面面平行文字语言:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行、符号语言:关键点:在要证明面面平行的其中一个面内找两条相交直线和另一面线面平行。
四、面面平行的性质定理: 面面平行线线平行、面面平行线面平行文字语言:如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行、符号语言:关键点:找第三个平面与已知平面都相交,则交线平行文字语言:如果两个平面平行,那么其中一个平面内的任意一条直线平行于另一个平面、符号语言:关键:只要是其中一个平面内的直线就行五、线面垂直的判定定理:线线垂直线面垂直文字语言:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面、符号语言:关键点:在平面内找两条相交直线与所要证的直线垂直六、线面垂直的性质定理:线面垂直线线垂直文字语言:若一条直线垂直于一个平面,则这条直线垂直平面内的任意一条直线、符号语言:关键点:往往线面垂直中的线线垂直需要用这个定理推出七、平面与平面垂直的判定定理:线面垂直面面垂直文字语言:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直、(如果一条直线垂直于一个平面,并且有另一个平面经过这条直线,那么这两个平面垂直)符号表示:关键点:在需要证明的两个平面中找线面垂直八、平面与平面垂直的性质定理:面面垂直线面垂直文字语言:如果两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面、符号语言:关键点:先找交线,再在其中一个面内找与交线垂直的线。
高一上学期立体几何知识点一、点、线(直线、射线、线段)、平面1平面的表示方法平行四边形(平面a平面ABCD,平面AC)或三角形二、立体图形的画法斜二测1、x不变、y一半、夹角45度2、斜二测和原图形的面积比为f42直观图2-1直观图的定义:是观察者站在某一点观察一个空间几何体而画出的图形,直观图通常是在平行投影下画出的空间图形。
2-2斜二测法做空间几何体的直观图⑴在已知图形中取互相垂直的轴Ox、Oy,即取/xOy=90°;⑵画直观图时,把它画成对应的轴O‘x‘、O'y,取/x‘O‘y'=45°或135°,它们确定的平面表示水平平面;⑶在坐标系x‘o'y‘中画直观图时,已知图形中平行于数轴的线段保持平行性不变;平行于x轴的线段保持长度不变;平行于y轴的线段长度减半。
结论:采用2斜二测法作出的直观图的面积是原平面图形的—4看不到的线用虚线(或者不画)需要有立体感。
(想垂直就垂直,想在里就在里,想在外就在外。
)三、立体图形之间的关系。
1点和线的位置关系(点在线上,点在线外)2点和面的位置关系(点在面上,点在面外)3线和线的位置关系(平行、相交、异面)4线和面的位置关系(线在面上,线面平行,线面相交(线面垂直))5面和面的位置关系(平行、相交(重合))四、各种角的范围1、异面直线所成的角的取值范围是2、直线与平面所成的角的取值范围是3、斜线与平面所成的角的取值范围4、二面角的大小用它的平面角来度量;取值范围是五、射影定理㈠空间几何体的类型1多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
棱柱多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三六、角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱ABCDEF-A'B‘C‘D‘E'F‘或棱柱A’D.侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.斜棱柱直棱称正棱柱平行六面体七、直平行六面体1棱柱的结构特征1.1棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
点、直线、平面之间的位置关系知识点总结立体几何知识点总结1.直线在平面内的判定1利用公理1:一直线上不重合的两点在平面内;则这条直线在平面内.2若两个平面互相垂直;则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内;即若α⊥β;A∈α;AB⊥β;则ABα.3过一点和一条已知直线垂直的所有直线;都在过此点而垂直于已知直线的平面内;即若A∈a;a⊥b;A∈α;b⊥α;则aα.4过平面外一点和该平面平行的直线;都在过此点而与该平面平行的平面内;即若Pα;P∈β;β∥α;P∈a;a∥α;则aβ.5如果一条直线与一个平面平行;那么过这个平面内一点与这条直线平行的直线必在这个平面内;即若a∥α;A∈α;A∈b;b∥a;则bα.2.存在性和唯一性定理1过直线外一点与这条直线平行的直线有且只有一条;2过一点与已知平面垂直的直线有且只有一条;3过平面外一点与这个平面平行的平面有且只有一个;4与两条异面直线都垂直相交的直线有且只有一条;5过一点与已知直线垂直的平面有且只有一个;6过平面的一条斜线且与该平面垂直的平面有且只有一个;7过两条异面直线中的一条而与另一条平行的平面有且只有一个;8过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.3.射影及有关性质1点在平面上的射影自一点向平面引垂线;垂足叫做这点在这个平面上的射影;点的射影还是点.2直线在平面上的射影自直线上的两个点向平面引垂线;过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.3图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面与射影面垂直时;射影是一条线段;当图形所在平面不与射影面垂直时;射影仍是一个图形.4射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:i射影相等的两条斜线段相等;射影较长的斜线段也较长;ii相等的斜线段的射影相等;较长的斜线段的射影也较长;iii垂线段比任何一条斜线段都短.4.空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行;并且方向相同;则这两个角相等.推论若两条相交直线和另两条相交直线分别平行;则这两组直线所成的锐角或直角相等.异面直线所成的角1定义:a、b是两条异面直线;经过空间任意一点O;分别引直线a′∥a;b′∥b;则a′和b′所成的锐角或直角叫做异面直线a和b所成的角.2取值范围:0°<θ≤90°.3求解方法①根据定义;通过平移;找到异面直线所成的角θ;②解含有θ的三角形;求出角θ的大小.5.直线和平面所成的角1定义和平面所成的角有三种:i垂线面所成的角的一条斜线和它在平面上的射影所成的锐角;叫做这条直线和这个平面所成的角.ii垂线与平面所成的角直线垂直于平面;则它们所成的角是直角.iii一条直线和平面平行;或在平面内;则它们所成的角是0°的角.2取值范围0°≤θ≤90°3求解方法①作出斜线在平面上的射影;找到斜线与平面所成的角θ.②解含θ的三角形;求出其大小.③最小角定理斜线和平面所成的角;是这条斜线和平面内经过斜足的直线所成的一切角中最小的角;亦可说;斜线和平面所成的角不大于斜线与平面内任何直线所成的角.6.二面角及二面角的平面角1半平面直线把平面分成两个部分;每一部分都叫做半平面.2二面角条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱;这两个平面叫做二面角的面;即二面角由半平面一棱一半平面组成.若两个平面相交;则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量;通常认为二面角的平面角θ的取值范围是0°<θ≤180°3二面角的平面角①以二面角棱上任意一点为端点;分别在两个面内作垂直于棱的射线;这两条射线所组成的角叫做二面角的平面角.如图;∠PCD是二面角α-AB-β的平面角.平面角∠PCD的大小与顶点C在棱AB上的位置无关.②二面角的平面角具有下列性质:i二面角的棱垂直于它的平面角所在的平面;即AB⊥平面PCD.ii从二面角的平面角的一边上任意一点异于角的顶点作另一面的垂线;垂足必在平面角的另一边或其反向延长线上.iii二面角的平面角所在的平面与二面角的两个面都垂直;即平面PCD⊥α;平面PCD⊥β.③找或作二面角的平面角的主要方法.i定义法ii垂面法iii三垂线法Ⅳ根据特殊图形的性质4求二面角大小的常见方法①先找或作出二面角的平面角θ;再通过解三角形求得θ的值.②利用面积射影定理S′=S·cosα其中S为二面角一个面内平面图形的面积;S′是这个平面图形在另一个面上的射影图形的面积;α为二面角的大小.③利用异面直线上两点间的距离公式求二面角的大小.7.空间的各种距离点到平面的距离1定义面外一点引一个平面的垂线;这个点和垂足间的距离叫做这个点到这个平面的距离.2求点面距离常用的方法:1直接利用定义求①找到或作出表示距离的线段;②抓住线段所求距离所在三角形解之.2利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上;则已知点到两平面交线的距离就是所求的点面距离.3体积法其步骤是:①在平面内选取适当三点;和已知点构成三棱锥;②求出此三棱锥的体积V和所取三点构成三角形的面积S;③由V=S·h;求出h即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.4转化法将点到平面的距离转化为平行直线与平面的距离来求.8.直线和平面的距离1定义一条直线和一个平面平行;这条直线上任意一点到平面的距离;叫做这条直线和平面的距离.2求线面距离常用的方法①直接利用定义求证或连或作某线段为距离;然后通过解三角形计算之.②将线面距离转化为点面距离;然后运用解三角形或体积法求解之.③作辅助垂直平面;把求线面距离转化为求点线距离.9.平行平面的距离1定义个平行平面同时垂直的直线;叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分;叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.2求平行平面距离常用的方法①直接利用定义求证或连或作某线段为距离;然后通过解三角形计算之.②把面面平行距离转化为线面平行距离;再转化为线线平行距离;最后转化为点线面距离;通过解三角形或体积法求解之.10.异面直线的距离1定义条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度;叫做两条异面直线的距离.任何两条确定的异面直线都存在唯一的公垂线段.2求两条异面直线的距离常用的方法①定义法题目所给的条件;找出或作出两条异面直线的公垂线段;再根据有关定理、性质求出公垂线段的长.此法一般多用于两异面直线互相垂直的情形.②转化法为以下两种形式:线面距离面面距离③等体积法④最值法⑤射影法⑥公式法。
立体几何与空间向量03 空间点、线、面的位置关系一、具体目标:1.理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理;2.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.二、知识概述:1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).(2)公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面).(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2. 空间两直线的位置关系直线与直线的位置关系的分类⎩⎨⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内直线与平面的位置关系有平行、相交、在平面内三种情况.平面与平面的位置关系有平行、相交两种情况.平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫作异面直线a ,b 所成的角(或夹角).②范围:.4.异面直线的判定方法: ]2,0(π【考点讲解】判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线;反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.5.求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.【温馨提示】平面的基本性质,点、直线、平面之间的位置关系是高考试题主要考查知识点,题型除了选择题或填空题外,往往在大题中结合平行关系、垂直关系或角的计算间接考查.1.【2019年高考全国Ⅲ卷】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【解析】本题主要考查的空间两条直线的位置关系问题,要求会构造三角形,讨论两直线是否共面,并通过相应的计算确定两条直线的大小关系.如图所示,作EO CD⊥于O,连接ON,BD,易得直线BM,EN是三角形EBD的中线,是相交直线.过M作MF OD⊥于F,连接BF,Q平面CDE⊥平面ABCD,,EO CD EO⊥⊂平面CDE,EO∴⊥平面ABCD,MF⊥平面ABCD,MFB∴△与EON△均为直角三角形.设正方形边长为2,易知12EO ON EN===,,5,2MF BF BM==∴=,BM EN∴≠,故选B.] 2 ,0(π【真题分析】【答案】B2.【2018年高考全国Ⅱ卷理数】在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为( )A .15 BCD【解析】方法一:用一个与原长方体相同的长方体拼到原长方体的前面,如图,则11B P AD ∥,连接DP ,易求得1DB DP =,12B P =,则1DB P ∠是异面直线1AD 与1DB 所成的角,由余弦定理可得22211111cos 2DB B P DP DB P DB PB +-∠===⋅.故选C.方法二:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则()()((110,0,0,1,0,0,,D A B D ,所以((11,AD DB =-=u u u u r u u u u r ,因为111111cos ,5AD DB AD DB AD DB ⋅===u u u u r u u u u r u u u u r u u u u r u u u u r u u u u r , 所以异面直线1AD 与1DB所成角的余弦值为5,故选C. 【答案】C3. 【2018年高考全国Ⅱ卷文数】在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( )A.2 BCD【解析】如图,在正方体1111ABCD A B C D -中,CD AB ∥,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以BE =,则tan BE EAB AB ∠===.故选C .【答案】C4.【2017年高考全国Ⅱ卷理数】已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A.2 B.5 C.5D.3 【解析】如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为1111,BC D BC BD C D AB ∠=====Q易得22211C D BD BC =+,因此111cos 5BC BC D C D ∠===,故选C . 【答案】C5.【2017年高考全国Ⅲ卷文数】在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( )A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【解析】根据三垂线定理的逆定理,可知平面内的线垂直于平面的斜线,则也垂直于斜线在平面内的射影.A.若11A E DC ⊥,那么11D E DC ⊥,很显然不成立;B.若1A E BD ⊥,那么BD AE ⊥,显然不成立;C.若11A E BC ⊥,那么11BC B C ⊥,成立,反过来11BC B C ⊥时,也能推出11BC A E ⊥,所以C 成立;D.若1A E AC ⊥,则AE AC ⊥,显然不成立,故选C.【答案】C6.【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ; ②m ∥α; ③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.【答案】如果l ⊥α,m ∥α,则l ⊥m .7.【2017年高考全国Ⅲ卷理数】a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最大值为60°. 其中正确的是________.(填写所有正确结论的编号)【解析】设1AC BC ==.由题意,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,由,AC a AC b ⊥⊥,又AC ⊥圆锥底面,所以在底面内可以过点B ,作BD a ∥,交底面圆C 于点D ,如图所示,连接DE ,则DE ⊥BD ,DE b ∴∥,连接AD ,等腰ABD △中,AB AD ==当直线AB 与a 成60°角时,60ABD ∠=o ,故BD =Rt BDE △中,2,BE DE =∴=B 作BF ∥DE ,交圆C 于点F ,连接AF ,由圆的对称性可知BF DE ==ABF ∴△为等边三角形,60ABF ∴∠=o ,即AB 与b 成60°角,②正确,①错误.由图可知③正确;很明显,可以满足平面ABC ⊥直线a ,则直线AB 与a 所成角的最大值为90°,④错误.故正确的是②③.【答案】②③8.【2016高考浙江文数】如图,已知平面四边形ABCD ,AB =BC =3,CD =1,ADADC =90°.沿直线AC 将△ACD 翻折成△ACD ',直线AC 与BD '所成角的余弦的最大值是______.【解析】设直线AC 与'BD 所成角为θ.设O 是AC 中点,由已知得AC =如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z轴,建立空间直角坐标系,由(0,2A,(2B,(0,2C -,作DH AC ⊥于H ,翻折过程中,'D H 始终与AC 垂直,26CD CH CA ===,则3OH =,DH =='(,sin )636D αα-,则'sin )6236BD αα=--uuu r ,与CA uu r 平行的单位向量为(0,1,0)n =r , 所以cos cos ',BD n θ=<>uuu r r ''BD n BD n⋅=uuu r r uuu r rcos 1α=时,cos θ取最大值9.9.【2017天津,文17】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(I )求异面直线AP 与BC 所成角的余弦值;(II )求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.【分析】(Ⅰ)异面直线所成的角一般都转化为相交线所成的角,//AD BC ,所以PAD ∠即为所求,根据余弦定理求得,但本题可证明AD PD ⊥,所以cosAD PAD AP ∠=;(Ⅱ)要证明线面垂直,根据判断定理,证明线与平面内的两条相交直线垂直,则线与面垂直,即证明,PD BC PD PB ⊥⊥;(Ⅲ)根据(Ⅱ)的结论,做//DF AB ,连结PF ,DFP ∠即为所求【解析】(Ⅰ)解:如图,由已知AD //BC ,故DAP ∠或其补角即为异面直线AP 与BC 所成的角.因为AD ⊥平面PDC ,所以AD ⊥PD .在Rt △PDA 中,由已知,得225AP AD PD =+=,故5cos AD DAP AP ∠==. 所以,异面直线AP 与BC C(Ⅱ)证明:因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD .又因为BC //AD ,所以PD ⊥BC ,又PD ⊥PB ,所以PD ⊥平面PB C.10.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F .所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E ,EG O 为A 1G 的中点,故12A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B 1,0),1B ,3,2F ,C (0,2,0).因此,3,2EF =u u u r ,(BC =u u u r .由0EF BC ⋅=u u u r u u u r 得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(0223)BC A C --u u u r u u u u r ,,,,,.设平面A 1BC 的法向量为n ()x y z =,,,由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩u u u r n n,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅u u u r u u u r u u u r ,n n n |, 因此,直线EF 与平面A 1BC 所成的角的余弦值为35.2.【2017课标1,文6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( ) A . B .C .D .【解析】本题考点是线面平行的判断问题,由题意可知:第二个选项中AB ∥MQ ,在直线AB ∥平面MNQ ,第三个选项同样可得AB ∥MQ ,直线AB ∥平面MNQ ,第四个选项有AB ∥NQ ,直线AB ∥平面MNQ ,只有选项A 不符合要求【答案】A2.空间中,可以确定一个平面的条件是( )A .两条直线B .一点和一条直线C .一个三角形D .三个点【解析】不共线的三点确定一个平面,C 正确;A 选项,只有这两条直线相交或平行才能确定一个平面;B 选项,一条直线和直线外一点才能确定一个平面;D 选项,不共线的三点确定一个平面.【答案】C3.在三棱锥A -BCD 的棱AB 、BC 、CD 、DA 上分别取E 、F 、G 、H 四点,如果EF ∩HG =P ,则点P ( )A .一定在直线BD 上B .一定在直线AC 上 【模拟考场】C .在直线AC 或BD 上 D .不在直线AC 上,也不在直线BD 上【解析】如图所示,∵EF ⊂平面ABC ,HG ⊂平面ACD ,EF ∩HG =P ,∴P ∈平面ABC ,P ∈平面ACD .又∵平面ABC ∩平面ACD =AC ,∴P ∈AC ,故选B .【答案】B4.已知平面α和直线l ,则在平面α内至少有一条直线与直线l ( )A.平行B.垂直C.相交D.以上都有可能【解析】本题的考点是直线与平面的位置关系,直线与直线的位置关系,若直线l 与平面α相交,则在平面α内不存在直线与直线l 平行,故A 错误;若直线l ∥平面α,则在平面α内不存在直线与l 相交,故C 错误;对于直线l 与平面α相交,直线l 与平面α平行,直线l 在平面α内三种位置关系,在平面α内至少有一条直线与直线l 垂直,故选B.【答案】B5.如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=︒,2BC AD =,PAB ∆和PAD ∆都是等边三角形,则异面直线CD 和PB 所成角的大小为( )A .90︒B .75︒C .60︒D .45︒【解析】设1AD =,则2BC =,过A 作//AE CD 交BC 于E ,则AD CE =,过E 作//EF PB 交PC于F ,则AEF ∠即为为所求,如图所示,过F 作//FG CD 交PD 于G ,连接AG ,则四边形AEFG 是梯形,其中//FG AE ,12EF =G 作//GH EF 交AE 于H ,则GHA AEF ∠=∠,在GHA ∆中,1,,222GH EF AH AE FG AG ===-===则 222AG GH AH =+,所以90AEF ∠=︒,故选A.【答案】A6.不在同一条直线上的三点A 、B 、C 到平面α的距离相等,且A ∉α,给出以下三个命题:①△ABC 中至少 有一条边平行于α;②△ABC 中至多有两边平行于α;③△ABC 中只可能有一条边与α相交.其中真命题是_____________.【解析】直线与平面的位置关系,平面与平面的位置关系,如图,三点A 、B 、C 可能在α的同侧,也可能在α两侧,其中真命题是①.【答案】①7.已知A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.【解析】本题考点反证法证明异面直线,异面直线所成的角.(1)证明:假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)取CD 的中点G ,连接EG 、FG ,则EG ∥BD ,所以直线EF 与EG 所成的角即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,可得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.8.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为3,M ,N 分别是棱AA 1,AB 上的点,且AM =AN =1.(1)证明:M ,N ,C ,D 1四点共面;(2)平面MNCD 1将此正方体分为两部分,求这两部分的体积之比.【解析】本题考点是多点共面的证明,平面分几何体的体积之比.(1)证明:连接A 1B ,在四边形A 1BCD 1中,A 1D 1∥BC 且A 1D 1=BC ,所以四边形A 1BCD 1是平行四边形.所以A 1B ∥D 1C. 在△ABA 1中,AM =AN =1,AA 1=AB =3,所以1AM AN AA AB, 所以MN ∥A 1B ,所以MN ∥D 1C.所以M ,N ,C ,D 1四点共面.(2)记平面MNCD 1将正方体分成两部分的下部分体积为V 1,上部分体积为V 2,连接D 1A ,D 1N ,DN ,则几何体D 1-AMN ,D 1-ADN ,D 1-CDN 均为三棱锥,所以V 1=111D AMN D ADN D CDN V V V ---++=13S △AMN ·D 1A 1+13S △ADN ·D 1D +13S △CDN ·D 1D =13×12×3+13×32×3+13×92×3=132. 从而V 2=1111ABCD A B C D V --V 1=27-132=412,所以121341V V =, 所以平面MNCD 1分此正方体的两部分体积的比为1341.。
第10讲立体几何线面位置关系的判定与证明一、考点要点线面的平行与垂直的判定和性质:根据上述线面的平行与垂直的判定和性质,可知:“线线平行线面平行面面平行〞,“线线垂直线面垂直面面垂直〞是立几中所表现出的线面的平行与垂直关系互相转化的根本思路,掌握了这种转化思路,也就掌握了用传统方法解答立体几何问题的钥匙.假设是单纯的判断题,通常是结合图形〔或另作,或想象〕将三种语言〔文字、符号、图形〕互译互助,利用判定定理或性质定理解决;假设是线面平行、垂直关系的证明问题,根本思路是:由“〞用性质推“可知〞,看“欲证〞想“要证〞用判断,并借助图形直观,添加必要的辅助线〔面〕;假设是角、距离的计算问题,首先是在原有图形上千方百计地找到〔或作出〕符合相关定义的角、距离,然后加以论证,最后是计算角或距离的大小.二、典型例题例1 〔1〕〔2021·广东〕设m,n是两条不同的直线,α,β是两个不同的平面,以下命题中正确的选项是〔〕.D 〔用长方体模型思考判断〕A.假设α⊥β,m⊂α,n⊂β,那么m⊥n B.假设α∥β,m⊂α,n⊂β,那么m∥nC.假设m⊥n,m⊂α,n⊂β,那么α⊥β D.假设m⊥α,m∥n,n∥β,那么α⊥β〔2〕〔2021·新课标〕m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,那么〔〕. DA.α∥β,且l∥α B.α⊥β,且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l例2 〔2021·重庆〕如图,在△ABC 中,B = 90︒,AC = 7.5,D 、E 两点分别在AB 、AC 上,使AD :DB = AE :EC = 2,DE = 3.现将△ABC 沿DE 折成直二角角,求:〔1〕异面直线AD 与BC 的距离;〔2〕二面角A -EC -B 的大小〔用反三角函数表示〕.分析 〔1〕因为与AD 、BC 既垂直又相交的直线是异面直线AD 与BC 的公垂线,两交点间的线段长是其距离,所以图文结合,仔细领会题意,不难发现BD 就是异面直线AD 与BC 的距离.〔2〕在折叠后的图中,由于AD ⊥底面DBCE ,所以利用三垂线定理或逆定理作出二面角A -EC -B 的平面角,然后加以论证和计算.解 〔1〕∵ AD :DB = AE :EC ,∴ BE ∥BC .又因B = 90︒,∴ AD ⊥DE . 因A -DE -B 是直二面角,AD ⊥DE ,故AD ⊥底面DBCE ,从而AD ⊥DB . 注意到DB ⊥BC ,所以DB 为异面直线AD 与BC 的公垂线. 如图,由AD :DB = AE :EC = 2,得 DE :BC = AD :AB = 2:3. 又DE = 3,∴ BC = 4.5,AB 2= AC 2-BC 2= 36.进而 BD = 2,即异面直线AD 与BC 的距离为2.〔2〕如图,过D 作DF ⊥CE ,交CE 的延长线于F ,连结AF .由〔1〕知,AD ⊥底面DBCE ,由三垂线定理知AF ⊥FC ,故∠AFD 为二面角A -EC -B 的平面角.在底面DBCE 中,∠DEF =∠BCE ,BD = 2,CE = 2.5,得54sin ==∠CE BD BCE ,从而在Rt △DFE 中,DE = 3,DF = DE ·sin ∠DEF = DE ·sin ∠BCE = 2.4. 在Rt △AFD 中,AD = 4,35tan ==∠DF AD AFD ,因此所求二面角A -EC -B 的大小为35arctan .说明:1.现行教材及考纲中对异面直线的距离要求较低,在图中往往有现成的距离〔不需要另作〕,只要根据题意加以说明〔证明〕它满足异面直线的距离所要求的两个条件:既垂直又相交即可.2.作二面角的平面角时,通常需要确定出〔或找到〕一个半平面的一条垂线,借助于三垂线定理或逆定理去作角〔先作出〕,后证明.3.要善于熟练应用直角三角形的边角关系.例3 〔2021·安徽〕如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC = 45︒,OA ⊥底面ABCD ,OA = 2,M 为OA 的中点,N 为BC 的中点.〔1〕证明:直线MN ∥平面OCD ;〔2〕求异面直线AB 与MD 所成角的大小;〔3〕求点B 到平面OCD 的距离.分析 〔1〕要证直线MN ∥平面OCD ,只需在平面OCD 内找到〔假设无现成的那么需另作〕一条直线,证明它与MN 平行〔这条思路此题不太容易〕;或者证明直线MN 所在的某个平面〔常常需要另作〕∥平面BADCEF EBADCOCD ,注意到题设中有两个中点,于是再取AD 或OB 的中点〔如以下图〕,那么问题立即解决.〔2〕异面直线所成的角需要转化成两条相交直线所成的锐角或直角.所以平行移动AB 或MD ,使它们相交,结合图形,发现AB ∥CD ,而CD ∩MD = D ,所以∠MDC 就是异面直线AB 与MD 所成的角〔或其补角〕.连结CM ,在△CDM 中,不难得出DM =2,CM 2= 3-2,而CD = 1,AC 2= 2-2,进而由余弦定理,得21212)23(21cos =⋅⋅--+=∠MDC ,得∠MDC = 60︒.所以AB 与MD 所成的角为60︒. 〔3〕由于AB ∥CD ,CD ⊂ 平面OCD ,AB ⊄ 平面OCD ,所以AB ∥平面OCD ,点A 和点B 到平面OCD 的距离相等,设为h .那么 OD 2= OA 2+ AD 2= 5,AC 2= 1 + 1-2×1×1×cos45︒ = 2-2,OC 2= 4 + 2-2= 6-2, 于是 4245sin 1121=︒⋅⋅⋅=∆ACD S . 在△OCD 中,有10152)26(152cos 222=--+=⋅-+=∠CD OD OC CD OD ODC , ∴ 42310111521sin 21=-⋅⋅⋅=∠⋅=∆ODC CD OD S OCD . 由 V A -OCD = V O -ACD 得2423142331⋅⋅=⋅⋅h ,所以32=h . 说明:1.充分利用“线线、线面、面面平行〔垂直〕的转化关系〞进行分析,是顺利解答高考立体几何试题的重要思路.2.第〔3〕小题,假设注意到OA ⊥底面ABCD 这一,那么有以下求解方法:∵ AB ∥平面OCD ,∴ 点A 和点B 到平面OCD 的距离相等.连结OP ,过点A 作AQ ⊥OP 于点Q . ∵ AP ⊥CD ,OA ⊥CD ,∴ CD ⊥平面OAP , ∴ AQ ⊥CD .又 ∵ AQ ⊥OP ,∴ AQ ⊥平面OCD ,线段AQ 的长就是点A 到平面OCD 的距离. ∵ 23211422=-+=-=PD OD OP ,AP = PD , 所以32=⋅=OP AP OA AQ ,即点B 到平面OCD 的距离为32.例4 〔2021·湖北〕如图,在直三棱柱ABC -A 1B 1C 1中,平面A 1BC ⊥侧面A 1ABB 1.〔1〕求证:AB ⊥BC ;〔2〕假设直线AC 与平面A 1BC 所成的角为θ,二面角A 1-BC -A 1B 1AC C 1M A CNB DOM A CNBD OE F MA CNB D OM A CNBDOA 的大小为ϕ,试判断θ 与ϕ 的大小关系,并予以证明.分析 〔1〕图文结合、理解题意.要证AB ⊥BC ,通常是证AB 垂于BC 所在的某个平面或BC 垂于AB 所在的某个平面,于是转化为只需证明BC 垂直于这个平面内的两条相交直线.为了转化并利用条件“平面A 1BC ⊥侧面A 1ABB 1〞,所以过点A 在平面A 1ABB 1内作AD ⊥A 1B 于D ,得到AD ⊥平面A 1BC ,进而AD ⊥BC .根据ABC -A 1B 1C 1是直三棱柱,得侧棱AA 1⊥底面ABC ,有AA 1⊥BC ,而AD ∩AA 1 = A ,所以BC ⊥平面AA 1D ,故BC ⊥AB .〔2〕连结CD ,那么由〔1〕知∠ACD 是直线AC 与平面A 1BC 所成的角,∠ABA 1是二面角A 1-BC -A 的平面角,即∠ACD =θ, ∠ABA 1=ϕ.于是在Rt △ADC 中,AC AD =θsin ;在Rt △ADB 中,ABAD=ϕsin . 由△ABC 是直角三角形,AC 是斜边知AB <AC ,得 sin θ<sin ϕ, 又 0<θ,ϕ<90︒,∴ θ<ϕ.说明:1.熟练理解并掌握线线、线面、面面的判定与性质,是迅速翻开并探寻立体几何题解题思路的桥梁.由于判定与性质较多,故要善于选择简捷的途径.2.对于线面角或面面角,找到〔或作出〕平面的一条垂线是关键.3.变式:在上述条件下,假设增加一个条件AA 1 = AC ,那么有结论θ +ϕ = 90︒成立.例5 如图,平面EFGH 分别平行于CD 、AB ,E 、F 、G 、H 分别在BD 、BC 、AC 、AD 上,且CD = a ,AB =b ,CD ⊥AB .〔1〕求证:EFGH 是矩形;〔2〕求当点E 在什么位置时,EFGH 的面积最大.解 〔1〕∵ CD ∥面EFGH ,而面EFGH ∩面BCD = EF ,∴ CD ∥EF . 同理 HG ∥CD , ∴ EF ∥HG .同理 HE ∥GF . ∴ 四边形EFGH 为平行四边形.由CD ∥EF ,HE ∥AB ,∴ ∠HEF 为CD 和AB 所成的角或其补角. 又 ∵ CD ⊥AB ,∴ HE ⊥EF ,∴ 四边形EFGH 为矩形.〔2〕由〔1〕可知在△BCD 中,EF ∥CD ,其中DE = m ,EB = n , ∴DB BE CD EF =,得 a nm nEF +=.由 HE ∥AB ,∴DB DE AB HE =,有b nm mHE +=.又 ∵ 四边形EFGH 为矩形,∴ S 矩形EFGH = HE · EF =n m m +·b ·n m n+a =2)(n m mn +ab . ∵ m + n ≥2mn ,∴〔m + n 〕2≥4mn ,2)(n m mn +≤41,当且仅当m = n 时取等号,即E 为BD 的中A 1B 1BACDC 1DHA BF C E G点时,S 矩形EFGH =2)(n m mn +ab ≤41ab ,∴ 矩形EFGH 的面积最大为41ab . 点评:求最值时经常转化为函数求最值、不等式求最值、导数求最值、线性规划求最值等. 例6 如下图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,又AD ∥BC ,AD ⊥DC ,且PD = BC = 3 AD = 3. 〔1〕在网格中画出四棱锥P -ABCD 的正视图; 〔2〕求证:平面PAD ⊥平面PCD ;〔3〕在棱PB 上是否存在一点E ,使得AE ∥平面PCD , 假设存在,求EBPE的值;假设不存在,请说明理由. 解:〔1〕四棱锥P -ABCD 的正视图如下图.〔2〕因为PD ⊥平面ABCD ,AD ⊂平面ABCD ,所以PD ⊥AD .因为AD ⊥DC ,PD ∩CD = D ,PD ⊂平面PCD ,CD ⊂平面PCD ,所以AD ⊥平面PCD . 因为AD ⊂平面PAD ,所以平面PAD ⊥平面PCD .〔3〕分别延长CD ,BA 交于点O ,连接PO ,在棱PB 上取一点E ,使得21=EB PE . 下面证明AE ∥平面PCD . 因为AD ∥BC ,BC = 3 AD ,所以31==BC AD OB OA ,即21=AB OA . 所以EBPEAB OA =,因此AE ∥OP . 因为OP ⊂平面PCD ,AE ⊄平面PCD ,所以AE ∥平面PCD .PCDABO E PCD AB。
2024年高考数学总复习第八章《立体几何与空间向量》§8.2空间点、直线、平面之间的位置关系最新考纲 1.借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.2.直线与直线的位置关系(1)位置关系的分类异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).,π2.3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况.4.平面与平面的位置关系有平行、相交两种情况.5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.概念方法微思考1.分别在两个不同平面内的两条直线为异面直线吗?提示不一定.因为异面直线不同在任何一个平面内.分别在两个不同平面内的两条直线可能平行或相交.2.空间中如果两个角的两边分别对应平行,那么这两个角一定相等吗?提示不一定.如果这两个角开口方向一致,则它们相等,若反向则互补.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.(√)(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.(×)(3)如果两个平面有三个公共点,则这两个平面重合.(×)(4)经过两条相交直线,有且只有一个平面.(√)(5)没有公共点的两条直线是异面直线.(×)(6)若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线.(×)题组二教材改编2.如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为()A.30°B.45°C.60°D.90°答案C解析连接B1D1,D1C,则B1D1∥EF,故∠D1B1C即为所求的角.又B1D1=B1C=D1C,∴△B1D1C为等边三角形,∴∠D1B1C=60°.3.如图,在三棱锥A—BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.答案(1)AC=BD(2)AC=BD且AC⊥BD解析(1)∵四边形EFGH为菱形,∴EF=EH,∴AC=BD.(2)∵四边形EFGH为正方形,∴EF=EH且EF⊥EH,∵EF∥AC,EH∥BD,且EF=12AC,EH=12BD,∴AC=BD且AC⊥BD.题组三易错自纠4.α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是()A.垂直B.相交C.异面D.平行答案D解析依题意,m∩α=A,n⊂α,∴m与n可能异面、相交(垂直是相交的特例),一定不平行.5.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过()A.点AB.点BC.点C但不过点MD.点C和点M答案D解析∵AB⊂γ,M∈AB,∴M∈γ.又α∩β=l,M∈l,∴M∈β.根据公理3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面的对数为______.答案3解析平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH 相交,CD与EF平行.故互为异面的直线有且只有3对.题型一平面基本性质的应用例1如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.思维升华共面、共线、共点问题的证明(1)证明共面的方法:①先确定一个平面,然后再证其余的线(或点)在这个平面内;②证两平面重合.(2)证明共线的方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.跟踪训练1如图,在空间四边形ABCD 中,E ,F 分别是AB ,AD 的中点,G ,H 分别在BC ,CD 上,且BG ∶GC =DH ∶HC =1∶2.(1)求证:E ,F ,G ,H 四点共面;(2)设EG 与FH 交于点P ,求证:P ,A ,C 三点共线.证明(1)∵E ,F 分别为AB ,AD 的中点,∴EF ∥BD .∵在△BCD 中,BG GC =DH HC =12,∴GH ∥BD ,∴EF ∥GH .∴E ,F ,G ,H 四点共面.(2)∵EG ∩FH =P ,P ∈EG ,EG ⊂平面ABC ,∴P ∈平面ABC .同理P ∈平面ADC .∴P 为平面ABC 与平面ADC 的公共点.又平面ABC ∩平面ADC =AC ,∴P ∈AC ,∴P ,A ,C 三点共线.题型二判断空间两直线的位置关系例2(1)若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是()A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交答案D 解析由直线l 1和l 2是异面直线可知l 1与l 2不平行,故l 1,l 2中至少有一条与l 相交.故选D.(2)如图,在正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在A 1D ,AC 上,且A 1E =2ED ,CF =2FA ,则EF 与BD 1的位置关系是()A.相交但不垂直B.相交且垂直C.异面D.平行答案D解析连接D1E并延长,与AD交于点M,由A1E=2ED,可得M为AD的中点,连接BF并延长,交AD于点N,因为CF=2FA,可得N为AD的中点,所以M,N重合,所以EF和BD1共面,且MEED1=12,MFBF=12,所以MEED1=MFBF,所以EF∥BD1.思维升华空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.异面直线可采用直接法或反证法;平行直线可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;垂直关系往往利用线面垂直或面面垂直的性质来解决.跟踪训练2(1)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b可能平行或异面或相交,故选A.(2)如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM 与CC 1是相交直线;②直线AM 与BN 是平行直线;③直线BN 与MB 1是异面直线;④直线AM 与DD 1是异面直线.其中正确的结论为________.(注:把你认为正确的结论序号都填上)答案③④解析因为点A 在平面CDD 1C 1外,点M 在平面CDD 1C 1内,直线CC 1在平面CDD 1C 1内,CC 1不过点M ,所以AM 与CC 1是异面直线,故①错;取DD 1中点E ,连接AE ,则BN ∥AE ,但AE 与AM 相交,故②错;因为B 1与BN 都在平面BCC 1B 1内,M 在平面BCC 1B 1外,BN 不过点B 1,所以BN 与MB 1是异面直线,故③正确;同理④正确,故填③④.题型三求两条异面直线所成的角例3(2019·青岛模拟)如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为()A.15B.25C.35D.45答案D 解析连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,由AB =1,AA 1=2,易得A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=A 1B 2+BC 21-A 1C 212×A 1B ×BC 1=45,即异面直线A 1B 与AD 1所成角的余弦值为45.引申探究将上例条件“AA 1=2AB =2”改为“AB =1,若异面直线A 1B 与AD 1所成角的余弦值为910”,试求AA 1AB 的值.解设AA 1AB=t (t >0),则AA 1=tAB .∵AB =1,∴AA 1=t .∵A 1C 1=2,A 1B =t 2+1=BC 1,∴cos ∠A 1BC 1=A 1B 2+BC 21-A 1C 212×A 1B ×BC 1=t 2+1+t 2+1-22×t 2+1×t 2+1=910.∴t =3,即AA 1AB =3.思维升华用平移法求异面直线所成的角的三个步骤(1)一作:根据定义作平行线,作出异面直线所成的角;(2)二证:证明作出的角是异面直线所成的角;(3)三求:解三角形,求出所作的角.跟踪训练3(2018·全国Ⅱ)在正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为()A.22 B.32 C.52 D.72答案C 解析如图,因为AB ∥CD ,所以AE 与CD 所成角为∠EAB .在Rt △ABE 中,设AB =2,则BE =5,则tan ∠EAB =BE AB =52,所以异面直线AE 与CD 所成角的正切值为52.立体几何中的线面位置关系直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题.例如图所示,四边形ABEF 和ABCD 都是梯形,BC ∥AD 且BC =12AD ,BE ∥FA 且BE =12FA ,G ,H 分别为FA ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?(1)证明由已知FG =GA ,FH =HD ,可得GH ∥AD 且GH =12AD .又BC ∥AD 且BC =12AD ,∴GH ∥BC 且GH =BC ,∴四边形BCHG 为平行四边形.(2)解∵BE ∥AF 且BE =12AF ,G 为FA 的中点,∴BE ∥FG 且BE =FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG .由(1)知BG ∥CH .∴EF ∥CH ,∴EF 与CH 共面.又D ∈FH ,∴C ,D ,F ,E 四点共面.素养提升平面几何和立体几何在点线面的位置关系中有很多的不同,借助确定的几何模型,利用直观想象讨论点线面关系在平面和空间中的差异.1.四条线段顺次首尾相连,它们最多可确定的平面个数为()A .4B .3C .2D .1答案A 解析首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.2.a ,b ,c 是两两不同的三条直线,下面四个命题中,真命题是()A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥c答案C解析若直线a,b异面,b,c异面,则a,c相交、平行或异面;若a,b相交,b,c相交,则a,c相交、平行或异面;若a⊥b,b⊥c,则a,c相交、平行或异面;由异面直线所成的角的定义知C正确.故选C.3.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是()A.直线ACB.直线ABC.直线CDD.直线BC答案C解析由题意知,D∈l,l⊂β,所以D∈β,又因为D∈AB,所以D∈平面ABC,所以点D在平面ABC与平面β的交线上.又因为C∈平面ABC,C∈β,所以点C在平面β与平面ABC的交线上,所以平面ABC∩平面β=CD.4.如图所示,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确是()A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面答案A 解析连接A 1C 1,AC ,则A 1C 1∥AC ,∴A 1,C 1,A ,C 四点共面,∴A 1C ⊂平面ACC 1A 1,∵M ∈A 1C ,∴M ∈平面ACC 1A 1,又M ∈平面AB 1D 1,∴M 在平面ACC 1A 1与平面AB 1D 1的交线上,同理A ,O 在平面ACC 1A 1与平面AB 1D 1的交线上.∴A ,M ,O 三点共线.5.(2017·全国Ⅱ)已知直三棱柱ABCA 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为()A.32 B.155 C.105 D.33答案C解析方法一将直三棱柱ABC -A 1B 1C 1补形为直四棱柱ABCD -A 1B 1C 1D 1,如图①所示,连接AD 1,B 1D 1,BD .图①由题意知∠ABC =120°,AB =2,BC =CC 1=1,所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知BD 2=AB 2+AD 2-2×AB ×AD ×cos ∠DAB =22+12-2×2×1×cos 60°=3,所以BD =3,所以B 1D 1=3.又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105.故选C.方法二以B 1为坐标原点,B 1C 1所在的直线为x 轴,垂直于B 1C 1的直线为y 轴,BB 1所在的直线为z 轴建立空间直角坐标系,如图②所示.图②由已知条件知B 1(0,0,0),B (0,0,1),C 1(1,0,0),A (-1,3,1),则BC 1→=(1,0,-1),AB 1→=(1,-3,-1).所以cos 〈AB 1→,BC 1→〉=AB 1,→·BC 1→|AB 1→||BC 1→|=25×2=105.所以异面直线AB 1与BC 1所成角的余弦值为105.故选C.6.正方体AC 1中,与面ABCD 的对角线AC 异面的棱有________条.答案6解析如图,在正方体AC 1中,与面ABCD 的对角线AC 异面的棱有BB 1,DD 1,A 1B 1,A 1D 1,D 1C 1,B 1C 1,共6条.7.(2019·东北三省三校模拟)若直线l ⊥平面β,平面α⊥平面β,则直线l 与平面α的位置关系为________.答案l ∥α或l ⊂α解析∵直线l ⊥平面β,平面α⊥平面β,∴直线l ∥平面α,或者直线l ⊂平面α.8.在三棱锥S -ABC 中,G 1,G 2分别是△SAB 和△SAC 的重心,则直线G 1G 2与BC 的位置关系是________.答案平行解析如图所示,连接SG 1并延长交AB 于M ,连接SG 2并延长交AC 于N ,连接MN .由题意知SM为△SAB的中线,且SG1=23SM,SN为△SAC的中线,且SG2=23SN,∴在△SMN中,SG1SM=SG2SN,∴G1G2∥MN,易知MN是△ABC的中位线,∴MN∥BC,∴G1G2∥BC.9.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.答案2解析取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成的角即为异面直线AC1与BC所成的角,因为C1是圆柱上底面弧A1B1的中点,所以C1D垂直于圆柱下底面,所以C1D⊥AD.因为圆柱的轴截面ABB1A1是正方形,所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为2.10.如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.答案②③④解析还原成正四面体A -DEF ,其中H 与N 重合,A ,B ,C 三点重合.易知GH 与EF 异面,BD 与MN 异面.连接GM ,∵△GMH 为等边三角形,∴GH 与MN 成60°角,易证DE ⊥AF ,又MN ∥AF ,∴MN ⊥DE .因此正确命题的序号是②③④.11.如图所示,A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点.(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.(1)证明假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A ,B ,C ,D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)解取CD 的中点G ,连接EG ,FG ,则AC ∥FG ,EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.又因为AC ⊥BD ,则FG ⊥EG .在Rt △EGF 中,由EG =FG=12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.12.如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,PA =2.求:(1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解(1)S △ABC =12×2×23=23,三棱锥P -ABC 的体积为V =13S △ABC ·PA =13×23×2=433.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =AD 2+DE 2-AE 22×AD ×DE =22+22-22×2×2=34.故异面直线BC 与AD 所成角的余弦值为34.13.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为()A.32 B.22 C.33 D.13答案A解析如图所示,设平面CB 1D 1∩平面ABCD =m 1,∵α∥平面CB 1D 1,则m 1∥m ,又∵平面ABCD ∥平面A 1B 1C 1D 1,平面CB 1D 1∩平面A 1B 1C 1D 1=B 1D 1,∴B 1D 1∥m 1,∴B 1D 1∥m ,同理可得CD 1∥n .故m ,n 所成角的大小与B 1D 1,CD 1所成角的大小相等,即∠CD 1B 1的大小.又∵B 1C =B 1D 1=CD 1(均为面对角线),∴∠CD 1B 1=π3,得sin ∠CD 1B 1=32,故选A.14.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°;③EF 与MN 是异面直线;④MN ∥CD .以上四个命题中,正确命题的序号是________.答案①③解析如图,①AB ⊥EF ,正确;②显然AB ∥CM ,所以不正确;③EF 与MN 是异面直线,所以正确;④MN 与CD 异面,并且垂直,所以不正确,则正确的是①③.15.如图,正方形ACDE 与等腰直角三角形ACB 所在的平面互相垂直,且AC =BC =4,∠ACB =90°,F ,G 分别是线段AE ,BC 的中点,则AD 与GF 所成的角的余弦值为________.答案36解析取DE 的中点H ,连接HF ,GH .由题设,HF ∥AD 且HF =12AD ,∴∠GFH 为异面直线AD 与GF 所成的角(或其补角).在△GHF 中,可求HF =22,GF =GH =26,∴cos ∠GFH =HF 2+GF 2-GH 22×HF ×GF =(22)2+(26)2-(26)22×22×26=36.16.如图所示,三棱柱ABC -A 1B 1C 1的底面是边长为2的正三角形,侧棱A 1A ⊥底面ABC ,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的动点,EC =2FB =2.(1)当点M 在何位置时,BM ∥平面AEF?(2)若BM ∥平面AEF ,判断BM 与EF 的位置关系,说明理由;并求BM 与EF 所成的角的余弦值.解(1)方法一如图所示,取AE 的中点O ,连接OF ,过点O 作OM ⊥AC 于点M .因为EC ⊥AC ,OM ,EC ⊂平面ACC 1A 1,所以OM ∥EC .又因为EC =2FB =2,EC ∥FB ,所以OM ∥FB 且OM =12EC =FB ,所以四边形OMBF 为矩形,BM ∥OF .因为OF ⊂平面AEF ,BM ⊄平面AEF ,故BM ∥平面AEF ,此时点M 为AC 的中点.方法二如图所示,取EC 的中点P ,AC 的中点Q ,连接PQ ,PB ,BQ .因为EC =2FB =2,所以PE ∥BF 且PE =BF ,所以PB ∥EF ,PQ ∥AE ,又AE ,EF ⊂平面AEF ,PQ ,PB ⊄平面AEF ,所以PQ ∥平面AFE ,PB ∥平面AEF ,因为PB ∩PQ =P ,PB ,PQ ⊂平面PBQ ,所以平面PBQ ∥平面AEF .又因为BQ ⊂平面PBQ ,所以BQ ∥平面AEF .故点Q 即为所求的点M ,此时点M 为AC 的中点.(2)由(1)知,BM 与EF 异面,∠OFE (或∠MBP )就是异面直线BM 与EF 所成的角或其补角.易求AF =EF =5,MB =OF =3,OF ⊥AE ,所以cos ∠OFE =OF EF =35=155,所以BM 与EF 所成的角的余弦值为155.。
空间点线面之间的位置关系一、平面1.平面的概念:平面是一个不加定义,只需理解的原始概念.立体几何里所说的的平面是从现实生活中常见的平面抽象出来的.常见的桌面、平静的水面等都给我们以平面的局部形象.平面是理想的、绝对的平且无大小,无厚度,不可度量. 2.平面的表示方法:(1)一个平面: 当平面是水平放置的时候,通常把平行四边形的锐角画成45,横边画成邻边的2倍长,如右图. (2)两个相交平面:画两个相交平面时,通常要化出它们的交线,当一个平面的一部分被另一个平面遮住,应把被遮住部分的线段画成虚线或不画(如下图)3. 运用集合观点准确使用图形语言、符号语言和文字语言空间图形的基本元素是点、直线、平面线、平面看成是点的集合,因此还可借用集合中的符号语言来表示点、线、面的基本位置关系如下表所示:αBAβαABαβαβBAAβαBA α∈ 点A 在平面α内A α∉ 点A 不在平面α内b a Aa b A =直线a 、b 交于A 点a α⊂直线a 在平面α内a α=∅ 直线a 与平面α无公共点a A α=直线a 与平面α交于点Al αβ= 平面α、β相交于直线l二、平面的基本性质1. 公理1 如果一条直线的两点在一个平面内,那么这条直线在这个平面内推理模式:A AB B ααα∈⎫⇒⊂⎬∈⎭. 如图示:或者:∵,A B αα∈∈,∴AB α⊂ 公理1的作用:①判定直线是否在平面内;②判定点是否在平面内; ③检验面是否是平面.2. 公理2 经过不在同一条直线上的三点,有且只有一个平面推理模式:,, ,,,,A B C A B C A B C ααβ⎫⎪∈⇒⎬⎪∈⎭不共线与β重合或者:∵,,A B C 不共线,∴存在唯一的平面α,使得,,A B C α∈. 推论1:经过一条直线和这条直线外的一点,有且只有一个平面;BA αAαAαaαaαa Aα推论2:经过两条相交直线,有且只有一个平面; 推论3:经过两条平行直线,有且只有一个平面.(1)以上是确定平面的四个不同的条件,是判断两个平面重合的依据,是证明点线共面的依据,也是作截面、辅助面的依据.(2)“有且只有一个”的含义要准确理解.这里的“有”是说图形的存在,“只有一个”是说图形唯一.因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证. 2. 公理3 如果两个不重合的平面有一个公共点,有且只有一条过该点的公共直线推理模式:A A l A ααββ∈⎫⇒∈=⎬∈⎭如图示:或者:∵,A A αβ∈∈,∴,l A l αβ=∈公理3的作用:(1)判断两个平面是否相交及交线位置; (2)判断点是否在线上 1、证明空间三点共线问题通常证明这些点都在两个平面的交线上,即先确定出某两点在两个平面的交线上,再证明第三点既在第一个平面内,又在第二个平面内。
第二部分点、线、平面之间的位置关系第一讲空间点、直线、平面之间的位置关系一、导入1. 正确理解平面的儿何概念,掌握平面的基本性质;2 .熟练掌握三种数学语言的转换与翻译,熟练点线面关系符号语言的书写:;3. 结合图形理解空间中直线与平面、平面与平面之间的位置关系;4 .进一步熟悉文字语言、图形语言、符号语言的相互转换;5 .进一步培养学生的空间想象和全面思考问题的能力.二、知识点梳理(一)平面的表示方法1. 平面是无限延伸的,但常用平面的一部分来表示平面.2.画法:常用平彳二四边形3.1 • (标记在角上)②平面A BCD ③平面A C或平面BD注意:(1)平面的两个特征:①无限延伸②平的(没有厚度)(2)一条直线把平面分成两部分,一个平面把空间分成两部分(二)点、线、面的基本位置关系(1)符号表示:点A、线a、面a(2)集合关系:A e a, A e a,a u a例1判断下列各题的说法正确与否,在正确的说法的题号后打否则打X1、一个平面长4米,宽2米;()2、平面有边界;()3、一个平面的面积是2 5 cnr :4、一个平面可以把空间分成两部分・()例2如图,用符号表示以下各概念:①点力、B在直线*上;②直线a在平面a内;点C在平面01内;③点O不在平面0C内;直线b不在平面a内.变式训练一1 •将下列符号语言转化为图形语言:(1) B 已卩、A el, Bel(2 ) a u a、b u 卩、ar\ 卩= c y a // c, b cc = p2. 将下列文字语言转化为符号语言:(I )点八在平面&内,但不在平面0内(2)直线d经过平面&外一点M(3)直线/在平面a内,乂在平面0内(即平面和平面相交于直线)(三)平面的基本性质1. 公理1若一条直线在一个平面内,则这条直线上所有的点都在这个平面内三条推论:1. 经过一条直线和这条直线外一点,有且只有一个平面2. 经过两条相交直线,有且只有一个平面3. 经过两条平行直线,有且只有一个平面3. 公理3若两个不重合的平面有一个公共点,那么它们有且只有一条过该点的 公共直线.即:P 已a 、P 已卩、ac/3 = l n P 已I例3已知长方体/WCD — A5G®中川.N 分别是和BC 的中点,AB= 4 , AD = 2,BB 、=2届,求异而直线dD 与MN 所成角的余弦值。
立体几何点线面定理1.公理一:一条直线的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
2.公理二:如果两个平面有两个公共点,它们有无数个公共点,而且这无数个公共点都在同一条直线上。
3.公理三:经过不在同一直线上的三点有且只有一个平面。
4.推论一:经过直线和直线外一点有且只有一个平面。
5.推论二:经过两条相交直线有且只有一个平面。
6.推论三:经过两条平行直线有且只有一个平面。
7.异面直线判定定理:平面内一点与平面外一点的确定的直线,与此平面内不经过该点的直线是异面直线。
8.公理四:平行于同一条直线的两条直线平行。
9.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
10.等角定理推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等。
11.直线与平面垂直的判定定理一:过平面外一点有且只有一条直线与已知平面垂直。
12.直线与平面垂直的判定定理二:过直线上一点,有且只有一个平面与已知直线垂直。
13.直线与平面垂直的判定定理三:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
14. 直线与平面垂直的性质定理四:如果一条直线垂直于已知平面,另一条直线平行于这条直线,那么另一条直线也垂直于已知平面。
15.直线与平面垂直的性质定理五:如果两条直线同垂直于一个平面,那么这两条直线平行。
16.射影长定理:从平面外一点向这个平面所引的垂线段和斜线段中,斜线段相等的射影相等,射影相等的斜线段相等,斜线段较长的射影也较长,射影较长的斜线段也较长,垂线段最短。
17.最小角定理:斜线与平面所成的角是斜线与平面内任意一条直线中所成的角中最小的。
18.三垂线定理:平面内的一条直线,如果与穿过这个平面的一条斜线在这个平面上的射影垂直,那么它也和这条斜线垂直。
19.三垂线定理的逆定理:如果平面内一条直线和穿过该平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。
1.命题方向预测:1.点、线、面的位置关系是本节的重点,也是高考的热点.以考查点、线、面的位置关系为主.2.线面平行、面面平行的判定及性质是命题的热点.着重考查线线、线面、面面平行的转化及应用,同时考查逻辑推理能力与空间想象能力.3.线线、线面、面面垂直的问题是命题的热点.着重考查垂直关系的转化及应用,同时考查逻辑推理能力与空间想象能力.4.线线、线面、面面的位置关系问题,往往是平行、垂直关系综合考查,题型有选择题、填空题及解答题.难度中、低档题兼有.2.课本结论总结:1.平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 2.直线与直线的位置关系(1)位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a ,b 所成的角(或夹角). ②范围:02π⎛⎤ ⎥⎝⎦,.3.直线与平面的位置关系有平行、相交、在平面内三种情况.4.平面与平面的位置关系有平行、相交两种情况.5.公理4平行于同一条直线的两条直线互相平行. 6.定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.7.直线与平面平行的判定与性质判定性质定义定理图形条件a∩α=∅a⊂α,b⊄α,a∥b a∥αa∥α,a⊂β,α∩β=b结论a∥αb∥αa∩α=∅a∥b8.面面平行的判定与性质判定性质定义定理图形条件α∩β=∅a⊂β,b⊂β,a∩b=P,a∥α,b∥αα∥β,α∩γ=a,β∩γ=bα∥β,a⊂β结论α∥βα∥βa∥b a∥α9.直线与平面垂直(1)判定直线和平面垂直的方法①定义法.②利用判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.③推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条直线也垂直于这个平面.(2)直线和平面垂直的性质①直线垂直于平面,则垂直于平面内任意直线.②垂直于同一个平面的两条直线平行.③垂直于同一条直线的两平面平行.10.斜线和平面所成的角斜线和它在平面内的射影所成的锐角,叫斜线和平面所成的角.11.平面与平面垂直(1)平面与平面垂直的判定方法①定义法.②利用判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.(2)平面与平面垂直的性质两平面垂直,则一个平面内垂直于交线的直线垂直于另一个平面.12.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角:二面角棱上的一点,在两个半平面内分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角.3.名师二级结论:(1)异面直线的判定方法:判定定理:平面外一点A 与平面内一点B 的连线和平面内不经过该点的直线是异面直线.反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.(2)公理1的作用:①检验平面;②判断直线在平面内;③由直线在平面内判断直线上的点在平面内.(3)公理2的作用:公理2及其推论给出了确定一个平面或判断“直线共面”的方法.(4)公理3的作用:①判定两平面相交;②作两平面相交的交线;③证明多点共线.(5)平行问题的转化关系:(6)垂直问题的转化关系线线垂直判定性质线面垂直判定性质面面垂直(7)证明直线相交,通常用平面的基本性质,平面图形的性质等;(8)利用公理4或平行四边形的性质证明两条直线平行.4.考点交汇展示:(1)立体几何与函数交汇【2017课标1,理16】如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪性质开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【答案】415【解析】(2)立体几何与基本不等式交汇如图, 在三棱锥P ABC -中,90PAB PAC ACB ∠=∠=∠=. (1)求证:平面PBC ⊥平面PAC ;(2)若1PA =,=2AB ,当三棱锥P ABC -的体积最大时,求BC 的长.【答案】(1)证明见解析;(2)当三棱锥P ABC -的体积最大时,2=BC .(2)方法1:由已知及(1)所证可知,PA ⊥平面ABC ,BC CA ⊥, 所以PA 是三棱锥P ABC -的高.……………………………7分 因为1PA =,=2AB ,设BC x =()02x <<,……………8分 所以2222224AC AB BC x x =-=-=-…………9分PA B因为13P ABC ABC V S PA -=⨯△ 2146x x =-………………………………………………………………………10分()22146x x =- ()224162x x +-≤⨯…………………………………………………………………………11分 13=.…………………………………………………………………………………………12分 当且仅当224x x =-,即2x =时等号成立.………………………………………………………13分所以当三棱锥P ABC -的体积最大时,2=BC .…………………………………………………14分(3)立体几何与三角函数交汇如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )A. A DB α'∠≤B. A DB α'∠≥C. A CB α'∠≤D. A CB α'∠≤【答案】B.【解析】设ADC θ∠=,设2AB =,则由题意1AD BD ==,在空间图形中,设A B t '=,在A CB '∆中,2222222112cos 22112A D DB AB t t A DB A D DB '+-+--'∠==='⨯⨯⨯,在空间图形中,过A '作AN DC ⊥,过B 作BM DC ⊥,垂足分别为N ,M , 过N 作//NP MB ,连结A P ',∴NP DC ⊥,则A NP '∠就是二面角A CD B '--的平面角,∴A NP α'∠=,在Rt A ND '∆中,cos cos DN A D A DC θ''=∠=,sin sin A N A D A DC θ'''=∠=,同理,sin BM PN θ==,cos DM θ=,故2cos BP MN θ==, 显然BP ⊥面A NP ',故BP A P '⊥,【考点分类】考向一 线线、线面、面面平行与垂直关系的判定1.【2017课标3,文10】在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( ) A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【答案】C【解析】根据三垂线逆定理,平面内的线垂直平面的斜线,那也垂直于斜线在平面内的射影,A.若11A E DC ⊥,那么11D E DC ⊥,很显然不成立;B.若1A E BD ⊥,那么BD AE ⊥,显然不成立;C.若11A E BC ⊥,那么11BC B C ⊥,成立,反过来11BC B C ⊥时,也能推出11BC A E ⊥,所以C 成立,D.若1A E AC ⊥,则AE AC ⊥,显然不成立,故选C.2.【2018届安徽省六安市第一中学适应性考试】已知直线、,平面、,给出下列命题: ①若,,且,则②若,,且,则③若,,且,则④若,,且,则其中正确的命题是()A.②③B.①③C.①④D.③④【答案】C【解析】分析:①可由面面垂直的判定定理进行判断;②可由面面平行的条件进行判断;③可由面面垂直的条件进行判断;④可由面面垂直的判定定理进行判断.故选:C.【方法规律】1.证明线线平行的方法:(1)平行公理;(2)线面平行的性质定理;(3)面面平行的性质定理;(4)向量平行.要注意线面、面面平行的性质定理的成立条件.2.线面平行的证明方法:(1)线面平行的定义;(2)线面平行的判断定理;(3)面面平行的性质定理;(4)向量法:证明这条直线的方向向量和这个平面内的一个向量互相平行;证明这个直线的方向向量和这个平面的法向量相互垂直.线面平行的证明思考途径:线线平行⇔线面平行⇔面面平行.3.面面平行的证明方法:①反证法:假设两个平面不平行,则它们必相交,在导出矛盾;②面面平行的判断定理;③利用性质:垂直于同一直线的两个平面平行;平行于同一平面的两个平面平行;④向量法:证明两个平面的法向量平行.4.证明线线垂直的方法:(1)异面直线所成的角为直角;(2)线面垂直的性质定理;(3)面面垂直的性质定理;(4)三垂线定理和逆定理;(5)勾股定理;(6)向量垂直.要注意线面、面面垂直的性质定理的成立条件.解题过程中要特别体会平行关系性质的传递性,垂直关系的多样性.5.线面垂直的证明方法:(1)线面垂直的定义;(2)线面垂直的判断定理;(3)面面垂直的性质定理;(4)向量法:证明这个直线的方向向量和这个平面的法向量相互平行.线面垂直的证明思考途径:线线垂直⇔线面垂直⇔面面垂直.6.面面垂直的证明方法:①定义法;②面面垂直的判断定理;③向量法:证明两个平面的法向量垂直.解题时要由已知相性质,由求证想判定,即分析法和综合法相结合寻找证明思路,关键在于对题目中的条件的思考和分析,掌握做此类题的一般技巧和方法,以及如何巧妙进行垂直之间的转化.【解题技巧】1.利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.2.立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究,解决这类问题一般根据探索性问题的设问,假设其存在并探索出结论,然后在这个假设下进行推理论证,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设.3.证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.4.线面垂直的性质,常用来证明线线垂直.5.在已知平面垂直时,一般要用性质定理进行转化.6.垂直关系综合题的类型及解法(1)三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化.(2)垂直与平行结合问题,求解时应注意平行、垂直的性质及判定的综合应用.(3)垂直与体积结合问题,在求体积时,可根据线面垂直得到表示高的线段,进而求得体积.7.线面平行、垂直关系的证明问题的指导思想是线线、线面、面面关系的相互转化,交替使用平行、垂直的判定定理和性质定理;8.线线关系是线面关系、面面关系的基础.证题中要注意利用平面几何中的结论,如证明平行时常用的中位线、平行线分线段成比例;证明垂直时常用的等腰三角形的中线等;【易错点睛】1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.3.解题中注意符号语言的规范应用.4.在解决直线与平面垂直的问题过程中,要注意直线与平面垂直的定义、判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的互相转化.5.面面垂直的性质定理是作辅助线的一个重要依据.我们要作一个平面的一条垂线,通常是先找这个平面的一个垂面,在这个垂面中,作交线的垂线即可.6.证明过程一定要严谨,使用定理时要对照条件、步骤书写要规范.例.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m⊥β的是αβ,且m⊂αB.m∥n,且n⊥βA.⊥αβ,且m∥αD.m⊥n,且n∥βC.⊥【答案】B【解析】∵m∥n, m⊥β∴n⊥β故选B.【易错点】没有掌握线面垂直的条件考向二空间线线、线面及面面关系中的角度问题1.【2018年理数全国卷II】在长方体中,,,则异面直线与所成角的余弦值为()A. B. C. D.【答案】C2.【2017课标3,理16】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最小值为60°.其中正确的是________.(填写所有正确结论的编号)【答案】②③【解析】【方法规律】求异面直线所成的角常用方法是平移法,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.判定空间两条直线是异面直线的方法(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点B的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.3.求两条异面直线所成角的大小,一般方法是通过平行移动直线,把异面问题转化为共面问题来解决.根据空间等角定理及推论可知,异面直线所成角的大小与顶点位置无关,往往可以选在其中一条直线上(线面的端点或中点)利用三角形求解.【解题技巧】求异面直线所成的角的三步曲:即“一作、二证、三求”.其中空间选点任意,但要灵活,经常选择“端点、中点、等分点”,通过作三角形的中位线,平行四边形等进行平移,作出异面直线所成的角,转化为解三角形问题,进而求解.【易错点睛】1.正确理解异面直线“不同在任何一个平面内”的含义,不要理解成“不在同一个平面内”.2.不共线的三点确定一个平面,一定不能丢掉“不共线”条件.3.两条异面直线所成角的范围是(0°,90°].例.过正方体ABCD-A1B1C1D1的顶点A作直线l,使l与棱AB,AD,AA1所成的角都相等,这样的直线l 可以作()A.1条B.2条C.3条D.4条【答案】 D【易错点】忽视异面直线所成的角,只找两条相交直线所成角,没有充分认识正方体中的平行关系.考向三线线、线面、面面的位置关系的综合问题1.【2018年江苏卷】在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.2. 【2018年浙江卷】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.【答案】(Ⅰ)见解析(Ⅱ)【解析】分析:方法一:(Ⅰ)通过计算,根据勾股定理得,再根据线面垂直的判定定理得结论,(Ⅱ)找出直线AC1与平面ABB1所成的角,再在直角三角形中求解.方法二:(Ⅰ)根据条件建立空间直角坐标系,写出各点的坐标,根据向量之积为0得出,再根据线面垂直的判定定理得结论,(Ⅱ)根据方程组解出平面的一个法向量,然后利用与平面法向量的夹角的余弦公式及线面角与向量夹角的互余关系求解.详解:方法一:(Ⅱ)如图,过点作,交直线于点,连结.方法二:(Ⅰ)如图,以AC的中点O为原点,分别以射线OB,OC为x,y轴的正半轴,建立空间直角坐标系O-xyz.由题意知各点坐标如下:因此由得.由得.所以平面.【解题技巧】1. 利用线线、线面和面面的平行、垂直关系相互转化. 2. 求线面所成角时注意垂直关系的应用. 3. 结合向量法进行证明和求解 【易错点睛】(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则直线与交线平行. (1)证明过程要规范(2)注意角度的取值范围(线线、线面和面面)例1.【2017山东,文18】(本小题满分12分)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD , (Ⅰ)证明:1A O ∥平面B 1CD 1;(Ⅱ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.【答案】①证明见解析.②证明见解析. 【解析】试题分析:(Ⅰ)取11B D 中点F ,证明1//A O CF ,(Ⅱ)证明11B D ⊥面1A EM .(II)因为 AC BD ⊥,E ,M 分别为AD 和OD 的中点, 所以EM BD ⊥,因为ABCD 为正方形,所以AO BD ⊥, 又 1A E ⊥平面ABCD ,BD ⊂平面ABCD 所以1,A E BD ⊥ 因为11//,B D BD所以11111,,EM B D A E B D ⊥⊥又1,A E EM ⊂平面1A EM ,1A EEM E =.所以11B D ⊥平面1,A EM 又11B D ⊂平面11B CD ,所以平面1A EM ⊥平面11B CD .【易错点】不会灵活应用线线、线面和面面平行的判定定理和性质定理进行转换,答题过程不规范。
点线面位置关系的判定基础知识(一)直线与直线位置关系:1、线线平行的判定(1)平行公理:空间中平行于同一直线的两条直线平行(2)线面平行性质:如果一条直线与平面平行,则过这条直线的平面与已知平面的交线和该直线平行(3)面面平行性质:2、线线垂直的判定(1)两条平行直线,如果其中一条与某直线垂直,则另一条直线也与这条直线垂直直线与平面位置关系:(2)线面垂直的性质:如果一条直线与平面垂直,则该直线与平面上的所有直线均垂直(二)直线与平面的位置关系1、线面平行判定定理:(1)若平面外的一条直线l 与平面α上的一条直线平行,则l∥α(2)若两个平面平行,则一个平面上的任一直线与另一平面平行2、线面垂直的判定:(1)若直线l 与平面α上的两条相交直线垂直,则l ⊥α(2)两条平行线中若其中一条与平面垂直,则另一条直线也与该平面垂直(3)如果两个平面垂直,则一个平面上垂直于交线的直线与另一平面垂直(三)平面与平面的位置关系1、平面与平面平行的判定:(1)如果一个平面上的两条相交直线均与另一个平面平行,则两个平面平行(2)平行于同一个平面的两个平面平行2、平面与平面垂直的判定如果一条直线与一个平面垂直,则过这条直线的所有平面均与这个平面垂直(四)利用空间向量判断线面位置关系1、刻画直线,平面位置的向量:直线:方向向量平面:法向量2、向量关系与线面关系的转化:设直线 a ,b 对应的法向量为 a ,b ,平面α,β对应的法向量为 m , n (其中 a ,b 在α,β外)(1) a ∥ b ⇔ ∥a b(2) a ⊥ b ⇔ a ⊥ b(3) a ⊥ α⇔ a ∥ m (4) a ∥α⇔ a ⊥ m (5)α∥β⇔ m ∥n(6)α⊥ β⇔ m ⊥ n3、有关向量关系的结论(1) 若 a ∥b ,b ∥c ,则 a ∥c平行+平行→平行(2) 若 a ⊥ b ,b ∥c ,则 a ⊥ c 平行+垂直→垂直(3) 若 a ⊥ b ,b ⊥ c ,则 a , c 的位置关系不定。
必修2 第一章 空间几何体知识点总结一.空间几何体的三视图正视图:光线从几何体的前面向后面正投影得到的投影图;反映了物体的高度和长度 侧视图:光线从几何体的左面向右面正投影得到的投影图;反映了物体的高度和宽度 俯视图:光线从几何体的上面向下面正投影得到的投影图。
反映了物体的长度和宽度 三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等” 二.空间几何体的直观图斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使'''x O y ∠=450(或1350)③画对应图形在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半; 直观图与原图形的面积关系:42S ⋅=原图形直观图S 三.空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面 ⑵圆锥侧面积:l r S ⋅⋅=π侧面 ⑶圆台侧面积:l R l r S ⋅⋅+⋅⋅=ππ侧面 h S V ⋅=柱体h S V ⋅=31锥体()13V h S S S S =+⋅+下下台体上上球的表面积和体积 32344R V R S ππ==球球,. 正三棱锥是底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥。
正四面体是每个面都是全等的等边三角形的三棱锥。
第二章 点、直线、平面之间的位置关系知识点总结一. 平面基本性质即三条公理公理1公理2公理3图形语言文字语言如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 过不在一条直线上的三点,有且只有一个平面.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号语言 ,,A l B l l A B ααα∈∈⎫⇒⊂⎬∈∈⎭,,,,A B C A B C α⇒不共线确定平面,lP P P l αβαβ=⎧∈∈⇒⎨∈⎩I作用 判断线在面内确定一个平面证明多点共线公理2的三条推论:推论1 经过一条直线和这条直线外的一点,有且只有一个平面; 推论2 经过两条相交直线,有且只有一个平面; 推论3 经过两条平行直线,有且只有一个平面.二.直线与直线的位置关系共面直线: 相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点。
点、直线、平面之间的位置关系
(1)理解空间直线、平面位置关系的定义,并了解如下可以作为
推理依据的公理和定理:
①公理1:如果一条直线上的两点在同一个平面内,那么这条直
线在此平面内。
②公理2:过不在一条直线上的三点,有且只有一个平面。
③公理3:如果两个不重合的平面有一个公共点,那么它们有且
只有一条过该点的公共直线。
④公理4:平行于同一条直线的两条直线平行。
⑤定理:空间中如果两个角的两条边分别对应平行,那么这两个
角相等或互补。
(2)以立体几何的上述定义、公理和定理为出发点,认识和理解
n
m
a
m
1
n
1
m
2
n
2
m
1
n
1
m
2
n
2
空间中线面平行、垂直的有关性质与判定定理。
理解以下判定定理:
①平面外一条直线与此平面内的一条直线平行,则该直线与此
平面平行。
②一个平面内的两条相交直线与另一个平面平行,则这两个平
面平行。
③一条直线与一个平面内的两条相交直线垂直,则该直线与此
平面垂直。
④一个平面过另一个平面的垂线,则两个平面垂直。
理解以下性质定理,并能够证明:
①如果一条直线与一个平面平行,那么过该直线的任一个平面与
此平面的交线和该直线平行。
②两个平面平行,则任意一个平面与这两个平面相交所得的交线
相互平行。
③垂直于同一个平面的两条直线平行。
④两个平面垂直,则一个平面内垂直于交线的直线与另一个平
面垂直。
(3)能运用公理、定理和已获得的结论证明一些空间位置关系的简
单命题。