一交点,在(-∞,2)内也有一个交点.
所以相应的方程(x-2)(x-5)-1=0有两个相
异的实数解,且一个大于5,一个小于2
12
考点一 函数零点的判断与求解
1、判断下列函数在给定区间上是否存在零点. (1)f(x)=x2-3x-18,x∈[1,8];
(1)解法一: ∵f(1)=-20<0,f(8)=22>0, ∴f(1)·f(8)<0,故f(x)=x2-3x-18,x∈[1,8]存在零点.
个函数在(a,b)内必有唯一的一个零
点。
新知应用
用一用
例 1: 已知函数 f (x) 3x x2 ,问:方程 f (x) 0在区间
[-1,0]内有没有实数解?为什么?
分析:判定方程有没有实数解即可以等价 转化为相应函数有没有零点 解:因为
又 的图象是连续的,所以 在区间[-1,0] 内有零点,即 在区间 [-1,0] 内有实数解。
y
y
x
x
0
0
y
y
x
x
0
0
例1.求方程2x3+3x-3=0的一个实数解,精度为0.01 解析:考察函数f(x)=2x3+3x-3,从一个两端函数值反号 的
区间开始,应用二分法逐步缩小方程实数解所在区间.经
试算,f(0)=-3<0,f(1)=2>0,所以方程2x3+3x3=0在[0,1]内有解.
如此下去,得到方程2x3+3x-3有解区间的表如下:
端点函数值异号的 单调函数
标
b
0a
x
③ 零点存在性定理
如果函数y =f(x)在区间[a,b]上(b)<0,则函数在(a,b)内有零 学 点。