人教课标版高中数学必修2第一章 空间几何体空间几何体的表面积与体积教案9
- 格式:doc
- 大小:101.50 KB
- 文档页数:1
人教版高中数学必修二第一章空间几何体全章教案高一数学必修二教案科目:数学课题:空间几何体的结构特征教学目标:1.让学生通过观察实物、图片,理解并归纳出柱、锥、台、球的结构特征。
2.培养学生善于通过观察实物形状到归纳其性质的能力。
教学过程:一、自主研究观察自己书桌上和课本上的图片,思考以下问题:1.这些图片中的物体具有怎样的形状?2.日常生活中,我们把这些物体的形状叫做什么?如何描述它们的形状?3.组成这些几何体的每个面有什么特点?面与面之间有什么关系?思考1:在我们周围存在着各种各样的物体,它们都占据着空间的一部分。
如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些抽象出来的空间图形就叫做空间几何体。
请列举一些空间几何体的实例。
二、质疑提问1.在平面几何中,我们认识了三角形、正方形、矩形、菱形、梯形、圆、扇形等平面图形。
那么对空间中各种各样的几何体,我们如何认识它们的结构特征?2.对空间中不同形状、大小的几何体,我们如何理解它们的联系和区别?思考2:观察下列图片,你知道这些图片在几何中分别叫什么名称吗?三、问题探究思考3:如果将这些几何体进行适当分类,你认为可以分成哪几种类型?思考4:图(2)、(5)、(7)、(9)、(13)、(14)、(15)、(16)有何共同特点?这些几何体可以统一叫什么名称?思考5:图(1)、(3)、(4)、(6)、(8)、(10)、(11)、(12)有何共同特点?这些几何体可以统一叫什么名称?思考6:一般地,怎样定义多面体?围成多面体的各个多边形,相邻两个多边形的公共边,以及这些公共边的公共顶点分别叫什么名称?思考7:一般地,怎样定义旋转体?由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体。
思考1:我们把下面的多面体取名为棱柱,你能说一说棱柱的结构有哪些特征吗?据此你能给棱柱下一个定义吗?思考2:下列多面体都是棱柱吗?如何在名称上区分这些棱柱?如何用符号表示?体的结构特征解决实际问题.1.通过观察实物、图片,使学生理解并能归纳出组合体的结构特征;2.让学生自己观察,通过直观感加强理解;3.培养学生善于通过观察实物形状到归纳其性质的能力.教学内容1.什么是简单组合体?它由哪些基本几何体组成?2.如何通过基本几何体的结构特征来识别简单组合体?3.如何计算简单组合体的表面积和体积?备注思考1:如何计算一个简单组合体的表面积和体积?思考2:如何通过简单组合体的结构特征来识别它?思考3:现实生活中有哪些物体是简单组合体?三、问题探究四、课堂检测1.下列几何体中是简单组合体的是()五、小结评价本节课我们主要是通过观察实例,探究发现了由柱、锥、台、球组成的简单组合体的结构特征,研究了如何通过基本几何体的结构特征来识别简单组合体,以及如何计算简单组合体的表面积和体积,要能灵活运用这些知识解决实际问题.教材版本:必修二教学内容:实际模型的结构特征教学目标:1.了解实际模型的结构特征。
格一课堂教学方案章节:1.3.1 1 课时:备课人:二次备课人:)精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。
⾼中数学必修2《空间⼏何体的表⾯积与体积》教案 ⾼中数学必修2《空间⼏何体的表⾯积与体积》教案 1教学⺫标 1.知道柱体、锥体、台体侧⾯展开图,弄懂柱体、锥体、台体的表⾯积的求法. 2.能运⽤公式求解柱体、锥体和台体的表⾯积,并知道柱体、锥体和台体表⾯积之间的关系. 2学情分析 通过学习空间⼏何体的结构特征,空间⼏何体的三视图和直观图,了解了空间⼏何体和平⾯图形之间的关系,从中反映出⼀个思想⽅法,即平⾯图形和空间⼏何体的互化,尤其是空间⼏何问题向平⾯问题的转化。
该部分内容中有些是学⽣已经熟悉的,在解决这些问题的过程中,⾸先要对学⽣已有的知识进⾏再认识,提炼出解决问题的⼀般思想——化归的思想,总结出⼀般的求解⽅法,在此基础上通过类⽐获得解决新问题的思路,通过化归解决问题,深化对化归、类⽐等思想⽅法的应⽤。
3重点难点 重点:知道柱体、锥体、台体侧⾯展开图,弄懂柱体、锥体、台体的表⾯积公式。
难点:会求柱体、锥体和台体的表⾯积,并知道柱体、锥体和台体表⾯积之间的关系. 4教学过程 4.1 第⼀学时教学活动活动1【导⼊】第1课时 柱体、锥体、台体的表⾯积 (⼀)、基础⾃测: 1.棱⻓为a的正⽅体表⾯积为__________. 2.⻓、宽、⾼分别为a、b、c的⻓⽅体,其表⾯积为___________________. 3.⻓⽅体、正⽅体的侧⾯展开图为__________. 4.圆柱的侧⾯展开图为__________. 5.圆锥的侧⾯展开图为__________. (⼆).尝试学习 1.柱体的表⾯积 (1)侧⾯展开图:棱柱的侧⾯展开图是____________,⼀边是棱柱的侧棱,另⼀边等于棱柱的__________,如图①所⽰;圆柱的侧⾯展开图是_______,其中⼀边是圆柱的⺟线,另⼀边等于圆柱的底⾯周⻓,如图②所⽰. (2)⾯积:柱体的表⾯积S表=S侧+2S底.特别地,圆柱的底⾯半径为r,⺟线⻓为l,则圆柱的侧⾯积S侧=__________,表⾯积S表=__________. 2.锥体的表⾯积 (1)侧⾯展开图:棱锥的侧⾯展开图是由若干个__________拼成的,则侧⾯积为各个三⾓形⾯积的_____,如图①所⽰;圆锥的侧⾯展开图是_______,扇形的半径是圆锥的______,扇形的弧⻓等于圆锥的__________,如图②所⽰. (2)⾯积:锥体的表⾯积S表=S侧+S底.特别地,圆锥的底⾯半径为r,⺟线⻓为l,则圆锥的侧⾯积S侧=__________,表⾯积S表=__________. 3.台体的表⾯积 (1)侧⾯展开图:棱台的侧⾯展开图是由若干个__________拼接⽽成的,则侧⾯积为各个梯形⾯积的______,如图①所⽰;圆台的侧⾯展开图是扇环,其侧⾯积可由⼤扇形的⾯积减去⼩扇形的⾯积⽽得到,如图②所⽰. (2)⾯积:台体的表⾯积S表=S侧+S上底+S下底.特别地,圆台的上、下底⾯半径分别为r′,r,⺟线⻓为l,则侧⾯积S侧=____________,表⾯积S表=________________________. (三).互动课堂 例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱⻓为b,则其侧⾯积为( ) A. B.ab C.(+)ab D.ab 例2:(1)若⼀个圆锥的轴截⾯是等边三⾓形,其⾯积为,则这个圆锥的侧⾯积是( )A.2πB.C.6πD.9π (2)已知棱⻓均为5,底⾯为正⽅形的四棱锥S-ABCD,如图,求它的侧⾯积、表⾯积. 例3:⼀个四棱台的上、下底⾯都为正⽅形,且上底⾯的中⼼在下底⾯的投影为下底⾯中⼼(正四棱台)两底⾯边⻓分别为1,2,侧⾯积等于两个底⾯积之和,则这个棱台的⾼为( ) A. B.2 C. D. (四).巩固练习: 1.⼀个棱柱的侧⾯展开图是三个全等的矩形,矩形的⻓和宽分别为6 cm,4 cm,则该棱柱的侧⾯积为________. 2.已知⼀个四棱锥底⾯为正⽅形且顶点在底⾯正⽅形射影为底⾯正⽅形的中⼼(正四棱锥),底⾯正⽅形的边⻓为4 cm,⾼与斜⾼的夹⾓为30°,如图所⽰,求正四棱锥的侧⾯积________和表⾯积________(单位:cm2). 3.如图所⽰,圆台的上、下底半径和⾼的⽐为1:4:4,⺟线⻓为10,则圆台的侧⾯积为( )A.81πB.100πC.14πD.169π (五)、课堂⼩结: 求柱体表⾯积的⽅法 (1)直棱柱的侧⾯积等于它的底⾯周⻓和⾼的乘积;表⾯积等于它的侧⾯积与上、下两个底⾯的⾯积之和. (2)求斜棱柱的侧⾯积⼀般有两种⽅法:⼀是定义法;⼆是公式法.所谓定义法就是利⽤侧⾯积为各侧⾯⾯积之和来求,公式法即直接⽤公式求解. (3)求圆柱的侧⾯积只需利⽤公式即可求解. (4)求棱锥侧⾯积的⼀般⽅法:定义法. (5)求圆锥侧⾯积的⼀般⽅法:公式法:S侧=πrl. (6)求棱台侧⾯积的⼀般⽅法:定义法. (7)求圆台侧⾯积的⼀般⽅法:公式法S侧=2(r+r′)l. 五、当堂检测 1.(2011·北京)某四棱锥的三视图如图所⽰,该四棱锥的表⾯积是( )A.32B.16+16C.48D.16+32 ⺴] 2.(2013·重庆)某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为( )A.180B.200C.220D.240 3.(2013⼲东)若⼀个圆台的正视图如图所⽰,则其侧⾯积等于( )A.6B.6πC.3πD.6π 六、作业:(1)课时闯关(今晚交) 七、课后反思:本节课你会哪些?还存在哪些问题? 1.3 空间⼏何体的表⾯积与体积 课时设计课堂实录 1.3 空间⼏何体的表⾯积与体积 1第⼀学时教学活动活动1【导⼊】第1课时 柱体、锥体、台体的表⾯积 (⼀)、基础⾃测: 1.棱⻓为a的正⽅体表⾯积为__________. 2.⻓、宽、⾼分别为a、b、c的⻓⽅体,其表⾯积为___________________. 3.⻓⽅体、正⽅体的侧⾯展开图为__________. 4.圆柱的侧⾯展开图为__________. 5.圆锥的侧⾯展开图为__________. (⼆).尝试学习 1.柱体的表⾯积 (1)侧⾯展开图:棱柱的侧⾯展开图是____________,⼀边是棱柱的侧棱,另⼀边等于棱柱的__________,如图①所⽰;圆柱的侧⾯展开图是_______,其中⼀边是圆柱的⺟线,另⼀边等于圆柱的底⾯周⻓,如图②所⽰. (2)⾯积:柱体的表⾯积S表=S侧+2S底.特别地,圆柱的底⾯半径为r,⺟线⻓为l,则圆柱的侧⾯积S侧=__________,表⾯积S表=__________. 2.锥体的表⾯积 (1)侧⾯展开图:棱锥的侧⾯展开图是由若干个__________拼成的,则侧⾯积为各个三⾓形⾯积的_____,如图①所⽰;圆锥的侧⾯展开图是_______,扇形的半径是圆锥的______,扇形的弧⻓等于圆锥的__________,如图②所⽰. (2)⾯积:锥体的表⾯积S表=S侧+S底.特别地,圆锥的底⾯半径为r,⺟线⻓为l,则圆锥的侧⾯积S侧=__________,表⾯积S表=__________. 3.台体的表⾯积 (1)侧⾯展开图:棱台的侧⾯展开图是由若干个__________拼接⽽成的,则侧⾯积为各个梯形⾯积的______,如图①所⽰;圆台的侧⾯展开图是扇环,其侧⾯积可由⼤扇形的⾯积减去⼩扇形的⾯积⽽得到,如图②所⽰. (2)⾯积:台体的表⾯积S表=S侧+S上底+S下底.特别地,圆台的上、下底⾯半径分别为r′,r,⺟线⻓为l,则侧⾯积S侧=____________,表⾯积S表=________________________. (三).互动课堂 例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱⻓为b,则其侧⾯积为( ) A. B.ab C.(+)ab D.ab 例2:(1)若⼀个圆锥的轴截⾯是等边三⾓形,其⾯积为,则这个圆锥的侧⾯积是( )A.2πB.C.6πD.9π (2)已知棱⻓均为5,底⾯为正⽅形的四棱锥S-ABCD,如图,求它的侧⾯积、表⾯积. 例3:⼀个四棱台的上、下底⾯都为正⽅形,且上底⾯的中⼼在下底⾯的投影为下底⾯中⼼(正四棱台)两底⾯边⻓分别为1,2,侧⾯积等于两个底⾯积之和,则这个棱台的⾼为( ) A. B.2 C. D. (四).巩固练习: 1.⼀个棱柱的侧⾯展开图是三个全等的矩形,矩形的⻓和宽分别为6 cm,4 cm,则该棱柱的侧⾯积为________. 2.已知⼀个四棱锥底⾯为正⽅形且顶点在底⾯正⽅形射影为底⾯正⽅形的中⼼(正四棱锥),底⾯正⽅形的边⻓为4 cm,⾼与斜⾼的夹⾓为30°,如图所⽰,求正四棱锥的侧⾯积________和表⾯积________(单位:cm2). 3.如图所⽰,圆台的上、下底半径和⾼的⽐为1:4:4,⺟线⻓为10,则圆台的侧⾯积为( )A.81πB.100πC.14πD.169π (五)、课堂⼩结: 求柱体表⾯积的⽅法 (1)直棱柱的侧⾯积等于它的底⾯周⻓和⾼的乘积;表⾯积等于它的侧⾯积与上、下两个底⾯的⾯积之和. (2)求斜棱柱的侧⾯积⼀般有两种⽅法:⼀是定义法;⼆是公式法.所谓定义法就是利⽤侧⾯积为各侧⾯⾯积之和来求,公式法即直接⽤公式求解. (3)求圆柱的侧⾯积只需利⽤公式即可求解. (4)求棱锥侧⾯积的⼀般⽅法:定义法. (5)求圆锥侧⾯积的⼀般⽅法:公式法:S侧=πrl. (6)求棱台侧⾯积的⼀般⽅法:定义法. (7)求圆台侧⾯积的⼀般⽅法:公式法S侧=2(r+r′)l. 五、当堂检测 1.(2011·北京)某四棱锥的三视图如图所⽰,该四棱锥的表⾯积是( )A.32B.16+16C.48D.16+32 ⺴] 2.(2013·重庆)某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为( )A.180B.200C.220D.240 3.(2013⼲东)若⼀个圆台的正视图如图所⽰,则其侧⾯积等于( )A.6B.6πC.3πD.6π 六、作业:(1)课时闯关(今晚交) 七、课后反思:本节课你会哪些?还存在哪些问题? ⼩编推荐各科教学设计: 、、、、、、、、、、、、 ⼩编推荐各科教学设计: 、、、、、、、、、、、、。
1.3空间几何体的表面积与体积教学任务分析:根据柱,锥,台的结构特征,并结合它们的展开图,推导它们的表面积的计算公式,从度量的角度认识空间几何体;用极限思想推导球的体积公式和表面公式,使学生初步了解利用极限思想解决问题的基本步骤,体会极限思想的基本内涵。
与此同时,培养学生积极探索的科学精神,培养学生的思维能力,空间想象能力。
教学重点:柱体,锥体,台体的表面积和体积的计算公式。
教学难点:球的体积和表面积的推导教学设计:1. 从学生熟悉的正方体和长方体的展开图入手,分析展开图与其表面积的关系。
其目的是㈠复习表面积的概念,即表面积是各个面的面积的和㈡介绍求几何体表面积的方法,把它们展开成平面图形,利用平面图形求面积的方法,求立体图形的表面积。
2. 通过类比正方体和长方体的表面积,讨论棱柱,棱锥,棱台的表面积问题。
实际上,求棱柱,棱锥,棱台的表面积问题可转化成求平行四边形,三角形和梯形问题。
3. 利用计算机或实物展示圆柱的侧面可以展开成一个矩形。
圆锥的侧面可以展开成一个扇形。
随后的有关圆台表面积的探究,也可以按照这样的思路进行教学。
说明圆台表面积公式时,可推导侧面积公式。
圆台侧面积的推导:设圆台侧面的母线长为,上,下底周长分别是,半径分别是则S 圆台侧=()x c x l c '-+2121=()[]x c c cl '-+21()()()l r r l c c c c l c c c cl S c c l c x lx x c c '+='+=⎥⎦⎤⎢⎣⎡'-''-+='-'=∴+='π2121圆台侧在分别学习了圆柱,圆锥,圆台的表面积公式后,可以引导学生用运动,变化的观点分析它们之间的关系。
圆柱可看成上,下两底面全等的圆台,圆锥可看成上底面半径为零的圆台。
因此,圆柱,圆锥可看成圆台的特例。
(可用计算机演示)4.柱体, 锥体和台体的体积从正方体,长方体的体积公式引入到一般棱柱的体积也是V=Sh若有时间,可推导棱锥的体积公式棱锥的体积公式的推导如图,设三棱柱ABC-ABC 的底面积(即ΔABC 的面积)为S ,高(即点A ¹到平面ABC 的距离)为h ,则它的体积为Sh ,沿平面A ¹BC 和平面A ¹B ¹C ,将这个三棱柱分割为3个三棱锥,其中三棱锥1,2的底面积相等(S ΔA ¹AB=S ΔA ¹B ¹B ),高也相等点C 到平面AB ,BA 的距离)三棱锥也有相等的底面积,和相等的高(点A ¹到平面BCC ¹B ¹ 的高)因此,这三个三棱锥的体积相等,每个三棱锥体积是sh ,得sh台体 推导出台体的体积公式V=S ¹+Sh让学生思考,柱体,锥体台体的体积公式之间的联系。
1.3空间几何体的表面积和体积——简单锥体的外接球和内切球求法【教学目标】:1、知识与技能:会用补形法和构造直角三角形法求解简单锥体的外接球和内切球的体积和表面积的问题;2、过程与方法:在教学过程中,让学生在问题情境中掌握补形法和构造直角三角形法的重要性,体验补形法的便捷;3、情感和价值观:通过学习,使得学生了解数学源于生活,但高于生活,逐步养成任何事物都是不断变化发展的辩证唯物主义的观点;【教学重点】:掌握求解简单锥体的外接球和内切球的体积和表面积的两种方法:补形法和构造直角三角形法。
【教学难点】:如何应用补形法和构造直角三角形法【教学过程】:一、复习 1.;;;,圆圆圆===S S C 2.;;;,球球球===V V S 3.长、宽、高分别为c b a ,,的长方体外接球直径2R= ; 特别地,边长为a 的正方体外接球直径2R= ;4. 边长为a 的正方体中,与其各棱都相切的球的直径2R= ; 边长为a 的正方体内切球直径2R= ;二、补形法例1.若三棱锥 P - ABC 的四个顶点都在球 O 的表面上, P A ⊥ 平面 A BC , A B ⊥AC ,且 P A = 8 , A B=4,AC=52 ,则球O 的半径为 .变式1:若三棱锥 P - ABC 的四个顶点都在球 O 的表面上, P A ⊥ 平面 ABC , A B ⊥ BC ,且P A = 8 ,AB=4,B C=52.则球O 的半径为 ,ABC ∆外接圆半径为变式2:若三棱锥P - ABC 的四个顶点都在球 O 的表面上, P A ⊥ 平面 ABC , A B ⊥ BC ,且P A = 8,平面 A BC 截球 O 所得截面的面积为 9π ,则球 O 的表面积为( )(A )10π (B ) 25π (C ) 50π (D )100π三、构造直角三角形法例2.在正四棱锥P-ABCD 中,AB=2,PA=5,则该棱锥的斜高为 ,高为 ,体积为 ,其内切球半径为2的等边三角形,则该棱锥的高为 ,其外接球半径例3.已知圆锥的高为3球面上,则这个球的体积等于( )A .83πB .323π C .16π D .32π变式1:已知圆锥的高为3,则该圆锥的内切球的半径为变式2:现为一球状巧克力设计圆锥体的包装盒,若该巧克力球的半径为3 ,则其包装盒的体积的最小值为( )A .36πB .72π C. 81π D .216π例4.若正三棱台ABC A B C '''-,高为1,则该正三棱台的外接球的表面积为_______.变式1:正三棱台ABC A B C '''-1,若该正三棱台内有一个球,则该球的最大半径为_______.【课堂小结】:1、补形法;2、构造直角三角形法;【作业布置】:卷15【教学反思】:。
简单多面体外接球求法总结一、教学目标1、 知识与技能:掌握求简单多面体外接球的两种方法。
2、 过程与方法: 通过对几何体结构的分析,让学生掌握求外接球的模型,培养学生的空间想象力。
3、 情感态度与价值观:激发学生自我探索,培养学生的创造性思维。
二、教学重点、难点重点:外接球的学习中,圆柱模型与圆锥模型的掌握。
难点:几何模型的运用与选择。
三、教学过程(一)知识点回顾1、球的性质;2、球心与截面圆心的连线垂直于截面;3、球心到截面的距离d,球的半径R,及截面圆的半径r 的关系222r dR +=; 4、求的体积与表面积334R V π=球,24R S π=球; 5、正弦定理r Cc B b A a 2sin sin sin ===,其中ABC r ∆为外接圆的半径;(二)例题分析例1、边长为6的正方体外接球的表面积为( )变式1:直三棱柱DEF ABC -中,ABC AD 底面⊥,若︒=∠==13544CAB BC AD ,,,求该三棱柱外接球的体积。
变式2:在三棱锥,ABC AD ABC D 底面中,⊥-若︒=∠==13544CAB BC AD ,,, 求该三棱锥外接球的表面积。
练习1:若三棱锥的三条侧棱两两垂直,且三条侧棱均为6,则其外接球的表面积是( ) 总结:直棱柱或者线面垂直的棱锥都可以用圆柱模型解决,只需知道该几何体的高,与底面外接圆的直径,利用222)2()2(R r h =+,其中R 为球的半径,r 为底面外接圆的半径。
例2、ABC D -正三棱锥,高为3,底面边长为3,则该三棱锥外接球的体积为( ) 变式1:已知三棱锥上的投影刚好为在平面若ABC D ABC D ,-ABC ∆的外心,且D 到平面ABC 的距离为3,BC=︒=∠603CAB 且,则该三棱锥外接球的体积。
外接球的表面积为(),,则三棱锥交于点与,若的正方体、边长为例111111143C B A O O BD AC D C B A ABCD --总结:正棱锥或者顶点在底面的投影刚好为底面外接圆的圆心,可以套用圆锥模型,利用公式222)R r R h =+-(,从而轻松解决问题。
最新人教版高中数学必修2第一章《空间几何体的结构》教学设计空间几何体的结构是新课程立体几何的重要组成部分之一。
该课程的设计思想是以培养学生的几何直观能力、抽象概括能力、合情推理能力和空间想象能力为指导思想,运用建构主义教学原理,通过观察实物抽象出空间图形、用文字描述空间图形和用数学语言定义空间图形的三部曲来构建课堂主框架。
整个设计旨在增强学生参与数学研究的意愿,提高学生自主研究、分析问题和解决问题的能力,培养学生合作研究的意识。
空间几何体是在土木建筑、机械设计、航海测绘等实际问题中广泛应用的基础内容。
与传统的立体几何体系相比,人教A版对立体几何的体系结构作了重大改革。
新课程从对空间几何体的整体观察入手,再研究组成空间几何体的点、直线和平面。
这种安排降低了立体几何研究入门难的门槛,强调几何直观,淡化几何论证,可以激发学生研究立体几何的兴趣。
本节课的教学方法主要为观察、比较、分析、抽象概括、讨论和实践操作。
教学手段包括图片、实物模型、板书、PPT等多种形式。
在教学过程中,教师应该注重引导学生观察、思考、提问和交流,鼓励学生自主探究,培养学生的创新意识和思考能力。
本节课《空间几何体的结构》选自普通高中课程标准实验教科书《数学》人教A版必修2第一章的第一节。
课标要求学生认识柱、锥、台、球及其简单组合体的结构特征,并能应用这些特征描述现实生活中简单物体的结构,发展几何直观能力。
教材首先让学生观察现实世界中的实物图片,引导学生将观察到的实物进行归纳、分类、抽象、概括,得出柱体、锥体、台体的结构特征,在此基础上给出由它们组合而成的简单几何体的结构特征。
《省学科教学指导意见》将这一节内容安排为两课时,笔者的设计的是第一课时。
本节内容在义务教育数学课程“空间与图形”已有所涉及,但要求不同,素材更为丰富,即区别在于研究的深度和概括程度。
笔者认为教学时,不能认为这部分的要求是降低了,讲课时一带而过,要领会新课标的意图,加强几何直观的训练,在引导学生直观感受空间几何体结构特征的同时,学会类比,学会推理,学会说理。
人教版高中数学必修二教学讲义年 级 : 上 课 次 数 : 学 员 姓 名 : 辅 导 科 目 :数学 学 科 教 师 : 课 题 空间几何体的表面积和体积复习课 型 □ 预习课 □ 同步课 ■ 复习课 □ 习题课 授课日期及时段教 学 内 容空间几何体的表面积和体积复习【要点梳理】知识点一、棱柱、棱锥、棱台的表面积棱柱、棱锥、棱台是多面体,它们的各个面均是平面多边形,它们的表面积就是各个面的面积之和.计算时要分清面的形状,准确算出每个面的面积再求和.棱柱、棱锥、棱台底面与侧面的形状如下表:项目名称 底面侧面棱柱 平面多边形 平行四边形面积=底·高棱锥 平面多边形 三角形 面积=12·底·高 棱台 平面多边形梯形面积=12·(上底+下底)·高要点诠释:求多面体的表面积时,只需将它们沿着若干条棱剪开后展开成平面图形,利用平面图形求多面体的表面积. 知识点二、圆柱、圆锥、圆台的表面积圆柱、圆锥、圆台是旋转体,它们的底面是圆面,易求面积,而它们的侧面是曲面,应把它们的侧面展开为平面图形,再去求其面积.1.圆柱的表面积(1)圆柱的侧面积:圆柱的侧面展开图是一个矩形,如下图,圆柱的底面半径为r ,母线长l ,那么这个矩形的长等于圆柱底面周长C=2πr ,宽等于圆柱侧面的母线长l (也是高),由此可得S 圆柱侧=C l =2πr l .(2)圆柱的表面积:2222()S r rl r r l πππ=+=+圆柱表.2.圆锥的表面积(1)圆锥的侧面积:如下图(1)所示,圆锥的侧面展开图是一个扇形,如果圆锥的底面半径为r ,母线长为l ,那么这个扇形的弧长等于圆锥底面周长C=πr ,半径等于圆锥侧面的母线长为l ,由此可得它的侧面积是12S Cl rl π==圆锥侧.(2)圆锥的表面积:S 圆锥表=πr 2+πr l .3.圆台的表面积(1)圆台的侧面积:如上图(2)所示,圆台的侧面展开图是一个扇环.如果圆台的上、下底面半径分别为r '、r ,母线长为l ,那么这个扇形的面积为π(r '+r)l ,即圆台的侧面积为S 圆台侧=π(r '+r)l .(2)圆台的表面积:22('')S r r r l rl π=+++圆台表. 要点诠释:求旋转体的表面积时,可从旋转体的生成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应的侧面展开图中的边长之间的关系.4.圆柱、圆锥、圆台的侧面积公式之间的关系如下图所示.知识点三、柱体、锥体、台体的体积 1.柱体的体积公式棱柱的体积:棱柱的体积等于它的底面积S 和高h 的乘积,即V 棱柱=Sh . 圆柱的体积:底面半径是r ,高是h 的圆柱的体积是V 圆柱=Sh=πr 2h . 综上,柱体的体积公式为V=Sh . 2.锥体的体积公式棱锥的体积:如果任意棱锥的底面积是S ,高是h ,那么它的体积13V Sh =棱锥.圆锥的体积:如果圆锥的底面积是S ,高是h ,那么它的体积13V Sh =圆锥;如果底面积半径是r ,用πr 2表示S ,则213V r h π=圆锥. 综上,锥体的体积公式为13V Sh =. 3.台体的体积公式棱台的体积:如果棱台的上、下底面的面积分别为S '、S ,高是h ,那么它的体积是1('')3V h S SS S =++棱台.圆台的体积:如果圆台的上、下底面半径分别是r '、r ,高是h ,那么它的体积是2211('')('')33V h S SS S h r rr r π=++=++圆台.综上,台体的体积公式为1('')3V h S SS S =++.4.柱体、锥体、台体的体积公式之间的关系如下图所示.知识点四、球的表面积和体积 1.球的表面积(1)球面不能展开成平面,要用其他方法求它的面积. (2)球的表面积设球的半径为R ,则球的表面积公式 S 球=4πR 2. 即球面面积等于它的大圆面积的四倍. 2.球的体积设球的半径为R ,它的体积只与半径R 有关,是以R 为自变量的函数. 球的体积公式为343V R π=球. 知识点五、侧面积与体积的计算 1.多面体的侧面积与体积的计算在掌握直棱柱、正棱锥、正棱台侧面积公式及其推导过程的基础上,对于一些较简单的几何组合体的表面积与体积,能够将其分解成柱、锥、台、球,再进一步分解为平面图形(正多边形、三角形、梯形等),以求得其表面积与体积.要注意对各几何体相重叠部分的面积的处理,并要注意一些性质的灵活运用.(1)棱锥平行于底的截面的性质:在棱锥与平行于底的截面所构成的小棱锥中,有如下比例关系:S S S S S S ===小锥底小锥全小锥侧大锥底大锥全大锥侧对应线段(如高、斜高、底面边长等)的平方之比.要点诠释:这个比例关系很重要,在求锥体的侧面积、底面积比时,会大大简化计算过程.在求台体的侧面积、底面积比时,将台体补成锥体,也可应用这个关系式.(2)有关棱柱直截面的补充知识.在棱柱中,与各侧棱均垂直的截面叫做棱柱的直截面,正棱柱的直截面是其上下底面及与底面平行的截面.棱柱的侧面积与直截面周长有如下关系式:S 棱柱侧=C 直截l (其中C 直截、l 分别为棱柱的直截面周长与侧棱长), V 棱柱=S 直截l (其中S 直截、l 分别为棱柱的直截面面积与侧棱长). 2.旋转体的侧面积和体积的计算(1)圆柱、圆锥、圆台的侧面积分别是它们侧面展开图的面积,因此弄清侧面展开图的形式及侧面展开图中各线段与原旋转体的关系,是掌握它们的侧面积公式及解决有关问题的关键.(2)计算柱体、锥体和台体的体积,关键是根据条件找出相应的底面面积和高,要充分运用多面体的有关问题的关键. 【典型例题】类型一、简单几何体的表面积例1.如右图,有两个相同的直三棱柱,高为2a,底面三角形的三边长分别为345(0)a a a a >、、.用它们拼成一个三棱柱或四棱柱,则a 的取值范围是 .【答案】1503a <<. 【解析】底面积为26a ,侧面面积分别为6、8、10,拼成三棱柱时,有三种情况:221262(1086)1248s a a =⨯+++=+, 222242(108)2436,s a a =++=+ 223242(106)2432,s a a =++=+拼成四棱柱时只有一种情况:表面积为22(86)2462428a a +⨯+⨯=+,由题意得2224281248a a +<+,解得1503a <<. 【总结升华】(1)直棱柱的侧面积等于它的底面周长和高的乘积;表面积等于它的侧面积与上、下两个底面的面积之和.(2)求斜棱柱的侧面积一般有两种方法:一是定义法;二是公式法.所谓定义法就是利用侧面积为各侧面面积之和来求,公式法即直接用公式求解.举一反三:【变式1】 一个圆柱的底面面积是S ,侧面展开图是正方形,那么该圆柱的侧面积为( ) A .4S π B .2S π C .S π D .233S π 【答案】A【解析】由圆柱的底面面积是S ,求出圆柱的半径为Sr π=,进一步求出侧面积为4S π.例2.在底面半径为R ,高为h 的圆锥内有一内接圆柱,求内接圆柱的侧面积最大时圆柱的高,并求此时侧面积的最大值.【思路点拨】一般要画出其轴截面来分析,利用相似三角形求解。
空间几何体的表面积教学目的:(1)正棱柱正棱台正棱锥的概念,圆柱圆锥圆台侧面积(2)用这些公式解决问题教学重点:正棱锥、正棱柱、正棱台的理解,柱锥台的侧面积计算教学难点:侧面积公式的应用教学方法:教学过程:一、什么是多面体?多面体的侧面展开图二、新授:1、正棱柱:正棱锥:正棱台:侧面积公式的推导,正棱锥的简单性质2、圆柱、圆锥、圆台的侧面积公式它们之间的区别与联系例1、正四棱锥形冷水塔塔顶,高是0.85m,底边长为1.5m,制造这种塔顶需要多少平方米铁板?例2、有一根长为5cm,底面半径为1cm的圆柱形铁管,用一段铁丝在铁管缠绕4圈,并使铁丝两个端点落在圆柱的同一母线上的两端,则铁丝的最短长度为多少厘米?练习:P52 练习教学后记:空间几何体的表面积作业班级姓名学号得分一、选择题1、正三棱锥的底面边长为a,高为,则三棱锥的侧面积为()6A 、234aB 、232aC 、24aD 、22a 2、圆锥的轴截面是正三角形,那么它的侧面积是底面积的 ( )A 、 4倍B 、 3倍C 、D 、 2倍3、将一个边长为a 的正方体切成27个全等的小正方体,则表面积增加了( )A 、26aB 、212aC 、218aD 、224a4、棱锥的一个平行底面的截面把棱锥的高分为1:2(从上到下)那么截面把棱锥的侧面分成两部分的面积之比等于 ( )A 、1:9B 、1:8C 、1:4D 、1:35、圆台的高是3,一个底面半径是另一个底面半径的2倍,母线与下底面所成的角为45,则这个圆台的侧面积是 ( )A 、27πB 、C 、D 、二、填空题6、用半径为r 的半圆形铁皮卷成一个圆锥筒,这个圆锥筒的高为7、正三棱台的两个底面边分别等于8cm 和18cm ,侧棱长为13cm ,则它的侧面积为8、边长为5cm 的正方形ABCD 是圆柱的轴截面,从A 到C 绕圆柱侧面的最短路程为三、解答题9、正四棱台的高为12cm ,两底面边长之差为10cm ,全面积为2512cm ,求底面边长。
第一章:空间几何体一、教学目标1.知识与技能1通过实物操作,增强学生的直观感知;2能根据几何结构特征对空间物体进行分类;3会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征;4会表示有关于几何体以及柱、锥、台的分类;2.过程与方法1让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征;2让学生观察、讨论、归纳、概括所学的知识;3.情感态度与价值观1使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力;2培养学生的空间想象能力和抽象括能力;二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征;难点:柱、锥、台、球的结构特征的概括;三、教学用具1学法:观察、思考、交流、讨论、概括;2实物模型、投影仪四、教学思路一创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗这些建筑的几何结构特征如何引导学生回忆,举例和相互交流;教师对学生的活动及时给予评价;2.所举的建筑物基本上都是由这些几何体组合而成的,展示具有柱、锥、台、球结构特征的空间物体,你能通过观察;根据某种标准对这些空间物体进行分类吗这是我们所要学习的内容;二、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥;2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么它们的共同特点是什么3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果;在此基础上得出棱柱的主要结构特征;1有两个面互相平行;2其余各面都是平行四边形;3每相邻两上四边形的公共边互相平行;概括出棱柱的概念;4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示;5.提出问题:各种这样的棱柱,主要有什么不同可不可以根据不同对棱柱分类请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征它们由哪些基本几何体组成的6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示;7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示;8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括;9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体;10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成;请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征它们由哪些基本几何体组成的三质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考;1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱举反例说明,如图2.棱柱的何两个平面都可以作为棱柱的底面吗3.课本P8,习题组第1题;4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到如何旋转5.棱台与棱柱、棱锥有什么关系圆台与圆柱、圆锥呢四、巩固深化练习:课本P7练习1、212课本P8习题第2、3、4题五、归纳整理由学生整理学习了哪些内容六、布置作业课本P8练习题组第1题课外练习课本P8习题组第2题空间几何体的三视图1课时一、教学目标1.知识与技能1掌握画三视图的基本技能2丰富学生的空间想象力2.过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用;3.情感态度与价值观1提高学生空间想象力2体会三视图的作用二、教学重点、难点重点:画出简单组合体的三视图难点:识别三视图所表示的空间几何体三、学法与教学用具1.学法:观察、动手实践、讨论、类比2.教学用具:实物模型、三角板四、教学思路一创设情景,揭开课题“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图;在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图正视图、侧视图、俯视图,你能画出空间几何体的三视图吗二实践动手作图1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;2.教师引导学生用类比方法画出简单组合体的三视图1画出球放在长方体上的三视图2画出矿泉水瓶实物放在桌面上的三视图学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得;作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图;3.三视图与几何体之间的相互转化;1投影出示图片课本P10,图请同学们思考图中的三视图表示的几何体是什么2你能画出圆台的三视图吗3三视图对于认识空间几何体有何作用你有何体会教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法;4.请同学们画出中其他物体表示的空间几何体的三视图,并与其他同学交流;三巩固练习课本P12练习1、2P18习题组1四归纳整理请学生回顾发表如何作好空间几何体的三视图五课外练习1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图;2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图;空间几何体的直观图1课时一、教学目标1.知识与技能1掌握斜二测画法画水平设置的平面图形的直观图;2采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点;2.过程与方法学生通过观察和类比,利用斜二测画法画出空间几何体的直观图;3.情感态度与价值观1提高空间想象力与直观感受;2体会对比在学习中的作用;3感受几何作图在生产活动中的应用;二、教学重点、难点重点、难点:用斜二测画法画空间几何值的直观图;三、学法与教学用具1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程;2.教学用具:三角板、圆规四、教学思路一创设情景,揭示课题1.我们都学过画画,这节课我们画一物体:圆柱把实物圆柱放在讲台上让学生画;2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢这是我们这节主要学习的内容;二研探新知1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评;画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法;强调斜二测画法的步骤;练习反馈根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查;2.例2,用斜二测画法画水平放置的圆的直观图教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点;教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法;3.探求空间几何体的直观图的画法1例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图;教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事;2投影出示几何体的三视图、课本P15图,请说出三视图表示的几何体并用斜二测画法画出它的直观图;教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系;4.平行投影与中心投影投影出示课本P17图,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点;5.巩固练习,课本P16练习11,2,3,4三、归纳整理学生回顾斜二测画法的关键与步骤四、作业1.书画作业,课本P17练习第5题2.课外思考课本P16,探究12一、教学目标1、知识与技能1通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法;2能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系;3培养学生空间想象能力和思维能力;2、过程与方法1让学生经历几何全的侧面展一过程,感知几何体的形状;2让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系;3、情感与价值通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响;从而增强学习的积极性;二、教学重点、难点重点:柱体、锥体、台体的表面积和体积计算难点:台体体积公式的推导三、学法与教学用具1、学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标;2、教学用具:实物几何体,投影仪四、教学设想1、创设情境1教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积引导学生回忆,互相交流,教师归类;2教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的你能否计算引入本节内容;2、探究新知1利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图2组织学生分组讨论:这三个图形的表面由哪些平面图形构成表面积如何求3教师对学生讨论归纳的结果进行点评;3、质疑答辩、排难解惑、发展思维1教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式:r1为上底半径r为下底半径l为母线长2组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系;3教师引导学生探究:如何把一个三棱柱分割成三个等体积的棱锥由此加深学生对等底、等高的锥体与柱体体积之间的关系的了解;如图:4教师指导学生思考,比较柱体、锥体,台体的体积公式之间存在的关系;s’,s分别我上下底面面积,h为台柱高4、例题分析讲解课本例1、例2、例35、巩固深化、反馈矫正教师投影练习1、已知圆锥的表面积为a ㎡,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为;答案:m a ππ3322、棱台的两个底面面积分别是245c ㎡和80c㎡,截得这个棱台的棱锥的高为35cm,求这个棱台的体积;答案:2325cm 36、课堂小结本节课学习了柱体、锥体与台体的表面积和体积的结构和求解方法及公式;用联系的关点看待三者之间的关系,更加方便于我们对空间几何体的了解和掌握;7、评价设计 习题组§球的体积和表面积一. 教学目标1. 知识与技能⑴通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分 割——求和——化为准确和”,有利于同学们进一步学习微积分和近代数学知识; ⑵能运用球的面积和体积公式灵活解决实际问题; ⑶培养学生的空间思维能力和空间想象能力; 2. 过程与方法通过球的体积和面积公式的推导,从而得到一种推导球体积公式V=34πR 3和面积公式S=4πR 2的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想;3. 情感与价值观通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心; 二. 教学重点、难点重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法; 难点:推导体积和面积公式中空间想象能力的形成; 三. 学法和教学用具1. 学法:学生通过阅读教材,发挥空间想象能力,了解并初步掌握“分割、求近似值的、再由近似值的和转化为球的体积和面积”的解题方法和步骤; 2. 教学用具:投影仪四. 教学设计(一) 创设情景⑴教师提出问题:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢 引导学生进行思考;⑵教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积 激发学生推导球的体积和面积公式;(二) 探究新知 1.球的体积:如果用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片”,“小圆片”的体积的体积之和正好是球的体积,由于“小圆片”近似于圆柱形状,所以它的体积也近似于圆柱形状,所以它的体积有也近似于相应的圆柱和体积,因此求球的体积可以按“分割——求和——化为准确和”的方法来进行; 步骤: 第一步:分割如图:把半球的垂直于底面的半径OA作n 等分,过这些等分点,用一组平行于底面的平面把半球切割成n 个“小圆片”,“小圆片”厚度近似为nR,底面是“小圆片”的底面; 如图:得)1(])1(1[232n i ni n R n R r V i i ⋯⋯=--=⋅⋅≈、2 ππ 第二步:求和 第三步:化为准确的和当n →∞时,n 1→0同学们讨论得出所以3332)6211(R R ππ=⨯-=V半球 得到定理:半径是R的球的体积334R π=球V 练习:一种空心钢球的质量是142g,外径是5cm,求它的内径钢的密度是cm 32.球的表面积:球的表面积是球的表面大小的度量,它也是球半径R 的函数,由于球面是不可展的曲面,所以不能像推导圆柱、圆锥的表面积公式那样推导球的表面积公式,所以仍然用“分割、求近似和,再由近似和转化为准确和”方法推导;思考:推导过程是以什么量作为等量变换的 半径为R 的球的表面积为S=4πR 2练习:长方体的一个顶点上三条棱长分别为3、4、5,是它的八个顶点都在同一球面上,则这个球的表面积是;答案50元 (三) 典例分析 课本P 47例4和P 29例5 (四) 巩固深化、反馈矫正⑴正方形的内切球和外接球的体积的比为,表面积比为; 答案:1:33; 3:1⑵在球心同侧有相距9cm 的两个平行截面,它们的面积分别为49πcm 2和400πcm 2,求球的表面积;答案:2500πcm 2分析:可画出球的轴截面,利用球的截面性质求球的半径(五)课堂小结本节课主要学习了球的体积和球的表面积公式的推导,以及利用公式解决相关的球的问题,了解了推导中的“分割、求近似和,再由近似和转化为准确和”的解题方法;(六)评价设计作业P30练习1、3,B1第二章直线与平面的位置关系§平面一、教学目标:1、知识与技能1利用生活中的实物对平面进行描述;2掌握平面的表示法及水平放置的直观图;3掌握平面的基本性质及作用;4培养学生的空间想象能力;2、过程与方法1通过师生的共同讨论,使学生对平面有了感性认识;2让学生归纳整理本节所学知识;3、情感与价值使用学生认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣;二、教学重点、难点重点:1、平面的概念及表示;2、平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言;难点:平面基本性质的掌握与运用;三、学法与教学用具1、学法:学生通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好地完成本节课的教学目标;2、教学用具:投影仪、投影片、正长方形模型、三角板四、教学思想一实物引入、揭示课题师:生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象,你们能举出更多例子吗引导学生观察、思考、举例和互相交流;与此同时,教师对学生的活动给予评价; 师:那么,平面的含义是什么呢这就是我们这节课所要学习的内容;二研探新知1、平面含义师:以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出来的,但是,几何里的平面是无限延展的;2、平面的画法及表示师:在平面几何中,怎样画直线一学生上黑板画之后教师加以肯定,解说、类比,将知识迁移,得出平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长如图平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等; 如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成虚线或不画打出投影片课本P41图说明平面内有无数个点,平面可以看成点的集合; 点A 在平面α内,记作:A ∈α点B 在平面α外,记作:B α3、平面的基本性质教师引导学生思考教材P41的思考题,让学生充分发表自己的见解;师:把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上,用事实引导学生归纳出以下公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 教师引导学生阅读教材P42前几行相关内容,并加以解析 符号表示为A ∈LB ∈L=>L α A ∈α B ∈α公理1作用:判断直线是否在平面内师:生活中,我们看到三脚架可以牢固地支撑照相机或测量用的平板仪等等…… 引导学生归纳出公理2公理2:过不在一条直线上的三点,有且只有一个平面; 符号表示为:A 、B 、C 三点不共线=>有且只有一个平面α, 使A ∈α、B ∈α、C ∈α;公理2作用:确定一个平面的依据;教师用正长方形模型,让学生理解两个平面的交线的含义; 引导学生阅读P42的思考题,从而归纳出公理3公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线; 符号表示为:P ∈α∩β=>α∩β=L,且P ∈L 公理3作用:判定两个平面是否相交的依据 4、教材P43例1通过例子,让学生掌握图形中点、线、面的位置关系及符号的正确使用;5、课堂练习:课本P44练习1、2、3、46、课时小结:师生互动,共同归纳1本节课我们学习了哪些知识内容2三个公理的内容及作用是什么7、作业布置 1复习本节课内容;2预习:同一平面内的两条直线有几种位置关系D C B A αα βαβ·B·AαLA·α C ·B·A· α P ·αLβ·B§空间中直线与直线之间的位置关系一、教学目标:1、知识与技能1了解空间中两条直线的位置关系;2理解异面直线的概念、画法,培养学生的空间想象能力;3理解并掌握公理4;4理解并掌握等角定理;5异面直线所成角的定义、范围及应用;2、过程与方法1师生的共同讨论与讲授法相结合;2让学生在学习过程不断归纳整理所学知识;3、情感与价值让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣;二、教学重点、难点重点:1、异面直线的概念;2、公理4及等角定理;难点:异面直线所成角的计算;三、学法与教学用具1、学法:学生通过阅读教材、思考与教师交流、概括,从而较好地完成本节课的教学目标;2、教学用具:投影仪、投影片、长方体模型、三角板四、教学思想一创设情景、导入课题1、通过身边诸多实物,引导学生思考、举例和相互交流得出异面直线的概念:不同在任何一个平面内的两条直线叫做异面直线;2、师:那么,空间两条直线有多少种位置关系板书课题二讲授新课1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点;教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如下图:2、1师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行;在空间中,是否有类似的规律组织学生思考:长方体ABCD-A'B'C'D'中,BB'∥AA',DD'∥AA',BB'与DD'平行吗生:平行再联系其他相应实例归纳出公理4公理4:平行于同一条直线的两条直线互相平行;符号表示为:设a、b、c是三条直线a∥b c∥b =>a∥c共面直线强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用; 公理4作用:判断空间两条直线平行的依据; 2例2投影片例2的讲解让学生掌握了公理4的运用 3教材P47探究让学生在思考和交流中提升了对公理4的运用能力; 3、组织学生思考教材P47的思考题 投影让学生观察、思考:∠ADC 与A'D'C'、∠ADC 与∠A'B'C'的两边分别对应平行,这两组角的大小关系如何生:∠ADC=A'D'C',∠ADC+∠A'B'C'=1800教师画出更具一般性的图形,师生共同归纳出如下定理等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补; 教师强调:并非所有关于平面图形的结论都可以推广到空间中来; 4、以教师讲授为主,师生共同交流,导出异面直线所成的角的概念;1师:如图,已知异面直线a 、b,经过空间中任一点O 作直线a'∥a 、b'∥b,我们把a'与b'所成的锐角或直角叫异面直线a 与b 所成的角夹角; 2强调:①a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上;②两条异面直线所成的角θ∈0,;③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角; 3例3投影例3的给出让学生掌握了如何求异面直线所成的角,从而巩固了所学知识; 三课堂练习 教材P49练习1、2充分调动学生动手的积极性,教师适时给予肯定; 四课堂小结在师生互动中让学生了解: 1本节课学习了哪些知识内容 2计算异面直线所成的角应注意什么 五课后作业 1、判断题: 1a ∥bc ⊥a=>c ⊥b 1a ⊥cb ⊥c=>a ⊥b 2、填空题:在正方体ABCD-A'B'C'D'中,与BD'成异面直线的有________条;§—空间中直线与平面、 平面与平面之间的位置关系一、教学目标:2。
1.3.2柱体、锥体、台体的表面积与体积(二)(苏华丽)一、教学目标(一)核心素养通过学习,使学生感受几何体体积的求解过程,锻炼自己的空间思维能力,从而增强学习的积极性.(二)学习目标1.掌握柱、锥、台体积的求法.2.让学生通过对照比较,理顺柱体、锥体、台体三者间体积的关系(三)学习重点运用公式解决问题.(四)学习难点理解计算公式之间的关系.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第25页至第27页.填空:棱长为a 的正方体的体积计算公式为3a .长、宽、高分别为c b a 、、的长方体的体积的计算公式为abc .圆柱体积公式:Sh V =.一般柱体的体积:Sh V =.(S 为底面面积,h 为柱体的高) 椎体的体积Sh V 31=(S 为底面面积,h 为高). 台体的体积()h S SS S V ++=''31 ('S S 、分别为上、下底面面积,h 为台体的高). 2.预习自测 (1)已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则1V :2V =______.【答案】1:3【知识点】柱体、椎体的体积公式【解题过程】设圆柱、圆柱的底面积为S ,高为h ,则由柱体、锥体的体积公式得:()121313V :V Sh :Sh :,⎛⎫== ⎪⎝⎭故选D. 【思路点拨】直接用公式解(2)设直角三角形的两直角边43==AC AB ,,则它绕AB 旋转一周得到的旋转体的体积为____________.【答案】π16【知识点】锥体体积公式、旋转体【解题过程】根据题意可知,所得的立体图形是一个圆锥:底面半径是4,高为3,圆锥体积=2143163π⨯⨯⨯=π. 【思路点拨】运用锥体体积公式求解.(3)已知棱台的上下底面面积分别为16,4,高为3,则该棱台的体积为___________.【答案】28【知识点】台体的体积公式【解题过程】台体体积()()1141632833'V S S h =++=⨯+⨯= 【思路点拨】牢记台体体积公式(二)课堂设计1.知识回顾已学柱体、椎体、台体表面积计算方法.2.问题探究探究一柱体、锥体体积计算公式活动① 结合实例,进行猜想将正方体、长方体的体积公式分别改写为:h S a a a V ⋅=⋅==底正方体23,其中a h =;。
空间几何体的表面积与体积1.3.1柱体、锥体、台体的表面积与体积【教学目标】(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。
(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。
(3)培养学生空间想象能力和思维能力。
【教学重点难点】【教学重点】:柱体、锥体、台体的表面积和体积计算【教学难点】:台体体积公式的推导【学前准备】:多媒体,预习例题(3)初中时,我们已经学习了计算特殊的柱体——正方体、长方体以及圆柱的体积公式:如图,把正方体截去四个角,得到一个体比2a和积此圆柱的底面在圆锥的底面上,圆柱的高等于圆锥底面半径,且圆柱的全面积:圆锥的底面积3:2=.)求圆锥母线与底面多成的角的正切值;(2)圆锥的侧面积参考答案:1. B 2. C 3. 1 , 3 4. A 5. B 6. B 7. 1:3 3a π或32aπ9.已知圆锥有一个内接圆柱此圆柱的底面在圆锥的底面上,圆柱. 三棱锥的外接球问题【教学目标】⑴通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分割——求和——化为准确和”,有利于同学们进一步学习微积分和近代数学知识。
⑵能运用球的面积和体积公式灵活解决实际问题。
⑶培养学生的空间思维能力和空间想象能力。
【教学重难点】【教学重点】:引导学生了解推导球的体积和面积公式所运用的基本思想方法。
【教学难点】:推导体积和面积公式中空间想象能力的形成。
【学前准备】:多媒体,预习例题4:如图是一个空间几何体的三视图,则该几何体的外接球的表面积为.类型四:一条测棱垂直底面,底面为非直角三角形的四面体的外接球问题5已知点A,B,C,D,四点在同一个球面上,DA⊥平面ABC,DA=AB=AC=3,∠ABC=60,则球半径是类型五:正三棱锥的外接球问题6:已知正三棱锥底面边长为1,侧棱长为2,求外接球半径。
1.3.1柱体、锥体、台体的表面积与体积(一)一、教学目标 (一)核心素养通过感受柱体、锥体、台体的表面积计算过程,学会将空间问题转化为平面 问题进行解决的数学思想方法,培养学生空间想象能力和思维能力. (二)学习目标1.通过对柱、锥、台体的研究,掌握柱、锥、台的表面积的求法.2.能运用公式求解柱体、锥体和台的表面积,并且熟悉台体与柱体和锥体之间的转换关系. (三)学习重点理解和掌握柱体、锥体、台体的表面积的构成形式,以便从度量的角度认识空间几何体(四)学习难点用联系、类比、运动变化的思想推导柱体、锥体、台体的表面积 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第23页至第25页,填空:多面体的表面积就是各个面的面积的和,也就是展开图的面积. 棱长为a 的正方体的表面积计算公式为26a .长、宽、高分别为c b a 、、的长方体的表面积的计算公式为bc ac ab 222++. 如何求棱柱、棱锥、棱台等多面体的表面积?展开成平面图形,各面面积和. 圆柱的侧面积rl π2,表面积rl r S ππ222+=. 圆锥的侧面积rl π,表面积rl r S ππ+=2.圆台的侧面积l r rl 'ππ+,表面积()22''S r r r l rl =π+++(1)各面都是边长为10的等边三角形的正四面体ABC S -的表面积为_______. 【答案】3100【知识点】棱锥表面积【解题过程】∵正四面体有四个面,每个面为等边三角形,则表面积=11042⨯⨯=3100 【思路点拨】确定该棱锥有多少个面.(2)底面半径为2,母线长为2的圆锥的侧面积为________. 【答案】π4【知识点】圆锥的侧面积公式【解题过程】圆锥的侧面积公式为rl π,则该圆锥侧面积=4r l π⨯⨯=π 【思路点拨】只求圆锥的侧面积.(3)一个圆台,上、下底面半径分别为10、20,母线长为10,则此圆台的表面积为________. 【答案】π800【知识点】圆台的表面积公式【解题过程】()()2222102010101020800''S r r r l rl ===π+++π++⨯+⨯π台【思路点拨】圆台表面积=上底面+下底面+侧面 (二)课堂设计 1.知识回顾(1)已认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)如何画简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,及通过三视图还原几何图,用斜二侧法画几何体的直观图.(3)通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式. 2.问题探究探究一 寻找几何体展开图与其表面积的关系 活动 互动交流、初步实践在初中,我们就学习了正方体和长方体的表面积,以及它们的展开图,你知道它们的展开图与其表面积的关系吗?多面体的表面积就是各个面的面积和,也就是展开图的面积.【设计意图】(1)复习表面积的概念;(2)介绍利用平面展开图求面积的方法,求立体图形的表面积.探究二 棱柱、棱锥、棱台表面积的求法 活动① 分组合作、讨论交流提出问题:棱柱、棱锥、棱台也是由多个平面图形围成的几何体,它们的展开图是什么?如何计算它们的表面积?分析处理:(1)以五棱柱、四棱锥、三棱台的模型,同学们分组合作,把模型展开,它们的展开图,表面积如何?(2)当学生得出结论后,教师反问:对于其他的棱柱、棱锥、棱台,结论又会如何?我们能否找到他们的共性? 活动② 概括总结底侧棱柱的表面积S S S 2+=,底侧棱锥的表面积S S S += ,下底上底侧棱台的表面积S S S S ++=让学生明确棱柱的侧面展开图是若干个平行四边形,棱锥的侧面展开图是若干个三角形,棱台的侧面展开图是若干个梯形,这样就可以把空间几何体的表面积问题转化为平面图形的面积问题.【设计意图】这样设计教学程序,能使学生在探究过程中产生认知冲突,激发他们探究新知的欲望和必要性,通过解决特殊问题,让学生经历知识和方法产生和发现过程,进而得出解决同类问题的一般方法,符合学生的认知结构特征,同时也给学生渗透了探究问题的基本思路——由特殊到一般.通过学生对以上问题的解答,真正把学生学习数学的过程转变为学生对数学知识的“再创造”过程,体验数学发现和创造的历程,为学生形成积极探究的学习方式,创造有利条件,发展了学生的创新意识.活动③ 巩固基础、检查反馈例1 一个正三棱柱的三视图如图所示(单位:cm ),则这个正三棱柱的表面积为( )A .1638+B .2438+C .1634+D .2434+ 【知识点】棱柱 【解题过程】243834224432+=⨯⨯+⨯⨯ 【思路点拨】利用三视图还原原图,求上下底面面积及侧面积,相加即得. 【答案】2438+同类训练一个三棱柱的底面是正三角形,边长为4,侧棱与底面垂直,侧棱长10,则其表面积为___________. 【知识点】棱柱 【解题过程】12038341024432+=⨯⨯+⨯⨯ 【思路点拨】求上下底面面积及侧面积,相加即得. 【答案】12038+例2 已知棱长为a ,各边均为等边三角形的三棱锥ABC S -,则它的 ①底面积为_______;②侧面积为_______;③表面积为_______. 【知识点】棱锥【解题过程】底面积2432321a a a =⋅⋅;侧面积243332321a a a =⋅⋅⋅;表面积222343343a a a =+【思路点拨】直接应用公式解答 【答案】243a ;2433a ;23a 同类训练 已知三棱锥的三条侧棱两两互相垂直,且长度分别为cm 1,cm 2,cm 3,则此棱锥的表面积为_____. 【知识点】棱锥【解题过程】侧面积211312132212121=⨯⨯+⨯⨯+⨯⨯;底面积:65654135210-135cos =⋅+=θ; 6565765161cos 1sin 2=-=-=∴θθ 276565713521=⨯⨯⨯=∴S表面积:921127=+【思路点拨】直接应用公式解答 【答案】9例3六棱台的上、下底面均是正六边形,边长分别是cm 8和cm 18,侧面是全等的等腰梯形,侧棱长为cm 13,求它的表面积. 【知识点】棱台【解题过程】依题意,易知52818=-=a ,1251322=-=h . 则()29361228186cm S =⨯+⨯=侧面积, ()()20396660sin 8821cm S =⨯⨯⨯⨯=上底, ()()203486660sin 181821cm S =⨯⨯⨯⨯=下底.所以,表面积为()235829363486396936cm+=++,【思路点拨】直接应用公式解答【答案】()23582936cm+同类训练已知正三棱台的上、下底面边长分别为cm3和cm6,高为cm23,求此正三棱台的表面积.【知识点】棱台【解题过程】侧面的高()cmh32332322=⎪⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛=,()()2224399643343363213cmSSS=⨯+⨯+⨯+⨯⨯=+=底侧表则,【思路点拨】直接应用公式解答【答案】()24399cm【设计意图】巩固检查学生对柱体、椎体、台体表面积计算方法的掌握.探究三圆柱、圆锥、圆台的表面积公式活动①互动交流、初步实践圆柱、圆锥、圆台是如何形成的?它们的展开图如何?通过几何画板演示旋转体的形成过程,大家猜想一下他们的侧面展开图如何?充分认识圆锥、圆柱、圆台的侧面展开图为矩形、扇环.若知道了圆柱、圆锥的底面圆半径r ,母线长l ,圆台的上、下底面半径分别是r ',r ,母线长为l ,你能计算出它们的表面积吗?推到出公式:圆柱的表面积)(2222l r r rl r S +=+=πππ, 圆锥的表面积)(2l r r rl r S +=+=πππ, 圆台的表面积)(22l r rl r r S '++'+=π。
1.3.2 球的体积和表面积整体设计教学分析本节教材直接给出了球的表面积和体积公式,并用两个例题来说明其应用.值得注意的是教学的重点放在球与其他几何体的组合体的有关计算上,这是高考的重点. 三维目标掌握球的表面积和体积公式,并能应用其解决有关问题,提高学生解决问题的能力,培养转化与化归的数学思想方法. 重点难点教学重点:球的表面积和体积公式的应用. 教学难点:关于球的组合体的计算. 课时安排 约1课时教学过程导入新课思路1.位于香港栈桥回澜阁西部、西陵峡路东端海滨,有一座新异奇秀的半球形建筑.由香港好世界饮食服务(中国)有限公司等三方合资兴建,1996年9月正式开业,既是岛城饮食服务业的“特一级”店,又是新增加的一处景点.酒店的总建筑面积11 380平方米,现酒店管理层决定在半球形屋顶嵌上一层特殊化学材料以更好地保护酒店,那么,需要多少面积的这种化学材料呢?思路2.球既没有底面,也无法像柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?球的大小与球的半径有关,如何用球半径来表示球的体积和面积?教师引出课题:球的体积和表面积. 推进新课 新知探究球的半径为R ,它的体积和表面积只与半径R 有关,是以R 为自变量的函数.事实上,如果球的半径为R ,那么S=4πR 2,V=334R . 注意:球的体积和表面积公式的证明以后证明.应用示例思路1例1 如图1所示,圆柱的底面直径与高都等于球的直径,求证:图1(1)球的体积等于圆柱体积的32; (2)球的表面积等于圆柱的侧面积.活动:学生思考圆柱和球的结构特征,并展开空间想象.教师可以使用信息技术帮助学生读懂图形.证明:(1)设球的半径为R ,则圆柱的底面半径为R ,高为2R. 则有V 球=334R π,V 圆柱=πR 2·2R=2πR 3,所以V 球=圆柱V 32. (2)因为S 球=4πR 2,S 圆柱侧=2πR·2R=4πR 2,所以S 球=S 圆柱侧.点评:本题主要考查有关球的组合体的表面积和体积的计算.解决此类问题的关键是明确组合体的结构特征. 变式训练1.如图2(1)所示,表面积为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积.图2解:设球的半径为R ,正四棱柱底面边长为a,则轴截面如图2(2),所以AA′=14,AC=a 2,又∵4πR 2=324π,∴R=9. ∴AC=28''22=-CC AC .∴a=8.∴S 表=64×2+32×14=576,即这个正四棱柱的表面积为576.2有一种空心钢球,质量为142 g,测得外径(直径)等于5 cm ,求它的内径(钢的密度为7.9 g/cm 3,精确到0.1 cm ).解:设空心球内径(直径)为2x cm,则钢球质量为7.9·[3334)25(34x ππ-∙]=142, ∴x 3=14.349.73142)25(3⨯⨯⨯-≈11.3,∴x≈2.24,∴直径2x≈4.5.答:空心钢球的内径约为4.5 cm.例2 如图3所示,表示一个用鲜花做成的花柱,它的下面是一个直径为1 m 、高为3 m 的圆柱形物体,上面是一个半球形体.如果每平方米大约需要鲜花150朵,那么装饰这个花柱大约需要多少朵鲜花(π取3.1)?图3活动:学生思考和讨论如何计算鲜花的朵数.鲜花的朵数等于此几何体的表面积(不含下底面)与每朵鲜花占用的面积.几何体的表面积等于圆柱的侧面积再加上半球的表面积. 解:圆柱形物体的侧面面积S 1≈3.1×1×3=9.3(m 2), 半球形物体的表面积为S 2≈2×3.1×(21)2≈1.6(m 2), 所以S 1+S 2≈9.3+1.6=10.9(m 2). 10.9×150≈1 635(朵).答:装饰这个花柱大约需要1 635朵鲜花.点评:本题主要考查球和圆柱的组合体的应用,以及解决实际问题的能力. 变式训练有一个轴截面为正三角形的圆锥容器,内放一个半径为R 的内切球,然后将容器注满水,现把球从容器中取出,水不损耗,且取出球后水面与圆锥底面平行形成一圆台体,问容器中水的高度为多少?分析:转化为求水的体积.画出轴截面,充分利用轴截面中的直角三角形来解决. 解:作出圆锥和球的轴截面图如图4所示,图4圆锥底面半径r=R R330tan =︒,圆锥母线l=2r=R 32,圆锥高为h=r 3=3R , ∴V 水=334332πππ=-R h r ·3R 2·3R 333534R R ππ=-, 球取出后,水形成一个圆台,下底面半径r=R 3,设上底面半径为r′, 则高h′=(r -r′)tan60°=)'3(3r R -, ∴'3353h R ππ=(r 2+r′2+rr′),∴5R 3=)3'3')('3(322R Rr r r R ++-, ∴5R 3=)'33(333r R -, 解得r′=6331634R R =, ∴h′=(3123-)R.答:容器中水的高度为(3123-)R.思路2例1 (2006广东高考,12)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为____________.活动:学生思考长方体和球的结构特征.教师可以借助于信息技术画出图形. 分析:画出球的轴截面可得,球的直径是正方体的对角线,所以球的半径R=233,则该球的表面积为S=4πR 2=27π. 答案:27π点评:本题主要考查简单的组合体和球的表面积.球的表面积和体积都是半径R 的函数.对于和球有关的问题,通常可以在轴截面中建立关系.画出轴截面是正确解题的关键. 变式训练1.(2006全国高考卷Ⅰ,理7)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A.16πB.20πC.24πD.32π分析:由V=Sh ,得S=4,得正四棱柱底面边长为2.画出球的轴截面可得,该正四棱柱的对角线即为球的直径,所以,球的半径为R=642221222=++,所以球的表面积为S=4πR 2=24π. 答案:C2.(2005湖南数学竞赛,13)一个球与正四面体的六条棱都相切,若正四面体的棱长为a ,则这个球的体积为_____________.分析:把正四面体补成正方体的内接正四面体,此时正方体的棱长为a 22,于是球的半径为a 42,V=3242a π. 答案:3242a π 3.(2007天津高考,理12)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为___________.分析:长方体的对角线为14321222=++,则球的半径为214,则球的表面积为4π(214)2=14π. 答案:14π例2 图5是一个底面直径为20 cm 的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm ,高为20 cm 的一个圆锥形铅锤,当铅锤从水中取出后,杯里的水将下降几厘米?图5活动:学生思考杯里的水将下降的原因,通过交流和讨论得出解题思路.因为玻璃杯是圆柱形的,所以铅锤取出后,水面下降部分实际是一个小圆柱,这个圆柱的底面与玻璃杯的底面一样,是一直径为20 cm 的圆,它的体积正好等于圆锥形铅锤的体积,这个小圆柱的高就是水面下降的高度.解:因为圆锥形铅锤的体积为2)26(31⨯⨯π×20=60π(cm 3), 设水面下降的高度为x ,则小圆柱的体积为x 2)220(π=100πx ( cm 3). 所以有60π=100πx ,解此方程得x=0.6( cm ). 答:杯里的水下降了0.6 cm.点评:本题主要考查几何体的体积问题,以及应用体积解决实际问题的能力.明确几何体的形状及相应的体积公式是解决这类问题的关键.解实际应用题的关键是建立数学模型.本题的数学模型是下降的水的体积等于取出的圆锥形铅锤的体积.明确其体积公式中的相关量是列出方程的关键. 变式训练1.一个空心钢球,外直径为12 cm ,壁厚0.2 cm ,问它在水中能浮起来吗?(钢的密度为7.9 g/cm 3)和它一样尺寸的空心铅球呢?(铅的密度为11.4 g/cm 3)分析:本题的关键在于如何判断球浮起和沉没,因此很自然要先算出空心钢球的体积,而空心钢球的体积相当于是里、外球的体积之差,根据球的体积公式很容易得到空心钢球的体积,从而算出空心钢球的质量,然后把它与水的质量相比较即可得出结论,同理可以判断铅球会沉没.解:空心钢球的体积为V 钢=348.53463433πππ=⨯-⨯×20.888≈87.45(cm 3), ∴钢的质量为m 钢=87.45×7.9=690.86(g). ∵水的体积为V 水=34π×63=904.32(cm 3), ∴水的质量为m 水=904.32×1=904.32(g)>m 钢.∴钢球能浮起来,而铅球的质量为m 铅=87.45×11.4=996.93(g)>m 水. ∴同样大小的铅球会沉没.答:钢球能浮起来,同样大小的铅球会沉没.2.(2006全国高中数学联赛试题第一试,10)底面半径为1 cm 的圆柱形容器里放有四个半径为21cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切.现往容器里注水使水面恰好浸没所有铁球,则需要注水___________cm 3.分析:设四个实心铁球的球心为O 1、O 2、O 3、O 4,其中O 1、O 2为下层两球的球心,A 、B 、C 、D 分别为四个球心在底面的射影,则ABCD 是一个边长为22cm 的正方形,所以注水高为(1+22) cm.故应注水π(1+22)-4×)2231()21(343+=ππ cm 3. 答案:(31+22)π 知能训练1.三个球的半径之比为1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的( ) A.1倍 B.2倍 C.59倍 D.47倍 分析:根据球的表面积等于其大圆面积的4倍,可设最小的一个半径为r ,则另两个为2r 、3r ,所以各球的表面积分别为4πr 2、16πr 2、36πr 2,5916436222=+rr r πππ(倍). 答案:C2.(2006安徽高考,理9)表面积为32的正八面体的各个顶点都在同一个球面上,则此球的体积为( ) A.32π B.3π C.32π D.322π分析:此正八面体是每个面的边长均为a 的正三角形,所以由8×32432=a 知,a=1,则此球的直径为2. 答案:A3.(2007北京西城抽样,文11)若与球心距离为4的平面截球所得的截面圆的面积是9π,则球的表面积是____________.分析:画出球的轴截面,则球心与截面圆心的连线、截面的半径、球的半径构成直角三角形,又由题意得截面圆的半径是3,则球的半径为2234+=5,所以球的表面积是4π×52=100π. 答案:100π4.某街心花园有许多钢球(钢的密度是7.9 g/cm 3),每个钢球重145 kg,并且外径等于50 cm,试根据以上数据,判断钢球是实心的还是空心的.如果是空心的,请你计算出它的内径(π取3.14,结果精确到1 cm ).解:由于外径为50 cm 的钢球的质量为7.9×3)250(34⨯π≈516 792(g), 街心花园中钢球的质量为145 000 g,而145 000<516 792, 所以钢球是空心的.设球的内径是2x cm ,那么球的质量为7.9·[3334)250(34x ππ-∙]=145 000, 解得x 3≈11 240.98,x≈22.4,2x≈45(cm). 答:钢球是空心的,其内径约为45 cm.5.(2007海南高考,文11)已知三棱锥S —ABC 的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,AC=r 2,则球的体积与三棱锥体积之比是( ) A.π B.2π C.3π D.4π 分析:由题意得SO=r 为三棱锥的高,△ABC 是等腰直角三角形,所以其面积是21×2r×r=r 2,所以三棱锥体积是33132r r r =⨯⨯,又球的体积为343r π,则球的体积与三棱锥体积之比是4π. 答案:D点评:面积和体积往往涉及空间距离,而新课标对空间距离不作要求,因此在高考试题中其难度很低,属于容易题,2007年新课标高考试题就体现了这一点.高考试题中通常考查球、三棱锥、四棱锥、长方体、正方体等这些简单几何体或它们的组合体的面积或体积的计算.我们应高度重视这方面的应用. 拓展提升问题:如图6,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A—BEFD与三棱锥A—EFC的表面积分别是S1,S2,则必有()图6A.S1<S2B.S1>S2C.S1=S2D.S1,S2的大小关系不能确定探究:如图7,连OA、OB、OC、OD,则V A—BEFD=V O—ABD+V O—ABE+V O—BEFD+V O—ADF,V A—EFC=V O—AFC+V O—AEC+V O—EFC,又V A—BEFD=V A—EFC,而每个小三棱锥的高都是原四面体的内切球的半径,故S△ABD+S△ABE+S BEFD+S△ADF=S△AFC+S△AEC+S△EFC,又面AEF是公共面,故选C.图7答案:C课堂小结本节课学习了:1.球的表面积和体积.2.计算组合体的体积时,通常将其转化为计算柱、锥、台、球等常见的几何体的体积.3.空间几何体的表面积与体积的规律总结:(1)表面积是各个面的面积之和,求多面体表面积时,只需将它们沿着若干条棱剪开后展成平面图形,利用平面图形求多面体的表面积.求旋转体的表面积时,可从回忆旋转体的生成过程及其几何特征入手,将其展开求表面积,但要搞清它们的底面半径、母线长与对应的侧面展开图中的边长关系,注意球面不可展开.(2)在体积公式中出现了几何体的高,其含义是:柱体的高:从柱体的一个底面上任一点向另一个底面作垂线,这点和垂足间的距离称为柱体的高;锥体的高:从锥体的顶点向底面作垂线,这点和垂足间的距离称为锥体的高;台体的高:从台体的一个底面上任一点向另一个底面作垂线,这点和垂足间的距离称为台体的高.注意球没有高的结构特征.(3)利用侧面展开图或截面把空间图形问题转化为平面图形问题,是解决立体几何问题的常用手段.(4)柱体、锥体、台体和球是以后学习第二章点、直线、平面位置关系的载体,高考试题中,通常是用本模块第一章的图,考查第二章的知识.(5)与球有关的接、切问题是近几年高考的热点之一,常以选择题或填空题的形式出现,属于低档题.作业课本本节练习1、2、3.设计感想本节教学结合高考要求,主要是从组合体的角度来讨论球的表面积和体积.值得注意的是其中的题目没有涉及球的截面问题(新课标对球的截面不要求),在实际教学中,教师不要增加球的截面方面的练习题,那样会增加学生的负担.。
.
. 1.1.1柱、锥、台、球的结构特征(一)
教学要求:通过实物模型,观察大量的空间图形,认识柱体、锥体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.
教学重点:让学生感受大量空间实物及模型,概括出柱体、锥体的结构特征.
教学难点:柱、锥的结构特征的概括.
教学过程:
一、新课导入:
1. 讨论:经典的建筑给人以美的享受,其中奥秘为何?世间万物,为何千姿百态?
2. 提问:小学与初中在平面上研究过哪些几何图形?在空间范围上研究过哪些?
3. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算.
二、讲授新课:
1. 教学棱柱、棱锥的结构特征:
① 提问:举例生活中有哪些实例给我们以两个面平行的形象?
② 讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征?
③ 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱.
→ 列举生活中的棱柱实例(三棱镜、方砖、六角螺帽).
结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线.
④ 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等.
表示:棱柱ABCDE-A ’B ’C ’D ’E ’
⑤ 讨论:埃及金字塔具有什么几何特征?
⑥ 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.
结合图形认识:底面、侧面、侧棱、顶点、高. → 讨论:棱锥如何分类及表示?
⑦ 讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?
棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形
棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.
2. 教学圆柱、圆锥的结构特征:
① 讨论:圆柱、圆锥如何形成?
② 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.
→ 列举生活中的棱柱实例 →结合图形认识:底面、轴、侧面、母线、高. → 表示方法
③ 讨论:棱柱与圆柱、棱柱与棱锥的共同特征? → 柱体、锥体.
④ 观察书P2若干图形,找出相应几何体; 举例:生活中的柱体、锥体.
3. 小结:几何图形;相关概念;相关性质;生活实例
三、巩固练习:1. 练习:教材P7 1、2题.
2. 已知圆锥的轴截面等腰三角形的腰长为 5cm,,面积为12cm,求圆锥的底面半径.
3.已知圆柱的底面半径为3cm,,轴截面面积为24cm,求圆柱的母线长.
4.正四棱锥的底面积为462cm ,侧面等腰三角形面积为62cm ,求正四棱锥侧棱.。