数学102班,二次根式
- 格式:doc
- 大小:145.00 KB
- 文档页数:6
二次根式教案数学二次根式教案篇一一、学习目标:1.多项式除以单项式的运算法则及其应用。
2.多项式除以单项式的运算算理。
二、重点难点:重点:多项式除以单项式的运算法则及其应用难点:探索多项式与单项式相除的运算法则的过程三、合作学习:(一)回顾单项式除以单项式法则(二)学生动手,探究新课1.计算下列各式:(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.2.提问:①说说你是怎样计算的②还有什么发现吗?(三) 总结法则1.多项式除以单项式:先把这个多项式的每一项除以,再把所得的商2.本质:把多项式除以单项式转化成四、精讲精练例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)随堂练习:教科书练习五、小结1、单项式的除法法则2、应用单项式除法法则应注意:A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行。
E、多项式除以单项式法则第三十四学时:14.2.1平方差公式一、学习目标:1.经历探索平方差公式的。
过程。
2.会推导平方差公式,并能运用公式进行简单的运算。
二、重点难点重点:平方差公式的推导和应用难点:理解平方差公式的结构特征,灵活应用平方差公式。
三、合作学习你能用简便方法计算下列各题吗?(1)20xx×1999 (2)998×1002导入新课:计算下列多项式的积。
二次根式几年级知识点
二次根式是七年级下册数学的知识。
一般地,形如√a的代数式叫做二次根式,其中,a叫做被开方数。
当a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数(在一元二次方程求根公式中,若根号下为负数,则方程有两个共轭虚根)。
根号是一个数学符号。
根号是用来表示对一个数或一个代数式进行开方运算的符号。
若aⁿ=b,那么a是b开n次方的n次方根或a是b的1/n次方。
开n次方手写体和印刷体用表示,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。
102班数学中考备考计划(一)备考的指导思想纠实基础为主线,提高课堂效益为突破口,落实措施和要求为重点,强化针对性训练是保证。
(二)课堂教学要求1、备课。
(1)备考点,做到以常考的知识为主,设计好重、难点;(2)备练习,做到精选(不能贪多),以基础题、常考题为主;(3)备考试说明和学生,做到结合学生的知识水平进行以纲靠本。
2、讲课。
(1)以学生为主体,做好梳理知识,包括知识成网络、方法成规律(以学生讲为主);(2)以纠正问题为主线,做好学生问题的纠正与评价(以学生讲为主);(3)参考模式:A、梳理知识----练习与反馈----评价与纠正;B、练习与反馈----评价与纠正----总结与梳理。
3、练习。
(1)练习必须进行分层,至少设计或安排一道选做题给学生;(2)至少保证20分钟的练习时间,给予充足的时间给学生思考与交流;(3)老师必须做好练习的反馈和评价与纠正(以学生为主)。
4、作业。
(1)题型或设问方式不能以课堂练习相同,同一知识点设计成不同的设问方式或题型;(2)每天必须布置作业,老师必须批改作业,并做好作业问题的记录;(3)第11周开始,数学科的作业量要适当减少。
(三)课内外辅导要求1、课堂辅导。
课堂至少提问及辅导3个优生、3个合边生和2个差生,老师要做好课前的准备。
2、晚修辅导。
通过“每天一练”,老师重点辅导中下生(分批次、分组进行)。
(四)第一轮复习要求及注意事项1、第一轮复习的形式,以中考说明为主线,注重基础知识的梳理。
第一轮复习要“过三关”:(1)过记忆关。
必须做到记牢记准所有的公式、定理等。
(2)过基本方法关。
如,待定系数法求二次函数解析式。
(3)过基本技能关。
如,数形结合的题目,学生能画图能做出,说明他找到了它的解题方法,具备了解这个题的技能。
2、第一轮复习应该注意的几个问题(1)必须夯实基础。
往年中考试题难度按易:中:难=4:4:2的比例,因此使每个学生对知识都能达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。
16.1.1二次根式教学内容二次根式的概念及其运用教学目标知识与技能目标:a ≥0)的意义解答具体题目. 过程与方法目标:提出问题,根据问题给出概念,应用概念解决实际问题.情感与价值目标:通过本节的学习培养学生:发展学生观察、分析、发现问题的能力. 教学重难点1.重点:理解二次根式的概念;2.难点:确定二次根式中字母的取值范围教法:讲练结合法: 在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。
学法:1、类比的方法 通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。
2、练习法 采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。
媒体设计:PPT 课件,展台。
学习过程一、展示学习目标:1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性二.设置问题情境,引入新课:1求下列各数的平方根和算术平方根(1)9(2)0.64(3)0总结:a (a ≥0)的平方根是a (a ≥02.解决问题(1) 面积为 S 的正方形边长为________。
(2).面积为 b -5 的正方形边长为________。
(3). 圆桌的面积为 S ,则半径为________(4).若圆桌的面积为 S +3,则半径为________(5)关系式 h = 5t 2 (t > 0)中,用含有 h 的式子表示 t ,则 t = ________。
总结以上式子有何特征二次根式的概念:a像这样一些正数的算术平方根的式子,我们就把它称二次根式。
因此,一般地,我们把形如(a≥0三.探究新课1.指出二次根式有意义的条件被开方数大于等于零。
提问:二次根式在什么情况下无意义学生讨论后得出:被开方数小于零2.指出下列哪些是二次根式?学生自主完成小练习:辨别下列式子,哪些是二次根式?三.练习四.小结1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性五.作业课本第5页第一题。
二次根式的混合运算一、教学目标知识与技能:二次根式的加减乘除混合运算.过程与方法:复习整式运算知识并将该知识运用于含有二次根式的式子的加减乘除混合运算.情感态度与价值观:学会知识间的类比,进一步体会数学学习方法的重要性。
二、教学重、难点重点:二次根式的加减乘除混合运算;难点:由整式运算知识迁移到含二次根式的运算.三、教学过程(一)、复习引入学生活动:请同学们完成下列各题:1.计算(1)(2x+y)·zx (2)(2x2y+3xy2)÷xy2.计算(1)(2x+3y)(2x-3y)(2)(2x+1)2+(2x-1)2老师点评:这些内容是对整式运算的再现.它主要有(1)•单项式×单项式;(2)单项式×多项式;(3)多项式÷单项式;(4)完全平方公式;(5)平方差公式的运用.(二)、探索新知如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?•仍成立.整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,•当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.例1.计算:(1)(2)(分析:刚才已经分析,二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.解:(1)解:(-3 2例2.计算:(1)+6)() (2)分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.解:(1)+6)()-)2(2)=2- 2=10-7=3(三)、巩固练习课本P 练习1、2.(四)、应用拓展例3.已知x b a-=2-x a b -,其中a 、b 是实数,且a+b ≠0,分析:由于((=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x 的值,代入化简得结果即可.解:原式22=2(1)x x +-+2(1)x x+-=(x+1)=4x+2∵x b a-=2-x a b - ∴b (x-b )=2ab-a (x-a )∴bx-b 2=2ab-ax+a 2∴(a+b )x=a 2+2ab+b 2∴(a+b )x=(a+b )2∵a+b≠0∴x=a+b∴原式=4x+2=4(a+b)+2(五)、归纳小结本节课应掌握二次根式的加减乘除混合运算.(六)、布置作业。