电源完整性设计详解
- 格式:pdf
- 大小:361.44 KB
- 文档页数:26
PCB设计中的电源信号完整性的考虑在PCB设计中,电源信号的完整性是一个非常重要的考虑因素。
电源信号完整性主要关注信号的稳定性、可靠性和抗干扰能力。
以下是在PCB设计中考虑电源信号完整性的几个重要方面:1.电源供电稳定性:电源信号的稳定性对系统的正常运行至关重要。
在设计中,应该选择具有稳定输出的电源,以确保电压和电流在整个系统中能够保持稳定。
稳定的电源可以减少系统噪声和漂移,提高系统性能和可靠性。
2.电源噪声和滤波:电源信号中的噪声可能会对系统的性能产生负面影响。
在PCB设计中,应采取一些滤波措施来降低电源噪声。
可以使用滤波电容和电源滤波器来抑制高频噪声。
此外,在布局中应该将电源线和地线分离,并与信号线保持足够的距离,以减少互联干扰。
3.电源线宽度和引出:电源线的宽度和布局对电源信号的完整性有重要影响。
电源线的宽度和长度应根据所需的电流和电压降进行计算。
在高电流应用中,更宽的电源线可以减少电源线的电阻和热降,确保供电稳定。
此外,应避免将电源线与其他信号线交叉,以减少互联干扰。
4.电源平面和地面平面:为了提供一个低电阻、低阻抗的供电路径,设计中通常会使用电源平面和地面平面。
电源平面提供了一个低阻抗的供电回路,可以降低电源噪声和电源电压的波动。
地面平面则提供了一个低阻抗的地引用,减少了信号线和电源线之间的串扰和互联干扰。
5.电源分区:在复杂的PCB设计中,将电源信号按照不同的功能分区是一个好的实践。
不同的模块或器件可能有不同的电源需求,分区设计可以简化供电布线,减少供电路径交叉,提高系统的电源完整性。
6.过热和过电流保护:为了保护系统免受过热和过电流的损害,设计中应考虑一些保护措施,如过热保险丝、过压保护器和电流限制器。
这些保护措施可以防止电源故障对系统产生严重影响,并提高系统的可靠性。
综上所述,在PCB设计中,电源信号的完整性是至关重要的。
通过选择稳定的电源、合理布局、适当的滤波和保护措施,可以提高电源信号的稳定性、可靠性和抗干扰能力,从而改善系统的性能和可靠性。
电源完整性设计一、电源完整性定义电源完整性是指电源波形的质量,研究的是电源分配网络(PDN),并从系统供电网络综合考虑,消除或者减弱噪声对电源的影响。
电源完整性的设计目标是把电源噪声控制在运行的范围内,为芯片提供干净稳定的电压,并使它能够维持在一个很小的容差范围内(通常为5%以内),实时响应负载对电流的快速变化,并能够为其他信号提供低阻抗的回流路径。
在高度集成的电子产品中,电源系统的设计占到了设计工作量的50%左右;对于复杂的FPGA类型的产品应用,在电路中常常会达到15~30路不同的电源。
电源完整性的目的就是给系统提供持续、稳定、干净的电源,保证系统稳定的工作。
在数字系统中,使信号完整性满足系统设计的要求也需要有一个非常稳定的电源系统,但是又不能使电源系统超标。
所以在设计电源完整性时,不仅仅关注的是去耦电容,还需要关注电源完整性、信号完整性和电磁兼容性这个“生态系统”,尤其是要考虑高度集成化的数字电路对电源完整性的影响。
二、电源完整性概览电源完整性的层面:芯片层面、芯片封装层面、电路板层面及系统层面。
在电路板层面的电源完整性要达到以下三个需求:1.使芯片引脚的电压噪声+电压纹波比规格要求要小一些(例如芯片电源管脚的输入电压要求1V 之间的误差小于+/-50 mV);2.控制接地反弹(地弹)(同步切换噪声SSN、同步切换输出SSO);3.降低电磁干扰(EMI)并且维持电磁兼容性(EMC):电源分布网络(PDN)是电路板上最大型的导体,因此也是最容易发射及接收噪声的天线。
电源噪声来源1.稳压芯片输出的电压不是恒定的,会有一定的纹波。
2.稳压电源无法实时响应负载对于电流需求的快速变化。
稳压电源响应的频率一般在200Khz 以内,能做正确的响应,超过了这个频率则在电源的输出短引脚处出现电压跌落。
3.负载瞬态电流在电源路径阻抗和地路径阻抗产生的压降。
4.外部的干扰。
三、电源完整性相关参数讲解1.SI和PI传统分析信号完整性和电源完整性都是分开分析的,为了更好的分析SI和PI的相互影响,我们需要把SI和PI放在同一个EM仿真中来分析。
第9章高速信号的电源完整性分析在电路设计中,设计好一个高质量的高速PCB板,应该从信号完整性(SI——Signal Integrity)和电源完整性(PI——Power Integrity )两个方面来考虑。
尽管从信号完整性上表现出来的结果较为直接,但是信号参考层的不完整会造成信号回流路径变化多端,从而引起信号质量变差,连带引起了产品的EMI性能变差。
这将直接影响最终PCB板的信号完整性。
因此研究电源完整性是非常必要和重要的。
9.1 电源完整性概述虽然电子设计的发展已经有相当长的历史,但是高速信号是近些年才开始面对的问题,随之出现的电源完整性的许多概念并不为大多数人所了解。
这里,对其中涉及到的一些基本名词做些简单的介绍。
9.1.1 电源完整性的相关概念电源完整性(Power Integrity) :是指系统供电电源在经过一定的传输网络后在指定器件端口相对该器件对工作电源要求的符合程度。
虽然电源完整性是讨论电源供给的稳定性问题,但由于地在实际系统中总是和电源密不可分的,通常把如何减少地平面的噪声也做为电源完整性的一部分讨论。
电源分配网络:电源分配网络的作用就是给系统内所有器件或芯片提供足够的电源,并满足系统对电源稳定性的要求。
同步开关噪声(Simultaneous Switch Noise,简称SSN):是指当器件处于开关状态,产生瞬间变化的电流(di/dt),在经过回流途径上存在的电感时,形成交流压降,从而引起噪声,所以也称为Δi噪声。
同步开关噪声包括电子噪声、地弹噪声、回流噪声、断点噪声等。
它对电源完整性的影响表现为地弹和电源反弹。
地弹噪声:它是同步开关噪声对电源完整性影响的表现之一。
是指芯片上的地参考电压的跳动。
当大量芯片的输出同时开启时,将有一个较大的瞬态电流在芯片与板的电源平面流过,芯片封装与电源平面的电感和电阻会引发电源噪声,这样会在真正的地平面(0V)上产生电压的波动和变化,这个噪声会影响其它元器件的动作。
信号完整性与电源完整性的仿真分析与设计1简介信号完整性是指信号在通过一定距离的传输路径后在特定接收端口相对指定发送端口信号的还原程度。
在讨论信号完整性设计性能时,如指定不同的收发参考端口,则对信号还原程度会用不同的指标来描述。
通常指定的收发参考端口是发送芯片输出处及接收芯片输入处的波形可测点,此时对信号还原程度主要依靠上升/下降及保持时间等指标来进行描述。
而如果指定的参考收发端口是在信道编码器输入端及解码器输出端时,对信号还原程度的描述将会依靠误码率来描述。
电源完整性是指系统供电电源在经过一定的传输网络后在指定器件端口相对该器件对工作电源要求的符合程度。
同样,对于同一系统中同一个器件的正常工作条件而言,如果指定的端口不同,其工作电源要求也不同(在随后的例子中将会直观地看到这一点)。
通常指定的器件参考端口是芯片电源及地连接引脚处的可测点,此时该芯片的产品手册应给出该端口处的相应指标,常用纹波大小或者电压最大偏离范围来表征。
图一是一个典型背板信号传输的系统示意图。
本文中“系统”一词包含信号传输所需的所有相关硬件及软件,包括芯片、封装与PCB板的物理结构,电源及电源传输网络,所有相关电路实现以及信号通信所需的协议等。
从设计目的而言,需要硬件提供可制作的支撑及电信号有源/无源互联结构;需要软件提供信号传递的传输协议以及数据内容。
图1 背板信号传输的系统示意图在本文的以下内容中,将会看到由于这些支撑与互联结构对电信号的传输呈现出一定的频率选择性衰减,从而会使设计者产生对信号完整性及电源完整性的担忧。
而不同传输协议及不同数据内容的表达方式对相同传输环境具备不同适应能力,使得设计者需要进一步根据实际的传输环境来选择或优化可行的传输协议及数据内容表达方式。
为描述方便起见以下用“完整性设计与分析”来指代“信号完整性与电源完整性设计与分析”。
2 版图完整性问题、分析与设计上述背板系统中的硬件支撑及无源互联结构基本上都在一种层叠平板结构上实现。
Allegro Sigrity PI Solution (电源完整性)解决方案Allegro Sigrity PI solution(电源完整性)提供了可扩展、高性价比的预布局及布局后系统PDN设计和分析环境,包含电路板、封装和系统级的初阶及进阶分析。
Allegro Sigrity PI Base与Cadence PCB和IC封装layout编辑器、Cadence Allegro Design Authoring紧密集成,实现了PCB和IC封装设计从前端至后端的约束驱动PDN设计。
Allegro Sigrity PI solution(电源完整性)可帮助设计工程师在整个设计过程中解决PDN问题,包括设计密度增加、数据吞吐率加快、产品设计时间缩减等设计挑战。
更可帮助设计团队消除设计后期耗时的设计迭代问题。
PDN中的电源和接地网络可通过混合求解器或3D全波求解器进行建模。
用户可根据自身的设计信息和专业知识选择合适的模型。
电源完整性约束集(PI Csets)可帮助决定去耦电容的放置,可以将电容与元器件相关联,约束将电容放置在离器件约束距离范围之内,以及定义电容应放置在设计元器件位置的同侧还是异侧。
核心优势• 高度集成的设计和分析环境,消除了手动设计过程中产生的出错、耗时等问题。
• 直观的在线设计分析工具,可统一从前端到后端的电气约束管理环境,从而简化布线后的签收验证过程。
• 直流压降分析(DC IR drop)以双窗口视图模式运行。
设计师们在Allegro编辑器进行编辑的同时也可查看直流压降分析结果。
• 设计规则检查(DRC)标记可以在Allegro编辑器中精准锁定直流压降分析结果超出约束限制的位置。
• 可轻松评估IC封装设计的质量,并可用于芯片间的瞬态电源分析。
主要功能设计界面与Allegro Sigrity PI solution(电源完整性)相结合,当分析AllegroPCB或者IC封装设计时,可用AllegroSigrity PI进行查看和修改设计。
什么叫电源完整性
电源完整性(Power Integrity,简称PI):当大量芯片内的电路输出级同时动作时,会产生较大的瞬态电流,这时由于供电线路上的电阻电感的影响,电源线上和地线上电压就会波动和变化,良好的电源分配网络设计是电源完整性的保证。
电源完整性设计:1、使用电源平面代替电源线,降低供电线路上的电感和电阻;2、电源平面和地平面相邻,电源和地紧密耦合;3、放置旁路电容,1μF~10μF 电容放置在电路板的电源输入上,而0.01μF ~0.1μF 电容则放置在电路板的每个有源器件的电源引脚和接地引脚上;4、保证大电流器件电源的回流路径畅通无阻。
电源完整性设计-需要多大的电容量 需要多大的电容量 有两种方法确定所需的电容量。
第一种方法利用电源驱动的负载计算电容量。
这种方法 没有考虑 ESL 及 ESR 的影响,因此很不精确,但是对理解电容量的选择有好处。
第二种方 法就是利用目标阻抗(Target Impedance )来计算总电容量,这是业界通用的方法,得到了 广泛验证。
你可以先用这种方法来计算,然后做局部微调,能达到很好的效果,如何进行局 部微调,是一个更高级的话题。
下面分别介绍两种方法。
方法一:利用电源驱动的负载计算电容量 设负载(容性)为 30pF,要在 2ns 内从 0V 驱动到 3.3V,瞬态电流为:(公式 5) 如果共有 36 个这样的负载需要驱动,则瞬态电流为:36*49.5mA=1.782A 。
假设容许电压波 动为:3.3*2.5%=82.5 mV,所需电容量为 C=I*dt/dv=1.782A*2ns/0.0825V=43.2nF 说明:所加的电容实际上作为抑制电压波纹的储能元件,该电容必须在 2ns 内为负载提供 1.782A 的电流, 同时电压下降不能超过 82.5 mV, 因此电容值应根据 82.5 mV 来计算。
记住: 电容放电给负载提供电流,其本身电压也会下降,但是电压下降的量不能超过 82.5 mV(容 许的电压波纹) 。
这种计算没什么实际意义,之所以放在这里说一下,是为了让大家对去耦 原理认识更深。
方法二:利用目标阻抗计算电容量(设计思想很严谨,要吃透) 为了清楚的说明电容量的计算方法,我们用一个例子。
要去耦的电源为 1.2V,容许电 压波动为 2.5%,最大瞬态电流 600mA, 第一步:计算目标阻抗第二步:确定稳压电源频率响应范围。
和具体使用的电源片子有关,通常在 DC 到几百 kHz 之间。
这里设为 DC 到 100kHz 。
在 100kHz 以下时,电源芯片能很好的对瞬态电流做出反应,高于 100kHz 时,表现为很高 的阻抗,如果没有外加电容,电源波动将超过允许的 2.5%。
电源完整性/EMC/EMI以及热分析面对高速高密度PCB设计的挑战,设计者需要改变的不仅仅是工具,还有设计的方法、理念和流程。
随着电子产品功能的日益复杂和性能的提高,印刷电路板的密度和其相关器件的频率都不断攀升,工程师面临的高速高密度PCB设计所带来的各种挑战也不断增加。
除大家熟知的信号完整性(SI)问题,Cadence公司高速系统技术中心高级经理陈兰兵认为,高速PCB 技术的下一个热点应该是电源完整性(PI)、EMC/EMI以及热分析。
而随着竞争的日益加剧,厂商面临的产品面世时间的压力也越来越大,如何利用先进的EDA工具以及最优化的方法和流程,高质量、高效率的完成设计,已经成为系统厂商和设计工程师不得不面对的问题。
热点:从信号完整性向电源完整性转移谈到高速设计,人们首先想到的就是信号完整性问题。
信号完整性主要是指信号在信号线上传输的质量,当电路中信号能以要求的时序、持续时间和电压幅度到达接收芯片管脚时,该电路就有很好的信号完整性。
当信号不能正常响应或者信号质量不能使系统长期稳定工作时,就出现了信号完整性问题,信号完整性主要表现在延迟、反射、串扰、时序、振荡等几个方面。
一般认为,当系统工作在50MHz 时,就会产生信号完整性问题,而随着系统和器件频率的不断攀升,信号完整性的问题也就愈发突出。
元器件和PCB板的参数、元器件在PCB板上的布局、高速信号的布线等这些问题都会引起信号完整性问题,导致系统工作不稳定,甚至完全不能正常工作。
信号完整性技术经过几十年的发展,其理论和分析方法都已经较为成熟。
对于信号完整性问题,陈兰兵认为,信号完整性不是某个人的问题,它涉及到设计链的每一个环节,不但系统设计工程师、硬件工程师、PCB工程师要考虑,甚至在制造时也不能忽视。
解决信号完整性问题,必须借助先进的仿真工具,如Cadence的SPECCTRAQuest就是不错的仿真工具,利用它可以在设计前期进行建模、仿真,从而形成约束规则指导后期的布局布线,提高设计效率。
电源完整性设计详解目 录1 为什么要重视电源噪声问题?....................................................................- 1 -2 电源系统噪声余量分析................................................................................- 1 -3 电源噪声是如何产生的?............................................................................- 2 -4 电容退耦的两种解释....................................................................................- 3 -4.1 从储能的角度来说明电容退耦原理。
..............................................- 3 -4.2 从阻抗的角度来理解退耦原理。
......................................................- 4 -5 实际电容的特性............................................................................................- 5 -6 电容的安装谐振频率....................................................................................- 8 -7 局部去耦设计方法......................................................................................- 10 -8 电源系统的角度进行去耦设计..................................................................- 12 -8.1 著名的Target Impedance(目标阻抗)..........................................- 12 -8.2 需要多大的电容量............................................................................- 13 -8.3 相同容值电容的并联........................................................................- 15 -8.4 不同容值电容的并联与反谐振(Anti-Resonance)......................- 16 -8.5 ESR对反谐振(Anti-Resonance)的影响......................................- 17 -8.6 怎样合理选择电容组合....................................................................- 18 -8.7 电容的去耦半径................................................................................- 20 -8.8 电容的安装方法................................................................................- 21 -9 结束语..........................................................................................................- 24 -电源完整性设计详解1、为什么要重视电源噪声问题?芯片内部有成千上万个晶体管,这些晶体管组成内部的门电路、组合逻辑、寄存器、计数器、延迟线、状态机、以及其他逻辑功能。
信号完整性与电源完整性的仿真分析与设计信号完整性是指信号在通过一定距离的传输路径后在特定接收端口相对指定发送端口信号的还原程度。
在讨论信号完整性设计的性能时,如果指定不同的收发参考端口,就要用不同的指标来描述信号还原程度。
通常情况下指定的收发参考端口是发送芯片输出处及接收芯片输入处的波形可测点,此时,主要使用上升/下降及保持时间等指标来描述信号还原程度。
当指定的参考收发端口是信道编码器输入端及解码器输出端时,就要用误码率来描述信号还原程度。
电源完整性是指系统供电电源在经过一定的传输网络后在指定器件端口相对该器件对工作电源要求的符合程度。
同样,对于同一系统中的同一个器件,如果指定的端口不同,那么对正常工作的电源要求也不同。
通常情况下指定的器件参考端口是芯片电源及地连接引脚处的可测点,此时该芯片的手册中应给出该端口处的相应指标,常用的有纹波大小或电压最大偏离范围。
一个典型背板信号传输的系统示意图如图1所示。
本文中系统一词包含信号传输所需的所有相关硬件及软件,包括芯片、封装与PCB板的物理结构,电源及电源传输网络,所有相关电路实现以及信号通信所需的协议等。
在设计时,需要硬件提供可制作的支撑及电信号有源/无源互联结构;需要软件提供信号传递的传输协议以及数据内容。
但是,由于这些支撑与互联结构会对电信号的传输呈现出一定的频率选择性衰减,因此,会对信号及电源的完整性产生影响。
同时,在相同的传输环境下,不同传输协议及不同数据内容的表达方式具有不同的适应能力,因此,需要进一步根据实际的传输环境来选择或优化可行的传输协议及数据内容表达方式。
图1 背板信号传输的系统示意图版图完整性问题、分析与设计上述背板系统中的硬件支撑及无源互联结构基本上都在一种层叠平板结构上实现。
这种层叠平板结构可以由3类元素组成:正片结构、负片结构及通孔。
正片结构有时也被称为信号层,该层上的走线大多为不同逻辑连接的信号线或离散的电源线,在制版光刻中所有的走线都会以相同图形的方式出现;负片结构有时也被称为平面层(细分为电源平面层和地平面层),该层上基本是相同逻辑的一个或少数几个连接(通常是电源连接或地连接),用大面积敷铜的方式实现,在光刻工艺中用相反图形来表示;通孔用来进行不同层之间的物理连接。
电源完整性基础讲解1.从信号完整性角度分析电源将SI以大类来看,其SI&PI&EMI三者的关系:2.电源完整性系统框图3.电源分配网络PDN讲解:电源完整性(PI)更关注于电源路径及终端,也就是电源分配网络(PDN)。
从源端稳压模块(VRM)经过路径(单层直达或过孔转换的几个层面),到达终端,最终流向使用芯片或经过线缆到使用设备。
电源路径与信号路径是有区别的,电源分配网络中一个电源路径可以在一个节点分成多个路径,或者说转换成多个电源,终端挂多个元器件,可以理解为一对多。
而信号路径只能一对一。
既然电源分配网络是为终端设备提供所需电源,那就是有要求,就需要对电源分配网络管控。
如信号路径,除了保证返回电流,还要尽量保证返回路径的低阻抗。
由于是一对多的情况,这样的管控,才能保证返回电流不相互重叠,不会发生地弹,即尽量避免开关噪声(SSN)。
基本要求是,保证供电电压稳定,至少能够维持在一个很小的容差范围内,通常在+/-5%以内。
电源的测试中有纹波测试,这个纹波测试标准就是+/-5%。
讲到返回电流,这里就要分为直流部分和交流部分。
直流部分:终端设备需要稳定的电压输出,电源分配网络互连之间串联电阻的存在,直流部分通过,就会产生压降,通常称为IR 压降。
当电流发生波动时,压降也会随之波动,从而影响终端设备的识别。
之前的USB设备好像最低电压值4.75 V。
交流部分:当交流电流通过电源路径时,电源分配网络上也将产生电压降,这个压降会随着频率发生变化:电源路径的不同(层数&Shape宽度等),造成的压降变化是不同的,输出稳定电压到终端的难度很大,我们所要做的只是保证电压的变化在一定的范围之内,也就是所谓的噪声容差。
上式就可能转换为目标阻抗:既然保证不了路径上电压的稳定,那么电源分配网络的电流在波动的情况下,就需要保持电源分配网络阻抗低于目标阻抗。
需要注意的是,即使同一个电源芯片或模块,针对不同的产品,也会给出不同的标准。
ADS信号完整性与电源完整性的仿真分析与设计ADS(Advanced Design System)是一种强大的电子设计自动化(EDA)软件,用于电路和系统级设计。
在电路设计中,信号完整性(SI)和电源完整性(PI)是非常重要的因素。
因此,进行ADS信号完整性和电源完整性的仿真分析与设计是必不可少的。
信号完整性是指在高速数字信号传输的过程中,保持信号的完整性,避免信号的损失和失真。
电源完整性是指在高速数字电路中,保持电源电压稳定和电源噪声控制在可接受的范围内。
信号完整性和电源完整性在高速数字设计中相互影响,因此需要进行综合的仿真分析和设计。
首先,进行ADS信号完整性仿真分析与设计。
在进行信号完整性仿真时,主要考虑以下因素:1.传输线特性:对于高速信号传输,传输线特性是非常重要的。
可以通过ADS中的传输线模型来模拟传输线参数,如阻抗、延迟等。
通过仿真分析传输线的特性,可以确定合适的传输线设计参数。
2.反射和串扰:在高速信号传输过程中,反射和串扰是常见的问题。
可以通过ADS中的S参数仿真来分析信号的反射和串扰情况。
根据仿真结果,可以进行线路调整和匹配设计,减少反射和串扰产生的影响。
3.功耗和功耗分布:在高速数字设计中,功耗和功耗分布对信号完整性有着重要的影响。
可以通过仿真分析电路的功耗和功耗分布,根据仿真结果进行优化设计,提高信号完整性。
同时,进行ADS电源完整性仿真分析与设计。
在进行电源完整性仿真时,主要考虑以下因素:1.电源电压稳定:在高速数字电路中,电源电压的稳定性对电路性能有着重要的影响。
可以通过ADS中的电源仿真模块来分析电源电压的稳定性,并根据仿真结果进行电源电路设计和优化。
2.电源噪声:在高速数字电路中,电源噪声是一个常见的问题。
可以通过ADS中的噪声仿真模块来分析电源噪声的影响,并根据仿真结果进行滤波器设计和优化,降低电源噪声对电路性能的影响。
3.电源供电线路:在进行电源完整性设计时,还需要考虑电源供电线路的设计。
信号完整性与电源完整性的详细分析最近在论坛里看到一则关于电源完整性的提问,网友质疑大家普遍对信号完整性很重视,但对于电源完整性的重视好像不够,主要是因为,对于低频应用,开关电源的设计更多靠的是经验,或者功能级仿真来辅助即可,电源完整性分析好像帮不上大忙,而对于50M -100M以内的中低频应用,开关电源中电容的设计,经验法则在大多数情况下也是够用的,甚至一些芯片公司提供的Excel表格型工具也能搞定这个频段的问题,而对于100M以上的应用,基本就是IC的事情了,和板级没太大关系了,所以电源完整性仿真,除非能做到芯片到芯片的解决方案,加上封装以及芯片的模型,纯粹做板级的仿真意义不大,真是这样吗?其实电源完整性可做的事情还很多,下面就来了解了解吧。
信号完整性与电源完整性分析信号完整性(SI)和电源完整性(PI)是两种不同但领域相关的分析,涉及数字电路正确操作。
在信号完整性中,重点是确保传输的1在接收器中看起来就像1(对0同样如此)。
在电源完整性中,重点是确保为驱动器和接收器提供足够的电流以发送和接收1和0。
因此,电源完整性可能会被认为是信号完整性的一个组成部分。
实际上,它们都是关于数字电路正确模拟操作的分析。
分析的必要性如果计算资源是无限的,这些不同类型的分析可能不存在。
整个电路将会被分析一次,而电路某一部分中的问题将会被识别并消除。
但除了受实际上可仿真哪些事物的现实束缚之外,具有不同领域分析的优点在于,可成组解决特定问题,而无需归类为“可能出错的任何事物”。
在信号完整性中,例如,重点是从发射器到接收器的链路。
可仅为发射器和接收器以及中间的一切事物创建模型。
这使得仿真信号完整性变得相当简单。
另一方面,要仿真电源完整性可能有点困难,因为“边界”有点不太明确,且实际上对信号完整性领域中的项目具有一定的依赖性。
在信号完整性中,目标是消除关于信号质量、串扰和定时的问题。
所有这些类型的分析都。
引言电源完整性这一概念是以信号完整性为基础的,两者的出现都源自电路开关速度的提高。
当高速信号的翻转时间和系统的时钟周期可以相比时,具有分布参数的信号传输线、电源和地就和低速系统中的情况完全不同了。
与信号完整性是指信号在传输线上的质量相对应,电源完整性是指高速电路系统中电源和地的质量。
它在对高速电路进行仿真时,往往会因信号参考层的不完整造成信号回流路径变化多端,从而引起信号质量变差和产品的EMI性能变差,并直接影响信号完整性。
为了提高信号质量、产品的EMI性能,人们开始研究怎样为信号提供一个稳定、完整的参考平面,并随之提出了电源完整性的概念。
EDA厂商Cadence公司资深技术工程师曾指出,在未来的三到五年内,电源完整性设计将取代信号完整性设计成为高速PCB设计新的难点和重点。
电源完整性的影响因素及措施电源完整性的作用是为系统所有的信号线提供完整的回流路径。
但在技术高速发展以及生产成本的控制下,往往不能为所有的信号线提供理想而完整的回流路径,这就是说,在高速电路中,不能够简单地将电源和地当作理想的情况来处理。
这主要是因为地弹噪声太大、去耦电容设计不合理、回流影响严重、多电源/地平面的分割不当、地层设计不合理、电流分配不均匀、高频的趋肤效应导致系统阻抗变化等诸多因素都会破坏电源完整性。
地弹噪声地弹噪声也称为同步开关噪声(SSN),通常认为是由电路的感应引起的。
当电路中有较大的瞬态电流出现时(比如多条信号线上的信号同时翻转),会在电路分布参数所引起的感性阻抗上产生瞬态电压,进而便引起SSN。
芯片封装结构的SSN是由于突变的电流流过封装结构的引脚、引线和焊盘等寄生电感所导致。
如芯片的多个输出管脚同时触发时,将有一个较大的瞬态电流在芯片与板的电源平面流过,芯片封装与电源平面的电感和电阻会引发电源噪声,这样会在真正的地平面(0V)上产生电压波动,此波动对其他共电源/地总线的静态驱动将构成严重的干扰,甚至引起误触发。
Cadence PDN电源平面完整性分析——孙海峰 随着超大规模集成电路工艺的发展,芯片工作电压越来越低,而工作速度越来越快,功耗越来越大,单板的密度也越来越高,因此对电源供应系统在整个工作频带内的稳定性提出了更高的要求。
电源完整性设计的水平直接影响着系统的性能,如整机可靠性,信噪比与误码率,及EMI/EMC等重要指标。
板级电源通道阻抗过高和同步开关噪声SSN过大会带来严重的电源完整性问题,这些会给器件及系统工作稳定性带来致命的影响。
PI设计就是通过合理的平面电容、分立电容、平面分割应用确保板级电源通道阻抗满足要求,确保板级电源质量符合器件及产品要求,确保信号质量及器件、产品稳定工作。
Cadence PCB PDN analysis电源平面分析主要可以解决以下几个问题:板级电源通道阻抗仿真分析,在充分利用平面电容的基础上,通过仿真分析确定旁路电容的数量、种类、位置等,以确保板级电源通道阻抗满足器件稳定工作要求。
板级直流压降仿真分析,确保板级电源通道满足器件的压降限制要求。
板级谐振分析,避免板级谐振对电源质量及EMI的致命影响等。
那么Cadence PCB PDN analysis如何对PCB进行电源平面完整性的分析?接下来,我将以一个3v3如下图所示的电源平面为例,来进行该平面的电源平面分析。
对图中3v3电源平面进行完整性分析,具体步骤将作详细解析。
在对该电源平面进行分析之前,我们需要首先确定PCB参数的精确,如:电源平面电平Identify DC Nets、PCB叠层参数Cross-Section等,这些参数都必须和PCB板厂沟通(板厂对叠层参数生产能力不同),在此基础上精确参数方能得到精确的分析结果。
这些参数也可以在PDN Analysis分析界面上点击Identify DC Nets,Cross-Section来调整优化。
1. 认识PCB PDN analysis分析界面调用Allegro PCB PDN Option或者Allegro SI-GXL的license打开PCB设计分析界面,然后在该界面中执行Analyze/PDN Analysis命令即可打开PDN分析界面。
于博士信号完整性研究网电源完整性设计详解作者:于争博士2009年4整理发布:Baidu文库浩书目 录1 为什么要重视电源噪声问题?....................................................................- 1 -2 电源系统噪声余量分析................................................................................- 1 -3 电源噪声是如何产生的?............................................................................- 2 -4 电容退耦的两种解释....................................................................................- 3 -4.1 从储能的角度来说明电容退耦原理。
..............................................- 3 -4.2 从阻抗的角度来理解退耦原理。
......................................................- 4 -5 实际电容的特性............................................................................................- 5 -6 电容的安装谐振频率....................................................................................- 8 -7 局部去耦设计方法......................................................................................- 10 -8 电源系统的角度进行去耦设计..................................................................- 12 -8.1 著名的Target Impedance(目标阻抗)..........................................- 12 -8.2 需要多大的电容量............................................................................- 13 -8.3 相同容值电容的并联........................................................................- 15 -8.4 不同容值电容的并联与反谐振(Anti-Resonance)......................- 16 -8.5 ESR对反谐振(Anti-Resonance)的影响......................................- 17 -8.6 怎样合理选择电容组合....................................................................- 18 -8.7 电容的去耦半径................................................................................- 20 -8.8 电容的安装方法................................................................................- 21 -9 结束语..........................................................................................................- 24 -电源完整性设计详解1、为什么要重视电源噪声问题?芯片内部有成千上万个晶体管,这些晶体管组成内部的门电路、组合逻辑、寄存器、计数器、延迟线、状态机、以及其他逻辑功能。
随着芯片的集成度越来越高,内部晶体管数量越来越大。
芯片的外部引脚数量有限,为每一个晶体管提供单独的供电引脚是不现实的。
芯片的外部电源引脚提供给内部晶体管一个公共的供电节点,因此内部晶体管状态的转换必然引起电源噪声在芯片内部的传递。
对内部各个晶体管的操作通常由内核时钟或片内外设时钟同步,但是由于内部延时的差别,各个晶体管的状态转换不可能是严格同步的,当某些晶体管已经完成了状态转换,另一些晶体管可能仍处于转换过程中。
芯片内部处于高电平的门电路会把电源噪声传递到其他门电路的输入部分。
如果接受电源噪声的门电路此时处于电平转换的不定态区域,那么电源噪声可能会被放大,并在门电路的输出端产生矩形脉冲干扰,进而引起电路的逻辑错误。
芯片外部电源引脚处的噪声通过内部门电路的传播,还可能会触发内部寄存器产生状态转换。
除了对芯片本身工作状态产生影响外,电源噪声还会对其他部分产生影响。
比如电源噪声会影响晶振、PLL、DLL的抖动特性,AD转换电路的转换精度等。
解释这些问题需要非常长的篇幅,本文不做进一步介绍,有兴趣的可以关注于博士信号完整性研究网,我会在后续文章中详细讲解。
由于最终产品工作温度的变化以及生产过程中产生的不一致性,如果是由于电源系统产生的问题,电路将非常难调试,因此最好在电路设计之初就遵循某种成熟的设计规则,使电源系统更加稳健。
2、电源系统噪声余量分析绝大多数芯片都会给出一个正常工作的电压范围,这个值通常是±5%。
例如:对于3.3V 电压,为满足芯片正常工作,供电电压在3.13V到3.47V之间,或3.3V±165mV。
对于1.2V 电压,为满足芯片正常工作,供电电压在1.14V到1.26V之间,或1.2V±60mV。
这些限制可以在芯片datasheet中的recommended operating conditions部分查到。
这些限制要考虑两个部分,第一是稳压芯片的直流输出误差,第二是电源噪声的峰值幅度。
老式的稳压芯片的输出电压精度通常是±2.5%,因此电源噪声的峰值幅度不应超过±2.5%。
当然随着芯片工艺的提高,现代的稳压芯片直流精度更高,可能会达到±1%以下,TI公司的开关电源芯片TPS54310精度可达±1%,线性稳压源AMS1117可达±0.2%。
但是要记住,达到这样的精度是有条件的,包括负载情况,工作温度等限制。
因此可靠的设计还是以±2.5%这个值更把握些。
如果你能确保所用的芯片安装到电路板上后能达到更高的稳压精度,那么你可以为你的这款设计单独进行噪声余量计算。
本文着重电源部分设计的原理说明,电源噪声余量将使用±2.5%这个值。
电源噪声余量计算非常简单,方法如下:比如芯片正常工作电压范围为3.13V到3.47V之间,稳压芯片标称输出3.3V。
安装到电路板上后,稳压芯片输出3.36V。
那么容许电压变化范围为3.47-3.36=0.11V=110mV。
稳压芯片输出精度±1%,即±3.363*1%=±33.6 mV。
电源噪声余量为110-33.6=76.4 mV。
计算很简单,但是要注意四个问题:第一,稳压芯片输出电压能精确的定在3.3V么?外围器件如电阻电容电感的参数也不是精确的,这对稳压芯片的输出电压有影响,所以这里用了3.36V这个值。
在安装到电路板上之前,你不可能预测到准确的输出电压值。
第二,工作环境是否符合稳压芯片手册上的推荐环境?器件老化后参数还会和芯片手册上的一致么?第三,负载情况怎样?这对稳压芯片的输出电压也有影响。
第四,电源噪声最终会影响到信号质量。
而信号上的噪声来源不仅仅是电源噪声,反射串扰等信号完整性问题也会在信号上叠加噪声,不能把所有噪声余量都分配给电源系统。
所以,在设计电源噪声余量的时候要留有余地。
另一个重要问题是:不同电压等级,对电源噪声余量要求不一样,按±2.5%计算的话,1.2V电压等级的噪声余量只有30mV。
这是一个很苛刻的限制,设计的时候要谨慎些。
模拟电路对电源的要求更高。
电源噪声影响时钟系统,可能会引起时序匹配问题。
因此必须重视电源噪声问题。
3、电源噪声是如何产生的?电源系统的噪声来源有三个方面:第一,稳压电源芯片本身的输出并不是恒定的,会有一定的波纹。
这是由稳压芯片自身决定的,一旦选好了稳压电源芯片,对这部分噪声我们只能接受,无法控制。
第二,稳压电源无法实时响应负载对于电流需求的快速变化。
稳压电源芯片通过感知其输出电压的变化,调整其输出电流,从而把输出电压调整回额定输出值。
多数常用的稳压源调整电压的时间在毫秒到微秒量级。
因此,对于负载电流变化频率在直流到几百KHz之间时,稳压源可以很好的做出调整,保持输出电压的稳定。
当负载瞬态电流变化频率超出这一范围时,稳压源的电压输出会出现跌落,从而产生电源噪声。
现在,微处理器的内核及外设的时钟频率已经超过了600兆赫兹,内部晶体管电平转换时间下降到800皮秒以下。
这要求电源分配系统必须在直流到1GHz范围内都能快速响应负载电流的变化,但现有稳压电源芯片不可能满足这一苛刻要求。
我们只能用其他方法补偿稳压源这一不足,这涉及到后面要讲的电源去耦。
第三,负载瞬态电流在电源路径阻抗和地路径阻抗上产生的压降。
PCB板上任何电气路径不可避免的会存在阻抗,不论是完整的电源平面还是电源引线。
对于多层板,通常提供一个完整的电源平面和地平面,稳压电源输出首先接入电源平面,供电电流流经电源平面,到达负载电源引脚。
地路径和电源路径类似,只不过电流路径变成了地平面。
完整平面的阻抗很低,但确实存在。
如果不使用平面而使用引线,那么路径上的阻抗会更高。
另外,引脚及焊盘本身也会有寄生电感存在,瞬态电流流经此路径必然产生压降,因此负载芯片电源引脚处的电压会随着瞬态电流的变化而波动,这就是阻抗产生的电源噪声。
在电源路径表现为负载芯片电源引脚处的电压轨道塌陷,在地路径表现为负载芯片地引脚处的电位和参考地电位不同(注意,这和地弹不同,地弹是指芯片内部参考地电位相对于板级参考地电位的跳变)。
4、电容退耦的两种解释采用电容退耦是解决电源噪声问题的主要方法。