9高三专题复习之--电磁感应
- 格式:doc
- 大小:382.50 KB
- 文档页数:6
高考物理压轴题专题复习——电磁感应现象的两类情况的推断题综合一、电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt-【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:(1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大?【答案】(1)2sin mgR B L vθ=2)sin sin t gvt v v CgR θθ=+ 【解析】试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流EI R=,棒所受的安培力F BIL =联立可得22B L vF R=,由平衡条件可得F mgsin θ=,解得2mgRsin B L v θ (2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力. 设棒下滑的速度大小为v ',经历的时间为t 则电容器板间电压为 U E BLv ='=此时电容器的带电量为Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q V则电路中电流Q C U CBL v i t t t ∆∆∆===∆∆∆,又va t∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθθ==++所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θθ'==+.考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.3.某兴趣小组设计制作了一种磁悬浮列车模型,原理如图所示,PQ 和MN 是固定在水平地面上的两根足够长的平直导轨,导轨间分布着竖直(垂直纸面)方向等间距的匀强磁场1B 和2B ,二者方向相反.矩形金属框固定在实验车底部(车厢与金属框绝缘).其中ad边宽度与磁场间隔相等,当磁场1B 和2B 同时以速度0m 10sv =沿导轨向右匀速运动时,金属框受到磁场力,并带动实验车沿导轨运动.已知金属框垂直导轨的ab 边长0.1m L =m 、总电阻0.8R =Ω,列车与线框的总质量0.4kg m =,12 2.0T B B ==T ,悬浮状态下,实验车运动时受到恒定的阻力1h N .(1)求实验车所能达到的最大速率;(2)实验车达到的最大速率后,某时刻让磁场立即停止运动,实验车运动20s 之后也停止运动,求实验车在这20s 内的通过的距离;(3)假设两磁场由静止开始向右做匀加速运动,当时间为24s t =时,发现实验车正在向右做匀加速直线运动,此时实验车的速度为m 2sv =,求由两磁场开始运动到实验车开始运动所需要的时间.【答案】(1)m 8s ;(2)120m ;(3)2s 【解析】 【分析】 【详解】(1)实验车最大速率为m v 时相对磁场的切割速率为0m v v -,则此时线框所受的磁场力大小为2204-B L v v F R=()此时线框所受的磁场力与阻力平衡,得:F f = 2m 028m/s 4fRv v B L=-= (2)磁场停止运动后,线圈中的电动势:2E BLv = 线圈中的电流:EI R=实验车所受的安培力:2F BIL =根据动量定理,实验车停止运动的过程:m F t ft mv ∑∆+=整理得:224m B L vt ft mv R∑∆+=而v t x ∑∆=解得:120m x =(3)根据题意分析可得,为实现实验车最终沿水平方向做匀加速直线运动,其加速度必须与两磁场由静止开始做匀加速直线运动的加速度相同,设加速度为a ,则t 时刻金属线圈中的电动势 2)E BLat v =-( 金属框中感应电流 2)BL at v I R-=( 又因为安培力224)2B L at v F BIL R(-==所以对试验车,由牛顿第二定律得 224)B L at v f ma R(--=得 21.0m/s a =设从磁场运动到实验车起动需要时间为0t ,则0t 时刻金属线圈中的电动势002E BLat =金属框中感应电流002BLat I R=又因为安培力2200042B L at F BI L R==对实验车,由牛顿第二定律得:0F f =即2204B L at f R= 得:02s t =4.如图所示,光滑的水平平行金属导轨间距为 L ,导轨电阻忽略不计.空间存在垂直于导 轨平面竖直向上的匀强磁场,磁感应强度大小为 B ,轻质导体棒 ab 垂直导轨放置,导体棒 ab 的电阻为 r ,与导轨之间接触良好.两导轨之间接有定值电阻,其阻值为 R ,轻质导体棒中间系一轻细线,细 线通过定滑轮悬挂质量为 m 的物体,现从静止释放该物体,当物体速度达到最大时,下落的高度为 h , 在本问题情景中,物体下落过程中不着地,导轨足够长,忽略空气阻力和一切摩擦阻力,重力加速度 为 g .求:(1)物体下落过程的最大速度 v m ;(2)物体从静止开始下落至速度达到最大的过程中,电阻 R 上产生的电热 Q ;(3)物体从静止开始下落至速度达到最大时,所需的时间 t .【答案】(1)22()mg R r B L + (2) 3244()2mghR m g R R r R r B L+-+ (3) 2222()()m R r B L h B L mg R r +++ 【解析】【分析】在物体加速下落过程中,加速度逐渐减小,当加速度为0时,下落速度达到最大,由平衡条件、闭合电路欧姆定律和电磁感应定律求出物体下落过程的最大速度;在物体下落过程中,物体重力势能减少,动能增加,系统电热增加,根据能量守恒定律求出电阻R 上产生的电热;在系统加速过程中,分别对导体棒和物体分析,根据动量定理可得所需的时间;解:(1)在物体加速下落过程中,加速度逐渐减小,当加速度为0时,下落速度达到最大 对物体,由平衡条件可得mg=Fr 对导体棒Fr=BIL对导体棒与导轨、电阻R 组成的回路,根据闭合电路欧姆定律EI R r=+ 根据电磁感应定律E=BLv m 联立以上各式解得m 22()v mg R r B L +=(2)在物体下落过程中,物体重力势能减少,动能增加,系统电热增加,根据能量守恒定律可得 mgh=12mv m 2+Q 总 在此过程中任一时刻通过R 和r 两部分电阻的电流相等,则电功率之比正比于电阻之比,故整个过程中回路中的R 与r 两部分电阻产生的电热正比于电阻,所以Q R Q R r=+总 联立解得3244()Q 2mghR m g R R r R r B L+=-+ (3)在系统加速过程中,任一时刻速度设为v ,取一段时间微元Δt ,在此过程中分别对导体棒和物体分析,根据动量定理可得22T F 0B L v t R r ⎛⎫-∆= ⎪+⎝⎭()T m F m g t v -∆=∆整理可得22m m B L vg t t v R r ∆-∆=∆+即22m m B L g t x v R r ∆-∆=∆+全过程叠加求和22m m m B L gt h v R r-=+联方解得2222()t ()m R r B L hB L mg R r +=++5.如图所示,竖直向上的匀强磁场垂直于水平面内的导轨,磁感应强度大小为B ,质量为M 的导体棒PQ 垂直放在间距为l 的平行导轨上,通过轻绳跨过定滑轮与质量为m 的物块A 连接。
电磁感应专题复习(重要)基础回顾(一)法拉弟电磁感应定律1、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比E=nΔΦ/Δt(普适公式)当导体切割磁感线运动时,其感应电动势计算公式为E=BLVsinα2、E=nΔΦ/Δt与E=BLVsinα的选用①E=nΔΦ/Δt计算的是Δt时间内的平均电动势,一般有两种特殊求法ΔΦ/Δt=BΔS/Δt即B不变ΔΦ/Δt=SΔB/Δt即S不变② E=BLVsinα可计算平均动势,也可计算瞬时电动势。
③直导线在磁场中转动时,导体上各点速度不一样,可用V平=ω(R1+R2)/2代入也可用E=nΔΦ/Δt 间接求得出 E=BL2ω/2(L为导体长度,ω为角速度。
)(二)电磁感应的综合问题一般思路:先电后力即:先作“源”的分析--------找出电路中由电磁感应所产生的电源,求出电源参数E和r。
再进行“路”的分析-------分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便安培力的求解。
然后进行“力”的分析--------要分析力学研究对象(如金属杆、导体线圈等)的受力情况尤其注意其所受的安培力。
按着进行“运动”状态的分析---------根据力和运动的关系,判断出正确的运动模型。
最后是“能量”的分析-------寻找电磁感应过程和力学研究对象的运动过程中能量转化和守恒的关系。
【常见题型分析】题型一楞次定律、右手定则的简单应用例题(2006、广东)如图所示,用一根长为L、质量不计的细杆与一个上弧长为L0 、下弧长为d0的金属线框的中点连接并悬挂于o点,悬点正下方存在一个弧长为2 L0、下弧长为2 d0、方向垂直纸面向里的匀强磁场,且d0 远小于L先将线框拉开到图示位置,松手后让线框进入磁场,忽略空气阻力和摩擦,下列说法中正确的是A、金属线框进入磁场时感应电流的方向为a→b→c→d→B、金属线框离开磁场时感应电流的方向a→d→c→b→C、金属线框d c边进入磁场与ab边离开磁场的速度大小总是相等D、金属线框最终将在磁场内做简谐运动。
高中物理模块复习典型题分类-电磁感应(含详细答案)一、单选题1.如图所示,足够长平行金属导轨倾斜放置,倾角为37°,宽度为0.5 m,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN垂直于导轨放置,质量为0.2 kg,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T.将导体棒MN由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN的运动速度以及小灯泡消耗的电功率分别为(重力加速度g取10 m/s2,sin 37°=0.6)()A.2.5 m/s 1 WB.5 m/s 1 WC.7.5 m/s 9 WD.15 m/s 9 W2.如图所示,水平桌面上放一闭合铝环,在铝环轴线上方有一条形磁铁.当条形磁铁沿轴线竖直向下迅速移动时,下列判断中正确的是()A.铝环有收缩趋势,对桌面压力减小B.铝环有收缩趋势,对桌面压力增大C.铝环有扩张趋势,对桌面压力减小D.铝环有扩张趋势,对桌面压力增大3.如图所示,A为水平放置的胶木圆盘,在其侧面带有负电荷,在A的正上方用丝线悬挂一个金属圆环B,使B的环面在水平面上且与圆盘面平行,其轴线与胶木盘A的轴线重合。
现使胶木盘A由静止开始绕其轴线OO′按箭头所示方向加速转动,则()A.金属环B的面积有扩大的趋势,丝线受到的拉力增大B.金属环B的面积有缩小的趋势,丝线受到的拉力减小C.金属环B的面积有扩大的趋势,丝线受到的拉力减小D.金属环B的面积有缩小的趋势,丝线受到的拉力增大4.如图所示,AB、CD是一个圆的两条直径且AB、CD夹角为60°,该圆处于匀强电场中,电场强度方向平行该圆所在平面.其中φB=φC=φ,U BA=φ,保持该电场的场强大小和方向不变,让电场以B点为轴在其所在平面内逆时针转过60°.则下列判断中不正确的是()A.转动前U BD=φB.转动后U BD=C.转动后D.转动后5.如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感应强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻。
电磁感应1.[多选]如图甲所示,电阻R1=R, R 2=2 R,电容为C的电容器,圆形金属线圈半径为广2,线圈的电阻为R半径为r1(r1<r2)的圆形区域内存在垂直线圈平面向里的匀强磁场,磁感应强度B随时间t 变化的关系图象如图乙所示,t「12时刻磁感应强度分别为B「B2,其余导线的电阻不计,闭合开关S,至11时刻电路中的电流已稳定,下列说法正确的是 ()图甲图乙A.电容器上极板带正电B.11时刻,电容器的带电荷量为:孙而C.11时刻之后,线圈两端的电压为;D.12时刻之后,R1两端的电压为■ ■2.[多选]如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,在金属线框的下方有一磁感应强度为B的匀强磁场区域,MN和M W是匀强磁场区域的水平边界并与线框的bc 边平行,磁场方向与线框平面垂直现金属线框由距MN的某一高度从静止开始下落,图乙是金属线框由开始下落到完全穿过匀强磁场区域的v-t图象.已知金属线框的质量为m,电阻为R,当地的重力加速度为g,图象中坐标轴上所标出的匕、v2、v3、t p 12、13、14均为已知量(下落过程中线框abcd始终在竖直平面内,且bc边始终水平).根据题中所给条件,以下说法正确的是()图甲图乙A.可以求出金属线框的边长B.线框穿出磁场时间(t4-t3)等于进入磁场时间(t2-t1)C.线框穿出磁场与进入磁场过程所受安培力方向相同D.线框穿出磁场与进入磁场过程产生的焦耳热相等3.[多选]如图所示,x轴上方第一象限和第二象限分别有垂直纸面向里和垂直纸面向外的匀强磁场,且磁感应强度大小相同,现有四分之一圆形线框。
〃乂绕。
点逆时针匀速转动,若规定线框中感应电流/顺时针方向为正方向,从图示时刻开始计时,则感应电流I及ON边所受的安培力大小F随时间t的变化示意图正确的是()A BCD4.[多选]匀强磁场方向垂直纸面,规定垂直纸面向里的方向为正方向,磁感应强度B随时间t的变化规律如图甲所示.在磁场中有一细金属圆环,圆环平面位于纸面内,如图乙所示.令11、12、13分别表示Oa、ab、bc段的感应电流工、力、力分别表示感应电流为11、12、13时,金属环上很小一段受到的安培力.则()A.11沿逆时针方向,12沿顺时针方向B.12沿逆时针方向,13沿顺时针方向C f1方向指向圆心石方向指向圆心D外方向背离圆心向外右方向指向圆心5.[多选]如图所示,光滑水平面上存在有界匀强磁场,磁感应强度大小为B,方向垂直纸面向里, 质量为m、边长为a的正方形线框ABCD斜向穿进磁场,当AC刚进入磁场时线框的速度大小为%方向与磁场边界所成夹角为45°,若线框的总电阻为凡则()A.线框穿进磁场的过程中,框中电流的方向为D T C T B T A T DB AC刚进入磁场时线框中感应电流为一,镇铲。
高三物理一轮复习,应该如何快速掌握知识点,灵活运用物理公式呢?三好网小编整理出高三物理一轮复习,电磁感应知识点总结,希望能帮助高三生轻松应对一轮复习。
高中物理电磁感应知识点总结(一)电磁感应现象因磁通量变化而产生感应电动势的现象我们诚挚为电磁感应现象。
具体来说,闭合电路的一部分导体,做切割磁感线的运动时,就会产生电流,我们把这种现象叫电磁感应,导体中所产生的电流称为感应电流。
法拉第电磁感应定律概念基于电磁感应现象,大家开始探究感应电动势大小到底怎么计算?法拉第对此进行了总结并得到了结论。
感应电动势的大小由法拉第电磁感应定律确定,电路中感应电动势的大小,跟穿过这一电路的磁通变化率成正比。
公式:E= -n(dΦ)/(dt)。
对动生的情况,还可用E=BLV来求。
电动势的方向可以通过楞次定律来判定。
高中物理wuli.in楞次定律指出:感应电流的磁场要阻碍原磁通的变化。
对于动生电动势,同学们也可用右手定则判断感应电流的方向,也就找出了感应电动势的方向。
需要注意的是,楞次定律的应用更广,其核心在”阻碍”二字上。
感应电动势的大小计算公式(1)E=n*ΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ,Δt磁通量的变化率}(2)E=BLVsinA(切割磁感线运动) E=BLV中的v和L不可以和磁感线平行,但可以不和磁感线垂直,其中sinA为v或L与磁感线的夹角。
{L:有效长度(m)}(3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值}(4)E=B(L^2)ω/2(导体一端固定以ω旋转切割)其中ω:角速度(rad/s),V:速度(m/s)电磁感应现象是电磁学中最重大的发现之一,它显示了电、磁现象之间的相互联系和转化,对其本质的深入研究所揭示的电、磁场之间的联系,对麦克斯韦电磁场理论的建立具有重大意义。
电磁感应现象在电工技术、电技术以及电磁测量等方面都有广泛的应用。
专题九电磁感应定律及综合应用电磁感应是电磁学中最为重要的内容,也是高考命题频率最高的内容之一。
题型多为选择题、计算题。
主要考查电磁感应、楞次定律、法拉第电磁感应定律、自感等知识。
本部分知识多结合电学、力学部分出压轴题,其命题形式主要是电磁感应与电路规律的综合应用、电磁感应与力学规律的综合应用、电磁感应与能量守恒的综合应用。
复习中要熟练掌握感应电流的产生条件、感应电流方向的判断、感应电动势的计算,还要掌握本部分内容与力学、能量的综合问题的分析求解方法。
预测高考重点考查法拉第电磁感应定律及楞次定律和电路等效问题.综合试题还是涉及到力和运动、动量守恒、能量守恒、电路分析、安培力等力学和电学知识.主要的类型有滑轨类问题、线圈穿越有界磁场的问题、电磁感应图象的问题等.此除日光灯原理、磁悬浮原理、电磁阻尼、超导技术这些在实际中有广泛的应用问题也要引起重视。
知识点一、法拉第电磁感应定律法拉第电磁感应定律的内容是感应电动势的大小与穿过回路的磁通量的变化率成正比.在具体问题的分析中,针对不同形式的电磁感应过程,法拉第电磁感应定律也相应有不同的表达式或计算式.磁通量变化的形式表达式备注通过n 匝线圈内的磁通量发生变化E =n ·ΔΦΔt(1)当S 不变时,E =nS ·ΔB Δt (2)当B 不变时,E =nB ·ΔS Δt 导体垂直切割磁感线运动E =BLv 当v ∥B 时,E =0导体绕过一端且垂直于磁场方向的转轴匀速转动E =12BL 2ω线圈绕垂直于磁场方向的转轴匀速转动E =nBSω·sin ωt 当线圈平行于磁感线时,E 最大为E =nBSω,当线圈平行于中性面时,E =0知识点二、楞次定律与左手定则、右手定则1.左手定则与右手定则的区别:判断感应电流用右手定则,判断受力用左手定则.2.应用楞次定律的关键是区分两个磁场:引起感应电流的磁场和感应电流产生的磁场.感应电流产生高考物理二轮复习:电磁感应定律及综合应用知识点解析及专题练习的磁场总是阻碍引起感应电流的磁场的磁通量的变化,“阻碍”的结果是延缓了磁通量的变化,同时伴随着能量的转化.3.楞次定律中“阻碍”的表现形式:阻碍磁通量的变化(增反减同),阻碍相对运动(来拒去留),阻碍线圈面积变化(增缩减扩),阻碍本身电流的变化(自感现象).知识点三、电磁感应与电路的综合电磁感应与电路的综合是高考的一个热点内容,两者的核心内容与联系主线如图4-12-1所示:1.产生电磁感应现象的电路通常是一个闭合电路,产生电动势的那一部分电路相当于电源,产生的感应电动势就是电源的电动势,在“电源”内部电流的流向是从“电源”的负极流向正极,该部分电路两端的电压即路端电压,U =R R +rE .2.在电磁感应现象中,电路产生的电功率等于内外电路消耗的功率之和.若为纯电阻电路,则产生的电能将全部转化为内能;若为非纯电阻电路,则产生的电能除了一部分转化为内能,还有一部分能量转化为其他能,但整个过程能量守恒.能量转化与守恒往往是电磁感应与电路问题的命题主线,抓住这条主线也就是抓住了解题的关键.在闭合电路的部分导体切割磁感线产生感应电流的问题中,机械能转化为电能,导体棒克服安培力做的功等于电路中产生的电能.说明:求解部分导体切割磁感线产生的感应电动势时,要区别平均电动势和瞬时电动势,切割磁感线的等效长度等于导线两端点的连线在运动方向上的投影.高频考点一对楞次定律和电磁感应图像问题的考查例1、(多选)(2019·全国卷Ⅰ·20)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图4(a)中虚线MN 所示.一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.t =0时磁感应强度的方向如图(a)所示;磁感应强度B 随时间t 的变化关系如图(b)所示.则在t =0到t =t 1的时间间隔内()图4A.圆环所受安培力的方向始终不变B.圆环中的感应电流始终沿顺时针方向C.圆环中的感应电流大小为B0rS4t0ρD.圆环中的感应电动势大小为B0πr24t0【举一反三】(2018年全国II卷)如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下。
高考物理总复习电磁感应题型归纳一、电磁感应中的电路及图像问题类型一、根据B t -图像的规律,选择E t -图像、I t -图像电磁感应中线圈面积不变、磁感应强度均匀变化,产生的感应电动势为S B E n n nSk t t φ∆∆===∆∆,磁感应强度的变化率B k t∆=∆是定值,感应电动势是定值, 感应电流E I R r=+就是一个定值,在I t -图像上就是水平直线。
例1、矩形导线框abcd 固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向里,磁感应强度B 随时间变化的规律如图所示。
若规定顺时针方向为感应电流I 的正方向,下列各图中正确的是( )【思路点拨】磁感应强度的变化率为定值,感应电动势电流即为定值。
应用楞次定律“增反减同”逐段判断电流的方向,同一个斜率电流方向、大小均相同。
【答案】D 【解析】根据法拉第电磁感应定律,S B E nn t t φ∆∆==∆∆,导线框面积不变,B t∆∆为一定值,感应电动势也为定值,感应电流也为定值,所以A 错误。
0-1s 磁感应强度随时间增大,根据楞次定律,感应电流的方向为逆时针,为负,C 错误。
1-3s 斜率相同即B t ∆∆相同为负,与第一段的B t∆∆大小相等,感应电动势、感应电流大小相等,方向相反,为顺时针方向,为正,所以B 错误,D 正确。
【总结升华】斜率是一个定值,要灵活应用法拉第电磁感应定律(这里定性分析)。
1-3s 可以分段分析判断感应电流的方向,速度太慢,这里充分应用1-2s 和2-3s 是同一个斜率, 感应电动势、感应电流大小相等方向相同,概念清晰,解题速度快。
类型二 选择E t -图像、U t -图像、I t -图像或E -x 图像、U -x 图像和I -x 图像例2、如图所示,一个菱形的导体线框沿着自己的对角线匀速运动,穿过具有一定宽度的匀强磁场区域,已知对角线AC 的长度为磁场宽度的两倍且与磁场边界垂直.下面对于线框中感应电流随时间变化的图象(电流以ABCD 顺序流向为正方向,从C 点进入磁场开始计时)正确的是 ( )【思路点拨】先根据楞次定律判断感应电流的方向,再结合切割产生的感应电动势公式判断感应电动势的变化,从而结合闭合电路欧姆定律判断感应电流的变化.解决本题的关键掌握楞次定律判断感应电流的方向,以及知道在切割产生的感应电动势公式E=BLv中,L为有效长度.【答案】B【解析】线圈在进磁场的过程中,根据楞次定律可知,感应电流的方向为ABCD方向,即为正值,在出磁场的过程中,根据楞次定律知,感应电流的方向为ADCBA,即为负值.在线圈进入磁场的前一半的过程中,切割的有效长度均匀增大,感应电动势均匀增大,则感应电流均匀增大,在线圈进入磁场的后一半过程中,切割的有效长度均匀减小,感应电动势均匀减小,则感应电流均匀减小;在线圈出磁场的前一半的过程中,切割的有效长度均匀增大,感应电流均匀增大,在线圈出磁场的后一半的过程中,切割的有效长度均匀减小,感应电流均匀减小.故B正确,A、C、D错误.故选:B.【变式】一正方形闭合导线框abcd ,边长L=0.1m ,各边电阻为1Ω,bc 边位于x 轴上,在x 轴原点O 右方有宽L=0.1m 、磁感应强度为1T 、方向垂直纸面向里的匀强磁场区域,如图所示,当线框以恒定速度4m/s 沿x 轴正方向穿越磁场区域过程中,下面4个图可正确表示线框进入到穿出磁场过程中,ab 边两端电势差ab U 随位置变化情况的是( )【答案】B 【解析】由题知ab 边进入磁场做切割磁感线运动时,据闭合电路知识,3330.344ab BLv U I R R BLv V R =⋅=⋅==,且a 点电势高于b 点电势,同理ab 边出磁场后cd 边进入磁场做切割磁感线运动,10.14ab U BLv V ==,a 点电势高于b 点电势,故B正确,A 、C 、D 错误。
【本讲教育信息】一. 教学内容:电磁感应考点例析【典型例题】问题3:电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。
要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。
下面对“双杆”类问题进行分类例析1.“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。
[例5]两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Q,回路中其余部分的电阻可不计。
已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。
(1)求作用于每条金属细杆的拉力的大小。
(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。
解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E 1= E2=Bdv由闭合电路的欧姆定律,回路中的电流强度大小为:上尸因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F 1=F2=IBd。
及二三二艺二二 3.2五由以上各式并代入数据得" N(2)设两金属杆之间增加的距离为△£,则两金属杆共产生的热量为如代入数据得Q =1.28X10-J。
2.“双杆”同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。
[例6]两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。
导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。
两根导体棒的质量皆为m,电阻皆为H,回路中其余部分的电阻可不计。
在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。
⾼考物理⼀轮复习之《电磁感应》知识汇总第⼀节 电磁感应现象 楞次定律【基本概念、规律】⼀、磁通量1.定义:在磁感应强度为B的匀强磁场中,与磁场⽅向垂直的⾯积S和B的乘积.2.公式:Φ=B·S.3.单位:1 Wb=1_T·m2.4.标⽮性:磁通量是标量,但有正、负.⼆、电磁感应1.电磁感应现象当穿过闭合电路的磁通量发⽣变化时,电路中有电流产⽣,这种现象称为电磁感应现象.2.产⽣感应电流的条件(1)电路闭合;(2)磁通量变化.3.能量转化发⽣电磁感应现象时,机械能或其他形式的能转化为电能.特别提醒:⽆论回路是否闭合,只要穿过线圈平⾯的磁通量发⽣变化,线圈中就有感应电动势产⽣.三、感应电流⽅向的判断1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化.(2)适⽤情况:所有的电磁感应现象.2.右⼿定则(1)内容:伸开右⼿,使拇指与其余四个⼿指垂直,并且都与⼿掌在同⼀个平⾯内,让磁感线从掌⼼进⼊,并使拇指指向导体运动的⽅向,这时四指所指的⽅向就是感应电流的⽅向.(2)适⽤情况:导体切割磁感线产⽣感应电流.【重要考点归纳】考点⼀ 电磁感应现象的判断1.判断电路中能否产⽣感应电流的⼀般流程:2.判断能否产⽣电磁感应现象,关键是看回路的磁通量是否发⽣了变化.磁通量的变化量ΔΦ=Φ2-Φ1有多种形式,主要有:(1)S、θ不变,B改变,这时ΔΦ=ΔB·S sin θ;(2)B、θ不变,S改变,这时ΔΦ=ΔS·B sin θ;(3)B、S不变,θ改变,这时ΔΦ=BS(sin θ2-sin θ1).考点⼆ 楞次定律的理解及应⽤1.楞次定律中“阻碍”的含义2.应⽤楞次定律判断感应电流⽅向的步骤考点三 “⼀定律三定则”的综合应⽤1.“三个定则与⼀个定律”的⽐较2.应⽤技巧⽆论是“安培⼒”还是“洛伦兹⼒”,只要是涉及磁⼒都⽤左⼿判断.“电⽣磁”或“磁⽣电”均⽤右⼿判断.【思想⽅法与技巧】楞次定律推论的应⽤楞次定律中“阻碍”的含义可以理解为感应电流的效果总是阻碍产⽣感应电流的原因,推论如下:(1)阻碍原磁通量的变化——“增反减同”;(2)阻碍相对运动——“来拒去留”;(3)使线圈⾯积有扩⼤或缩⼩的趋势——“增缩减扩”;(4)阻碍原电流的变化(⾃感现象)——“增反减同”第⼆节 法拉第电磁感应定律 ⾃感 涡流【基本概念、规律】⼀、法拉第电磁感应定律1.感应电动势(1)感应电动势:在电磁感应现象中产⽣的电动势.产⽣感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I=E/(R+r)2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的⼤⼩,跟穿过这⼀电路的磁通量的变化率成正⽐.3.导体切割磁感线的情形(1)若B、l、v相互垂直,则E=Blv.(2)若B⊥l,l⊥v,v与B夹⾓为θ,则E=Blv sin_θ.⼆、⾃感与涡流1.⾃感现象(1)概念:由于导体本⾝的电流变化⽽产⽣的电磁感应现象称为⾃感,由于⾃感⽽产⽣的感应电动势叫做⾃感电动势.(3)⾃感系数L的影响因素:与线圈的⼤⼩、形状、匝数以及是否有铁芯有关.2.涡流当线圈中的电流发⽣变化时,在它附近的任何导体中都会产⽣像⽔的旋涡状的感应电流.(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培⼒,安培⼒的⽅向总是阻碍导体的运动.(2)电磁驱动:如果磁场相对于导体转动,在导体中会产⽣感应电流,使导体受到安培⼒作⽤,安培⼒使导体运动起来.交流感应电动机就是利⽤电磁驱动的原理⼯作的.【重要考点归纳】考点⼀ 公式E=nΔΦ/Δt的应⽤1.感应电动势⼤⼩的决定因素(1)感应电动势的⼤⼩由穿过闭合电路的磁通量的变化率和线圈的匝数共同决定,⽽与磁通量Φ、磁通量的变化量ΔΦ的⼤⼩没有必然联系.3.应⽤电磁感应定律应注意的三个问题考点⼆ 公式E=Blv的应⽤1.使⽤条件本公式是在⼀定条件下得出的,除了磁场是匀强磁场外,还需B、l、v三者相互垂直.实际问题中当它们不相互垂直时,应取垂直的分量进⾏计算,公式可为E=Blv sin θ,θ为B与v⽅向间的夹⾓.2.使⽤范围3.有效性公式中的l为有效切割长度,即导体与v垂直的⽅向上的投影长度.例如,求下图中MN两点间的电动势时,有效长度分别为甲图:l=cd sin β.4.相对性E=Blv中的速度v是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.5.感应电动势两个公式的⽐较考点三 ⾃感现象的分析1.⾃感现象“阻碍”作⽤的理解(1)流过线圈的电流增加时,线圈中产⽣的⾃感电动势与电流⽅向相反,阻碍电流的增加,使其缓慢地增加.(2)流过线圈的电流减⼩时,线圈中产⽣的⾃感电动势与电流⽅向相同,阻碍电流的减⼩,使其缓慢地减⼩.2.⾃感现象的四个特点(1)⾃感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发⽣突变,只能缓慢变化.(3)电流稳定时,⾃感线圈就相当于普通导体.(4)线圈的⾃感系数越⼤,⾃感现象越明显,⾃感电动势只是延缓了过程的进⾏,但它不能使过程停⽌,更不能使过程反向.3.⾃感现象中的能量转化通电⾃感中,电能转化为磁场能;断电⾃感中,磁场能转化为电能.4.分析⾃感现象的两点注意(1)通过⾃感线圈中的电流不能发⽣突变,即通电过程,线圈中电流逐渐变⼤,断电过程,线圈中电流逐渐变⼩,⽅向不变.此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电⾃感现象中灯泡是否“闪亮”问题的判断,在于对电流⼤⼩的分析,若断电后通过灯泡的电流⽐原来强,则灯泡先闪亮后再慢慢熄灭.第三节 电磁感应中的电路和图象问题【基本概念、规律】⼀、电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发⽣变化的线圈都相当于电源.(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电阻.2.电源电动势和路端电压⼆、电磁感应中的图象问题1.图象类型(1)随时间t变化的图象如B-t图象、Φ-t图象、E-t图象和i-t图象.(2)随位移x变化的图象如E-x图象和i-x图象.2.问题类型(1)由给定的电磁感应过程判断或画出正确的图象.(2)由给定的有关图象分析电磁感应过程,求解相应的物理量.(3)利⽤给出的图象判断或画出新的图象.【重要考点归纳】考点⼀ 电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产⽣感应电动势的那部分导体就是电源,如切割磁感线的导体棒、有磁通量变化的线圈等.这种电源将其他形式的能转化为电能.2.对电路的理解:内电路是切割磁感线的导体或磁通量发⽣变化的线圈,外电路由电阻、电容等电学元件组成.3.解决电磁感应中电路问题的⼀般思路:(2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图.(3)利⽤电路规律求解.主要应⽤欧姆定律及串、并联电路的基本性质等列⽅程求解.4.(1)对等效于电源的导体或线圈,两端的电压⼀般不等于感应电动势,只有在其电阻不计时才相等.(2)沿等效电源中感应电流的⽅向,电势逐渐升⾼.考点⼆ 电磁感应中的图象问题1.题型特点⼀般可把图象问题分为三类:(1)由给定的电磁感应过程选出或画出正确的图象;(2)由给定的有关图象分析电磁感应过程,求解相应的物理量;(3)根据图象定量计算.2.解题关键弄清初始条件,正负⽅向的对应,变化范围,所研究物理量的函数表达式,进、出磁场的转折点是解决问题的关键.3.解决图象问题的⼀般步骤(1)明确图象的种类,即是B-t图象还是Φ-t图象,或者是E-t图象、I-t图象等;(2)分析电磁感应的具体过程;(3)⽤右⼿定则或楞次定律确定⽅向对应关系;(4)结合法拉第电磁感应定律、欧姆定律、⽜顿运动定律等规律写出函数关系式;(5)根据函数关系式,进⾏数学分析,如分析斜率的变化、截距等;(6)画出图象或判断图象.4.解决图象类选择题的最简⽅法——分类排除法.⾸先对题中给出的四个图象根据⼤⼩或⽅向变化特点分类,然后定性地分析电磁感应过程中物理量的变化趋势(增⼤还是减⼩)、变化快慢(均匀变化还是⾮均匀变化),特别是⽤物理量的⽅向,排除错误选项,此法最简捷、最有效.【思想⽅法与技巧】电磁感应电路与图象的综合问题解决电路与图象综合问题的思路(1)电路分析弄清电路结构,画出等效电路图,明确计算电动势的公式.(2)图象分析①弄清图象所揭⽰的物理规律或物理量间的函数关系;②挖掘图象中的隐含条件,明确有关图线所包围的⾯积、图线的斜率(或其绝对值)、截距所表⽰的物理意义.(3)定量计算运⽤有关物理概念、公式、定理和定律列式计算.第四节 电磁感应中的动⼒学和能量问题【基本概念、规律】⼀、电磁感应现象中的动⼒学问题1.安培⼒的⼤⼩2.安培⼒的⽅向(1)先⽤右⼿定则判定感应电流⽅向,再⽤左⼿定则判定安培⼒⽅向.(2)根据楞次定律,安培⼒的⽅向⼀定和导体切割磁感线运动⽅向相反.⼆、电磁感应中的能量转化1.过程分析(1)电磁感应现象中产⽣感应电流的过程,实质上是能量的转化过程.(2)感应电流在磁场中受安培⼒,若安培⼒做负功,则其他形式的能转化为电能;若安培⼒做正功,则电能转化为其他形式的能.(3)当感应电流通过⽤电器时,电能转化为其他形式的能.2.安培⼒做功和电能变化的对应关系“外⼒”克服安培⼒做多少功,就有多少其他形式的能转化为电能;安培⼒做多少功,就有多少电能转化为其他形式的能.【重要考点归纳】考点⼀ 电磁感应中的动⼒学问题分析1.导体的平衡态——静⽌状态或匀速直线运动状态.处理⽅法:根据平衡条件(合外⼒等于零)列式分析.2.导体的⾮平衡态——加速度不为零.处理⽅法:根据⽜顿第⼆定律进⾏动态分析或结合功能关系分析.3.分析电磁感应中的动⼒学问题的⼀般思路(1)先进⾏“源”的分析——分离出电路中由电磁感应所产⽣的电源,求出电源参数E和r;(2)再进⾏“路”的分析——分析电路结构,弄清串、并联关系,求出相关部分的电流⼤⼩,以便求解安培⼒;(3)然后是“⼒”的分析——分析研究对象(常是⾦属杆、导体线圈等)的受⼒情况,尤其注意其所受的安培⼒;(4)最后进⾏“运动”状态的分析——根据⼒和运动的关系,判断出正确的运动模型.考点⼆ 电磁感应中的能量问题1.电磁感应过程的实质是不同形式的能量转化的过程,⽽能量的转化是通过安培⼒做功的形式实现的,安培⼒做功的过程,是电能转化为其他形式能的过程,外⼒克服安培⼒做功,则是其他形式的能转化为电能的过程.2.能量转化及焦⽿热的求法(1)能量转化(2)求解焦⽿热Q的三种⽅法3. 在解决电磁感应中的能量问题时,⾸先进⾏受⼒分析,判断各⼒做功和能量转化情况,再利⽤功能关系或能量守恒定律列式求解.【思想⽅法与技巧】电磁感应中的“双杆”模型1.模型分类“双杆”模型分为两类:⼀类是“⼀动⼀静”,甲杆静⽌不动,⼄杆运动,其实质是单杆问题,不过要注意问题包含着⼀个条件:甲杆静⽌、受⼒平衡.另⼀种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产⽣的感应电动势是相加还是相减.2.分析⽅法通过受⼒分析,确定运动状态,⼀般会有收尾状态.对于收尾状态则有恒定的速度或者加速度等,再结合运动学规律、⽜顿运动定律和能量观点分析求解.3.分析“双杆”模型问题时,要注意双杆之间的制约关系,即“动杆”与“被动杆”之间的关系,需要注意的是,最终两杆的收尾状态的确定是分析该类问题的关键.电磁感应中的含容电路分析⼀、电磁感应回路中只有电容器元件1.这类问题的特点是电容器两端电压等于感应电动势,充电电流等于感应电流.(2)由本例可以看出:导体棒在恒定外⼒作⽤下,产⽣的电动势均匀增⼤,电流不变,所受安培阻⼒不变,导体棒做匀加速直线运动.⼆、电磁感应回路中电容器与电阻并联问题1.这⼀类问题的特点是电容器两端的电压等于与之并联的电阻两端的电压,充电过程中的电流只是感应电流的⼀⽀流.稳定后,充电电流为零.2.在这类问题中,导体棒在恒定外⼒作⽤下做变加速运动,最后做匀速运动.。
蒲城县第三高级中学2020届一轮复课物理教案[对应学生用书P136]【自主梳理】一、电磁感应现象1.电磁感应现象:当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生的现象.2.产生感应电流的条件表述1:闭合电路的一部分导体在磁场内做切割磁感线运动.表述2:穿过闭合电路的磁通量发生变化.3.产生电磁感应现象的实质穿过电路的磁通量发生变化,电路中就会产生感应电动势.如果电路闭合,则有感应电流;如果电路不闭合,则只有感应电动势而无感应电流.[思考感悟1]穿过闭合电路的磁通量不为零,闭合电路中一定能产生电流吗?不一定,要看闭合电路磁通量是否变化.(1)闭合电路内只要有磁通量,就有感应电流产生.(×)(2)电路的磁通量变化,电路中就一定有感应电流.(×)(3)线框不闭合时,即使穿过线框的磁通量发生变化,线框中也没有感应电流产生.(√)(4)当导体切割磁感线时,一定产生感应电流.(×)二、楞次定律和右手定则[思考感悟2]楞次定律中涉及两个磁场,分别是什么?引起感应电流的磁场和感应电流的磁场.(1)由楞次定律知,感应电流的磁场一定与引起感应电流的磁场方向相反.(×)(2)回路不闭合,穿过回路的磁通量变化时,也会产生“阻碍”作用.(×)(3)感应电流的磁场一定阻碍引起感应电流的磁场的磁通量的变化.(√)[对应学生用书P136]考点一电磁感应现象的判断1.判断流程2.引起磁通量Φ变化的几种情况(1)磁场变化如:永磁铁与线圈的靠近或远离.电磁铁(螺线管)内电流的变化.(2)回路的有效面积变化①回路面积变化:如闭合线圈部分导线切割磁感线.如图甲.②回路平面与磁场夹角变化:如线圈在磁场中转动.如图乙.◆特别提醒:磁通量变化与否取决于磁场和有效面积的变化.(1)线圈面积变化,Φ不一定变化.(2)线圈面积减小时,Φ不一定减小.【例1】如图所示,一个U形金属导轨水平放置,其上放有一个金属导体棒ab,有一个磁感应强度为B的匀强磁场斜向上穿过轨道平面,且与竖直方向的夹角为θ.在下列各过程中,一定能在轨道回路里产生感应电流的是()A.ab向右运动,同时使θ减小B.使磁感应强度B减小,θ角同时也减小C.ab向左运动,同时增大磁感应强度BD.ab向右运动,同时增大磁感应强度B和θ角(0°<θ<90°)1.(2014·高考新课标全国卷Ⅰ)在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是()A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化考点二楞次定律和右手定则的理解和应用1.楞次定律中“阻碍”的含义2.楞次定律的使用步骤3.楞次定律的推广对楞次定律中“阻碍”的含义可以推广为感应电流的效果总是阻碍产生感应电流的原因:(1)阻碍原磁通量的变化——“增反减同”;(2)阻碍相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”;(4)阻碍原电流的变化(自感现象)——“增反减同”.4.楞次定律与右手定则的比较名称比较项目楞次定律右手定则研究对象整个闭合回路闭合电路中切割磁感线运动的部分导体适用范围适用于由磁通量变化引起感应电流的各种情况适用于一段导体在磁场中做切割磁感线运动◆特别提醒:如果问题不涉及感应电流的方向,则用楞次定律的推广含义进行研究,可以使分析问题的过程简化.【例2】下列各图是验证楞次定律实验的示意图,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流.各图中分别标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向等情况,其中正确的是()2.如图所示,匀强磁场中有两个导体圆环a 、b ,磁场方向与圆环所在平面垂直.磁感应强度B 随时间均匀增大.两圆环半径之比为2∶1,圆环中产生的感应电动势分别为E a 和E b .不考虑两圆环间的相互影响.下列说法正确的是( )A .E a ∶E b =4∶1,感应电流均沿逆时针方向B .E a ∶E b =4∶1,感应电流均沿顺时针方向C .E a ∶E b =2∶1,感应电流均沿逆时针方向D .E a ∶E b =2∶1,感应电流均沿顺时针方向[对应学生用书P 138]楞次定律的推广应用楞次定律的另一种表述:感应电流的效果,总是要反抗产生感应电流的原因.这里产生感应电流的原因,既可以是磁通量的变化,也可以是引起磁通量变化的相对运动或回路的形变.1.当电路的磁通量发生变化时,感应电流的效果就阻碍变化――→变形为阻碍原磁通量的变化.2.当出现引起磁通量变化的相对运动时,感应电流的效果就阻碍变化――→拓展为阻碍(导体间的)相对运动,即“来时拒,去时留”.3.当回路发生形变时,感应电流的效果就阻碍回路发生形变.4.当线圈自身的电流发生变化时,感应电流的效果就阻碍原来的电流发生变化.总之,如果问题不涉及感应电流的方向,则从楞次定律的另类表述出发的分析方法较为简便.【典例】如图,一质量为m的条形磁铁用细线悬挂在天花板上,细线从一水平金属圆环中穿过.现将环从位置Ⅰ释放,环经过磁铁到达位置Ⅱ.设环经过磁铁上端和下端附近时细线的张力分别为T1和T2,重力加速度大小为g,则()A.T1>mg,T2>mg B.T1<mg,T2<mgC.T1>mg,T2<mg D.T1<mg,T2>mg(2014·高考大纲全国卷)很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒.一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐.让条形磁铁从静止开始下落.条形磁铁在圆筒中的运动速率()A.均匀增大B.先增大,后减小C.逐渐增大,趋于不变D.先增大,再减小,最后不变[对应学生用书P138] 1.(2016·江苏扬州期末调研)如图所示,矩形线框在匀强磁场中做的各种运动中,能够产生感应电流的是().先是逆时针方向的感应电流,然后是顺时针方向的感应电流.先是顺时针方向的感应电流,然后是逆时针方向的感应电流法正确的是棒将向右运动棒将向右运动。
电磁感应复习曲靖二中吕文东教学目标1.知道电磁感应现象,知道产生感应电流的条件。
2.会运用楞次定律和左手定则判断感应电流的方向。
3.会计算感应电动势的大小(切割法、磁通量变化法)。
4.通过电磁感应综合题目的分析与解答,深化学生对电磁感应规律的理解与应用,使学生在建立力、电、磁三部分知识联系的同时,再次复习力与运动、动量与能量、电路计算、安培力做功等知识,进而提高学生的综合分析能力。
教学重点、难点分析1.楞次定律、法拉第电磁感应定律是本章的重点。
另外,电磁感应的规律也是自感、交流电、变压器等知识的基础,因而在电磁学中占据了举足轻重的地位。
2.在高考考试大纲中,楞次定律、法拉第电磁感应定律都属II级要求,每年的高考试题中都会出现相应考题,题型也多种多样,在历年高考中,以选择、填空、实验、计算各种题型都出现过,属高考必考内容。
同时,由电磁感应与力学、电学知识相结合的题目更是高考中的热点内容,题目内容变化多端,需要学生有扎实的知识基础,又有一定的解题技巧,因此在复习中要重视这方面的训练。
3.电磁感应现象及规律在复习中并不难,但是能熟练应用则需要适量的训练。
关于楞次定律的推广含义、法拉第电磁感应定律在应用中何时用其计算平均值、何时要考虑瞬时值等问题都需通过训练来达到深刻理解、熟练掌握的要求,因此要根据具体的学情精心选择一些针对性强、知识网络:单元切块:按照考纲的要求,本章内容可以分成三部分,即:电磁感应楞次定律;法拉第电磁感应定律、自感;电磁感应的综合应用。
其中重点是电磁感应的综合应用,也是复习的难点。
第一课时电磁感应现象楞次定律教学目标:1.理解电磁感应现象产生的条件、磁通量;2.能够熟练应用楞次定律或右手定则判断感应电流及感应电动势的方向教学重点:楞次定律的应用教学难点:楞次定律的应用教学方法:讲练结合,计算机辅助教学教学过程:一.磁通量()(1)定义:面积为,垂直匀强磁场放置,则与乘积,叫做穿过这个面的磁通量,用Φ表示.(2)理解:磁通量就是表示穿过这个面的磁感线条数.(3)公式:(4)单位:韦伯(Wb)1Wb=1T·m2(5)适用条件:a.磁场是匀强磁场b.磁感线要与平面相垂直(6)磁通量不是矢量,而是标量,其运算遵循代数运算。
课题:电磁感应类型:复习课电磁感应现象愣次定律一、电磁感应1.电磁感应现象只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应。
产生的电流叫做感应电流.2.产生感应电流的条件:只要闭合回路中磁通量发生变化即△Φ≠0,闭合电路中就有感应电流产生.3. 磁通量变化的常见情况(Φ改变的方式):①线圈所围面积发生变化,闭合电路中的局部导线做切割磁感线运动导致Φ变化;其实质也是 B 不变而 S增大或减小②线圈在磁场中转动导致Φ变化。
线圈面积与磁感应强度二者之间夹角发生变化。
如匀强磁场中转动的矩形线圈就是典型。
③B 随 t(或位置)变化,磁感应强度是时间的函数;或闭合回路变化导致Φ变化(Φ改变的结果):磁通量改变的最直接的结果是产生感应电动势,假设线圈或线框是闭合的.那么在线圈或线框中产生感应电流,因此产生感应电流的条件就是:穿过闭合回路的磁通量发生变化.4.产生感应电动势的条件:无论回路是否闭合,只要穿过线圈的磁通量发生变化,线圈中就有感应电动势产生,产生感应电动势的那局部导体相当于电源.电磁感应现象的实质是产生感应电动势,如果回路闭合,那么有感应电流,如果回路不闭合,那么只能出现感应电动势,而不会形成持续的电流.我们看变化是看回路中的磁通量变化,而不是看回路外面的磁通量变化二、感应电流方向的判定1.右手定那么:伸开右手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,手掌所在平面跟磁感线和导线所在平面垂直,大拇指指向导线运动的方向, 四指所指的方向即为感应电流方向(电源).用右手定那么时应注意:①主要用于闭合回路的一局部导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定,②右手定那么仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直.③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向.④假设形成闭合回路,四指指向感应电流方向;假设未形成闭合回路,四指指向高电势.⑤“因电而动〞用左手定那么.“因动而电〞用右手定那么.⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。
电磁感应1. 电磁感应现象:2. 楞次定律:闭合回路中产生的感应电流具有确定的方向,它总是使感应电流所产生的通过回路的磁通量,去补偿或者反抗引起感应电流的磁通量的变化。
3. 法拉第电磁感应定律:通过回路所包围的磁通量发生变化时产生的感应电动势与磁通量对时间的变化率成正比。
εi =-d /d t(εi =-d Ψ/d t , Ψ=N ) ; 说明1:感生电荷量q :如果闭合回路的电阻R ,通过导线任一界面的感生电荷量为 q i =⎰21d i t t t I =(1/R )(1-2); 说明2:感应电流产生的条件 感应电流产生的条件:凡是谈及感应电流,一般都是对闭合的导体回路而言。
这里一定要抓住磁通量的变化,不管这种变化是外界引起的还是回路本身运动、形变、电流变化引起的,只有在磁通量变化的过程中才有感应电流。
说明3:感应电动势与回路是否闭合、导体是否存在无关。
例1:尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,则环中: (A) 感应电动势不同, 感应电流不同. (B) 感应电动势相同,感应电流相同. (C) 感应电动势不同, 感应电流相同. (D) 感应电动势相同,感应电流不同. 说明4:感应电动势的方向(具体见例) 电磁感应定律是电动势与磁通量变化率的关系,实验测得电动势的方向与磁通量变化率正值方向成左手关系,当转换成右手关系是发现:大拇指指向磁通量变化率正值方向,四指绕行方向所得到的电动势方向与实验测得相反,于是负号修正。
根据此思想,可衍生以下几种方式判断方向的方法:(1) 右手大拇指指向磁通量变化率负值方向,四指绕行方向即电动势(电流)方向。
(这就是楞次定律,感应电流就是要产生负磁通量变化率来试图抵消线圈中的正值磁通量变化率或者产生正磁通量变化率来试图补偿线圈中的负值磁通量变化率)(2) 右手大拇指指向自定义的面的法向方向,四指绕行方向即电动势(电流)标定方向(将环路方向与电动势方向绑定)。
1、如图是验证楞次定律实验的示意图,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流.各图中分别标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向等情况,其中表示正确的是()楞次定律的推广:感应电流的效果总是阻碍产生感应电流的原因.其具体方式为:(1)阻碍原磁通量的变化——“增反减同”.(2)阻碍相对运动——“来拒去留”.(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”.(4)阻碍原电流的变化(自感现象)——“增反减同”.2、如图所示,矩形金属线框abcd用细线悬挂在U形磁铁中央,磁铁可绕OO′轴转动(从上向下看是逆时针转动),则当磁铁转动时,从上往下看,线框abcd的运动情况是() A.顺时针转动B.逆时针转动C.向外平动D.向里平动3、如图所示,有一个有界匀强磁场区域,磁场方向垂直纸面向外,一个闭合的矩形导线框abcd,沿纸面由位置1(左)匀速运动到位置2(右),则()A.导线框进入磁场时,感应电流的方向为a→b→c→d→aB.导线框离开磁场时,感应电流的方向为a→d→c→b→aC.导线框离开磁场时,受到的安培力水平向右D.导线框进入磁场时,受到的安培力水平向左4、如图所示,绝缘水平面上有两个离得很近的导体环a、b.将条形磁铁沿它们的正中向下移动(不到达该平面),a、b将如何移动()A.a、b将相互远离B.a、b将相互靠近C.a、b将不动D.无法判断5、两根相互平行的金属导轨水平放置于如图所示的匀强磁场中,在导轨上接触良好的导体棒AB和CD可以自由滑动.当AB在外力F作用下向右运动时,下列说法中正确的是() A.导体棒CD内有电流通过,方向是D→CB.导体棒CD内有电流通过,方向是C→DC.磁场对导体棒CD的作用力向左D.磁场对导体棒AB的作用力向左6、一矩形线框置于匀强磁场中,线框平面与磁场方向垂直.先保持线框的面积不变,将磁感应强度在1 s 时间内均匀地增大到原来的两倍,接着保持增大后的磁感应强度不变,在1 s 时间内,再将线框的面积均匀地减小到原来的一半.先后两个过程中,线框中感应电动势的比值为( )A.12B .1C .2D .4 7、在如图所示的电路中,a 、b 为两个完全相同的灯泡,L 为电阻可忽略不计的自感线圈,E 为电源,S 为开关.关于两灯泡点亮和熄灭的先后次序,下列说法正确的是( ) A .合上开关,a 先亮,b 后亮;断开开关,a 、b 同时熄灭B .合上开关,b 先亮,a 后亮;断开开关,a 先熄灭、b 后熄灭C .合上开关,b 先亮,a 后亮;断开开关,a 、b 同时熄灭D .合上开关,a 、b 同时亮;断开开关,b 先熄灭,a 后熄灭8、如图所示,长为L 的金属导线弯成一圆环,导线的两端接在电容为C 的平行板电容器上,P 、Q 为电容器的两个极板,磁场垂直于环面向里,磁感应强度以B =B 0+Kt(K>0)随时间变化,t =0时,P 、Q 两板电势相等.两板间的距离远小于环的半径,经时间t ,电容器P 板( )A .不带电B .所带电荷量与t 成正比C .带正电,电荷量是KL 2C4πD .带负电,电荷量是KL 2C4π9、粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框的一边a 、b 两点间电势差绝对值最大的是( )10、如图所示,两光滑平行金属导轨间距为L ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处于垂直纸面向里的匀强磁场中,磁感应强度为B.电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计.现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右做匀速运动,则( )A .电容器两端的电压为零B .电阻两端的电压为BLvC .电容器所带电荷量为CBLvD .为保持MN 匀速运动,需对其施加的拉力大小为B 2L 2vR11、如图所示,金属杆ab 放在光滑的水平金属导轨上,与导轨组成闭合矩形电路,长l1=0.8 m ,宽l2=0.5 m ,回路总电阻R =0.2 Ω,回路处在竖直方向的磁场中,金属杆用水平绳通过定滑轮连接质量M =0.04 kg 的木块,磁感应强度从B0=1 T 开始随时间均匀增加,5 s 末木块将离开水平面,不计一切摩擦,g 取10 m/s2,求回路中的电流强度.12、如图(甲)所示,平行金属导轨竖直放置,导轨间距为L =1 m ,上端接有电阻R1=3 Ω,下端接有电阻R2=6 Ω,导轨电阻不计,虚线OO ′下方是垂直于导轨平面的匀强磁场.现将质量m =0.1 kg 、电阻不计的金属杆ab ,从OO ′上方某处垂直导轨由静止释放,杆下落0.2 m 过程中始终与导轨保持良好接触,加速度a 与下落距离h 的关系图象如图(乙)所示.求: (1)磁感应强度B 的大小;(2)杆下落0.2 m 过程中通过电阻R2的电荷量q.走进高考:1.(2012福建卷).如图甲,一圆形闭合铜环由高处从静止开始下落,穿过一根竖直悬挂的条形磁铁,铜环的中心轴线与条形磁铁的中轴始终保持重合。
若取磁铁中心O 为坐标原点,建立竖直向下正方向的x 轴,则图乙中最能正确反映环中感应电流i 随环心位置坐标x 变化的关系图像是2.(2012全国新课标).如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B 0.使该线框从静止开始绕过圆心O 、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流。
现使线框保持图中所示位置,磁感应强度大小随时间线性变化。
为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率tB∆∆的大小应为 A.πω04B B.πω02B C.πω0B D.πω20B3.(2012北京高考卷).物理课上,老师做了一个奇妙的“跳环实验”.如图,她把一个带铁芯的线圈L 、开关S 和电源用导线连接起来后,将一金属套环置于线圈L 上,且使铁芯穿过套环,闭合开关S 的瞬间,套环立刻跳起.某同学另找来器材再探究此实验.他连接好电路,经重复实验,线圈上的套环均未动,对比老师演示的实验, 下列四个选项中,导致套环未动的原因可能是 A .线圈接在了直流电源上B .电源电压过高C .所选线圈的匝数过多D .所用套环的材料与老师的不同4.(2012全国新课标).如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。
已知在t =0到t =t 1的时间间隔内,直导线中电流i 发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右。
设电流i 正方向与图中箭头方向相同,则i 随时间t 变化的图线可能是5.(2013大纲理综)纸面内两个半径均为R 的圆相切于O 点,两圆形区域内分别存在垂直纸面的匀强磁场,磁感应强度大小相等、方向相反,且不随时间变化。
一长为2R 的导体杆OA 绕过O 点且垂直于纸面的轴顺时针匀速旋转,角速度为ω,t =0时,OA 恰好位于两圆的公切线上,如图所示。
若选取从O 指向A 的电动势为正,下列描述导体杆中感应电动势随时间变化的图像可能正确的是( )6.(2013新课标1理综)如图,在水平面(纸面)内有三报相同的均匀金属棒ab 、ac 和MN ,其中ab 、ac 在a 点接触,构成“V”字型导轨。
空间存在垂直于纸面的均匀磁场。
用力使MN 向右匀速运动,从图示位置开始计时,运动中MN 始终与∠bac 的平分线垂直且和导轨保持良好接触。
下列关于回路中电流i 与时间t 的关系图线,可能正确的是A B .C .D .7.(2013新课标2理综)如图,在光滑水平桌面上有一边长为L 、电阻为R 的正方形导线框;在导线框右侧有一宽度为d (d >L )的条形匀强磁场区时导线框的的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域。
下列v-t 图像中,可能正确描述上述过程的是( )8.(2013天津理综)如图所示,纸面内有一矩形导体闭合线框动abcd ,ab 边长大于bc边长,置于垂直纸面向里、边界为MN的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN。
第一次ab边平行MN进入磁场,线框上产生的热量为Q1,通过线框导体横截面的电荷量为q1;第二次bc边平行MN进入磁场.线框上产生的热量为Q2,通过线框导体横截面的电荷量为q2,则A.Q1>Q2 q1=q2B.Q1>Q2 q1>q2C.Q1=Q2 q1=q2D.Q1=Q2 q1>q29.(2013上海物理)如图,通电导线MN与单匝矩形线圈abcd共面,位置靠近ab且相互绝缘。
当MN中电流突然减小时,线圈所受安培力的合力方向(A)向左(B)向右(C)垂直纸面向外(D)垂直纸面向里写出匀变速直线运动的四个公式:向心力公式:万有引力定律公式:平行板电容决定式:电场强度的定义式: 电场强度与电势差的关系式: 闭合电路欧姆定律: 动能定理:1. 电动势为E 、内阻为r 的电源与定值电阻R 1、R 2及滑动变阻器R 连接成如图所示的电路,当滑动变阻器的触头由中点滑向a 端时,下列说法正确的是( ) A .电压表和电流表读数都增大 B .电压表和电流表读数都减小 C .电压表读数增大,电流表读数减小D .电压表读数减小,电流表读数增大2、空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R ,磁场方向垂直横截面。
一质量为m 、电荷量为q (q >0)的粒子以速率0v 沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°。
不计重力,该磁场的磁感应强度大小为A .033m qR vB .0m qR vC .03m qR v D .03m qRv3.两条导线互相垂直,但相隔一小段距离,其中AB 固定,CD 可自由活动,当通以如图1所示电流后,CD 导线将( ) A.顺时针方向转动,同时靠近AB B.逆时针方向转动,同时离开AB C.顺时针方向转动,同时离开AB D.逆时针方向转动,同时靠近AB60︒rRO O 'v。