《过程控制基础》第九讲 执行器基础
- 格式:ppt
- 大小:3.20 MB
- 文档页数:23
过程控制复习重点热点偶:当两种不同的导体或半导体连接时,若两个接点温度不同,回路中会出现热电动势,并产生电流;通常将一端温度T0维持恒定,称为冷端或自由端。
另外一端放在需要测温的地方,称为热端或工作端。
温度补偿:只有当热电偶冷端温度保持不变时,热电势才是被测温度的单值函数;热电偶的冷端温度补偿:只有将冷端温度保持为0℃,或者进行一定的修正才能得到准确的测量结果。
热电阻:在中、低温区,热电偶输出的热电动势很小;而在中、低温区,用热电阻比用热电偶做为测温元件时的测量精确度更高;热电阻特点:性能稳定、测量精度高,一般可在-270~900℃范围内使用(推荐在150℃以下时选用)。
1习题1-1试述热电偶的测温原理,工业上常用的测温热电偶有哪几种什么热电偶的分度号在什么情况下要使用补偿导线答:a.当两种不同的导体或半导体连接成闭合回路时,若两个接点温度不同,回路中就会出现热电动势,并产生电流.b.铂极其合金,镍铬-镍硅,镍铬-康铜,铜-康铜.c.分度号是用来反应温度传感器在测量温度范围内温度变化为传感器电压或电阻值变化的标准数列.d.在电路中引入一个随冷端温度变化的附加电动势时,自动补偿冷端温度变化,以保证测量精度,为了节约,作为热偶丝在低温区的替代品.1-2热电阻测温有什么特点为什么热电阻要用三线接法答:a.在-200到+500摄氏度范围内精度高,性能稳定可靠,不需要冷端温度补偿,测温范围比热电偶低,存在非线性.b. 在使用平衡电桥对热电阻进行测量时,由电阻引出三根导线,一根的电阻与电源E相连接,不影响电桥的平衡,另外两根接到电桥的两臂内,他们随环境温度的变化可以相互抵消.(在中、低温区,热电偶输出的热电动势很小;而在中、低温区,用热电阻比用热电偶做为测温元件时的测量精确度更高;热电阻特点:性能稳定、测量精度高,一般可在-270~900℃范围内使用(推荐在150℃以下时选用)。
)1-3说明热电偶温度变送器的基本结构.工作原理以及实现冷端温度补偿的方法.在什么情况下要做零点迁移答:a.结构:其核心是一个直流低电平电压-电流变换器,大体上都可分为输入电路.放大电路及反馈电路三部分.b.工作原理:应用温度传感器进行温度检测其温度传感器通常为热电阻,热敏电阻集成温度传感器.半导体温度传感器等,然后通过转换电路将温度传感器的信号转换为变准电流信号或标准电压信号.c.由铜丝绕制的电阻Rcu安装在热电偶的冷端接线处,当冷端温度变化时,利用铜丝电阻随温度变化的特性,向热电偶补充一个有冷端温度决定的电动势作为补偿.桥路左臂由稳压电压电源Vz(约5v)和高电阻R1(约10K欧)建立的恒值电流I2流过铜电阻Rcu,在Rcu上产生一个电压,此电压与热电动势Et串联相接.当温度补偿升高时,热电动势Et下降,但由于Rcu增值,在Rcu两端的电压增加,只要铜电阻的大小选择适当,便可得到满意的补偿.d.当变送器输出信号Ymin下限值(即标准统一信号下限值)与测量范围的下限值不相对应时要进行零点迁移.1-4什扰共模干扰为什么会影响自动化仪表的正常工作怎样才能抑制其影响么叫共模干扰和差模干扰为什么工业现场常会出现很强的共模干答:共模干扰:电热丝上的工频交流电便会向热电偶泄漏,使热电偶上出现几伏或几十伏的对地干扰电压,这种在两根信号线上共同存在的对地干扰电压称为~.差模干扰:在两根信号线之间更经常地存在电磁感应、静电耦合以及电阻泄漏引起的差模干扰.工业上会出现共模干扰是因为现场有动力电缆,形成强大的磁场.造成信号的不稳.共模干扰是同时叠加在两条被测信号线上的外界干扰信号,是被测信号的地和数字电压表的地之间不等电位,由两个地之间的电势即共模干扰源产生的.在现场中,被测信号与测量仪器间相距很远.这两个地之间的电位差会达到几十伏甚至上百伏,对测量干扰很大使仪表不能正常工作有时会损坏仪表.共模干扰在导线与地(机壳)之间传输,属于非对称性干扰,共模干扰幅度大.频率高.还可以通过导线产生辐射,所造成的干扰较大.消除共模干扰的方法包括:(1)采用屏蔽双绞线并有效接地(2)强电场的地方还要考虑采用镀锌管屏蔽(3)布线时远离高压线,更不能将高压电源线和信号线捆在一起走线(4)不要和电控锁共用同一个电源(5)采用线性稳压电源或高品质的开关电源(纹波干扰小于50mV).2.1 什么是调节器的调节规律?PID 调节器的数学表达式是怎样的?比例、积分、微分三种调节规律有何特征?为什么工程上不用数学上理想的微分算式?规律:确定调节器的动态特性称为调节器的调节规律,是调节器的输入信号与输出信号之间的动态关系。
执行器工作原理
执行器是一种设备,用于将输入信号转化为机械运动或执行特定操作。
它由电磁或电动元件控制,通过转换输入能量来输出所需的运动。
执行器的工作原理可以分为以下几个步骤:
1. 接收信号:执行器通过传感器或控制器接收输入信号,这些信号可以是电流、电压或控制信号。
2. 信号转换:执行器将接收到的信号转换为适合自身工作的形式,例如电磁执行器可以将电流转换为磁场力。
3. 能量转换:执行器将输入的能量转换为机械运动或执行特定操作的能量。
例如,电动执行器将电能转换为机械能,从而驱动执行器的运动。
4. 机械运动:执行器根据输入信号的控制,实现特定的机械运动,例如线性运动、旋转运动或其他复杂的工作。
5. 完成任务:执行器根据输入信号的指令,完成特定的任务,例如打开或关闭阀门、控制机械臂的运动等。
在实际应用中,执行器广泛应用于自动化领域,用于控制各种机械设备的运动和操作。
它们可以是简单的电磁铁,也可以是复杂的电动马达或液压驱动装置。
通过执行器的工作,我们能够实现自动化系统的控制和运行,提高工作效率和精度。
过程控制基础3.1控制的基本概念和定义控制任何设备或系统的中心是“反馈”的概念,它正式的定义是:使用系统输入输出的差别来维持输入输出之间一个预设关系的过程。
反馈显然是一种日程的现象。
反馈在工程方面用来控制机械系统一般认为起源于詹姆斯瓦特所发明的用来控制他新发明的蒸汽机的球调节器。
控制系统能够根据反馈的用法来分类。
图3.1-1显示了一张普遍接受的示意图,该系统是人工控制的闭环或者开环系统。
使用人工控制时,人会把想要的和过程中输出的进行比较以控制调节器来保持指定输出。
操作员根据从系统监控器上看到的信息并利用自己知道的电站动力学方面的知识进行反馈以决定给控制器发出适当的信号。
除了电站的输出是直接用来决定控制信号外,闭环控制和人工操作差不多,如图中部显示的一样。
“参考输出”反映了电站的操作是否按照预定方式进行,再把它和探测器中获得的测量输出信号进行比较,两个数值的差别就是“执行出错信号”。
发给调节器的控制信号就是这个差值的函数。
差值信息和控制信号使用模拟或数字计算机来计算的,或者象蒸汽机用的球调节器一样用机械的方式决定。
在闭环控制下,发给调节器的信号是随着过程的变化产生的。
这样对任意可能影响电站动力学的扰动的处理都是自动运行的。
最后闭环控制值得提出的一点是:控制信号是测量值的函数而与电站实际输出无关,这样如果探测器失效,控制系统也会失效。
人工操作时这却不会有问题,因为人有时能够认识到探测器失效问题并做出补偿动作。
然而在闭环控制的情况下,探头的错误输出会被直接使用。
解决这种问题的途径是这个报告的10.2.1和10.4.1部分讲到的探头确认方法。
图的下部分显示的是开环控制,这种方法的主要特点是没有应用反馈。
不过使用了一种预设参考流程的方法。
比如预先建立一个处理过程的精确模型并进行模拟,直到需要时再产生控制信号以决定输出。
开环控制可能得到也可能得不到预想的电站行为。
显然如果用来决定执行策略的模型是错的,控制动作也会错。
《过程控制技术基础知识概述》一、引言过程控制技术在现代工业生产中起着至关重要的作用,它能够确保生产过程的稳定、高效运行,提高产品质量,降低生产成本。
随着科技的不断进步,过程控制技术也在不断发展和创新,从传统的模拟控制到现代的数字化、智能化控制,其应用范围越来越广泛。
本文将对过程控制技术的基础知识进行全面的阐述与分析,包括基本概念、核心理论、发展历程、重要实践以及未来趋势。
二、基本概念1. 过程控制的定义过程控制是指对生产过程中的物理量(如温度、压力、流量、液位等)进行自动控制,使其在一定的范围内保持稳定,以满足生产工艺的要求。
2. 控制系统的组成过程控制系统通常由被控对象、传感器、变送器、控制器和执行器等部分组成。
被控对象是指需要进行控制的生产过程或设备;传感器用于检测被控对象的物理量,并将其转换为电信号;变送器将传感器输出的电信号转换为标准信号,以便传输和处理;控制器根据给定值和测量值的偏差,按照一定的控制规律计算出控制信号;执行器根据控制信号对被控对象进行控制,如调节阀门开度、改变电机转速等。
3. 控制方式过程控制的方式主要有开环控制和闭环控制两种。
开环控制是指控制信号只根据给定值进行计算,不考虑被控对象的实际输出;闭环控制则是将被控对象的实际输出反馈到输入端,与给定值进行比较,根据偏差进行控制。
闭环控制具有较高的控制精度和稳定性,但系统结构相对复杂。
三、核心理论1. 反馈控制理论反馈控制是过程控制的核心理论之一,它基于被控对象的输出反馈,通过调整控制信号来减小给定值与实际输出之间的偏差。
反馈控制可以分为比例控制、积分控制和微分控制三种基本控制方式,分别对应着对偏差的比例、积分和微分响应。
通过合理组合这三种控制方式,可以实现不同的控制性能要求。
2. 现代控制理论现代控制理论是在经典控制理论的基础上发展起来的,它采用状态空间法对控制系统进行描述和分析。
现代控制理论可以处理多输入多输出系统、非线性系统和时变系统等复杂控制问题,具有更高的控制精度和鲁棒性。
第九章 执行器钱厚亮南京工程学院工业中心2013/019.1概述•执行器由执行机构和调节机构组成。
•执行机构是指根据调节器控制信号产生推力或位移的装置.推动节流件动作的机构•调节机构是根据执行机构输出信号去改变能量或物料输送量的装置,最常见的是调节阀。
节流件按能源形式•液动执行器:推力大,较笨重•气动执行器:结构简单、平稳可靠、动作行程小、输出推力大、安全、经济。
•电动执行器:信号传递快、结构复杂、安全防暴性能差。
•智能电液执行器:机、电、液一体化,力量大,精度高。
蓄能罐式液控止回蝶阀9.2气动执行器•执行机构(也称膜头)。
•调节机构(也叫做阀体)9.2.1气动执行器执行机构的形式1.薄膜式执行机构:行程小,用做一般调节阀的推动装置,组成气动薄膜式执行器(气动薄膜调节阀),结构简单、价格便宜、维修方便,应用广泛2.活塞式执行机构•行程长,适用于要求有较大推力的场合,不但可以直接带动阀杆,而且可以和蜗轮蜗杆等配合使用,用于大口径、高压降调节阀或蝶阀的推动装置。
3.气动薄膜式调节阀9.2.2气动薄膜调节阀的类型1.直通单座调节阀•结构简单、•泄漏量小,•:在压差时,流体对阀芯上下作用的推力不平衡,会影响阀芯的移动。
•应用:小口径、•低压差的场合图9-3 直通单座调节阀1—阀杆;2—压板;3—填料;4—上阀盖;5、11—斜孔;6、10—衬套;7—阀体;8—阀芯;9—阀座;12—下阀盖气动薄膜调节阀的类型2.直通双座调节阀•最常用的一种类型。
•流体流过时,作用在上、下两个阀芯上的推力方向相反而大小近于相等,可以相互抵消。
由于加工的限制,泄露量较大。
9-4 直通双座调节阀1—阀杆;2—压板;3—填料;4—上阀盖;5—衬套斜孔;6—阀芯;7—阀座;8—阀体;9—下阀盖3.其它类型调节阀•①角形调节阀•②隔膜调节阀•③三通调节阀•④蝶阀•⑤球阀•⑥凸轮挠曲阀•⑦笼式阀9.2.3调节阀的静态特性流量特性:流过控制阀的相对流量Q 和阀杆相对行程L 之间 的函数关系)()(maxmax L L f l f Q Q q ===Qmax 和Lmax 分别阀全开最大流量和最大行程控制阀流量特性:理想流量特性和工作流量特性理想流量特性:控制阀两端压降恒定时流量工作流量特性:工作状况(压降变化)控制阀流量特性。
《过程控制》课程笔记第一章概论一、过程控制系统组成与分类1. 过程控制系统的基本组成过程控制系统主要由被控对象、控制器、执行器、检测仪表四个部分组成。
(1)被控对象:指生产过程中的各种设备、机器、容器等,它们是生产过程中需要控制的主要对象。
被控对象具有各种不同的特性,如线性、非线性、时变性等。
(2)控制器:控制器是过程控制系统的核心部分,它根据给定的控制策略,对检测仪表的信号进行处理,生成控制信号,驱动执行器动作,从而实现对被控对象的控制。
控制器的设计和选择直接影响控制效果。
(3)执行器:执行器是控制器与被控对象之间的桥梁,它接收控制器的信号,调节阀门的开度或者调节电机转速,从而实现对被控对象的控制。
执行器的响应速度和精度对控制系统的性能有很大影响。
(4)检测仪表:检测仪表用于实时测量被控对象的各项参数,如温度、压力、流量等,并将这些参数转换为电信号,传输给控制器。
检测仪表的准确性和灵敏度对控制系统的性能同样重要。
2. 过程控制系统的分类根据控制系统的结构特点,过程控制系统可以分为两大类:开环控制系统和闭环控制系统。
(1)开环控制系统:开环控制系统没有反馈环节,控制器根据给定的控制策略,直接生成控制信号,驱动执行器动作。
开环控制系统的优点是结构简单,成本低,但缺点是控制精度较低,容易受到外部干扰。
(2)闭环控制系统:闭环控制系统具有反馈环节,控制器根据检测仪表的信号,实时调整控制策略,生成控制信号,驱动执行器动作。
闭环控制系统的优点是控制精度高,抗干扰能力强,但缺点是结构复杂,成本较高。
二、过程控制系统性能指标1. 稳态误差:稳态误差是指系统在稳态时,输出值与设定值之间的差值。
稳态误差越小,表示系统的控制精度越高。
稳态误差可以通过调整控制器的参数来减小。
2. 动态性能:动态性能是指系统在过渡过程中,输出值随时间的变化规律。
动态性能指标包括上升时间、调整时间、超调量等。
动态性能的好坏直接影响到系统的响应速度和稳定性。