数学规划模型及LINGO讲义
- 格式:ppt
- 大小:374.50 KB
- 文档页数:80
培训教案——LINGO(一)LINGO是一款常用的线性规划软件,它能够方便地解决复杂问题。
培训LINGO,需要深入了解软件的使用方法和解决实际问题的能力。
下面就LINGO培训的内容进行分点介绍。
一、LINGO的基础知识LINGO的基础知识包括软件的基本功能和操作。
需要讲解LINGO的界面、工具栏、菜单栏等。
初次接触LINGO的学员需要掌握LINGO的一些基本用法,比如如何输入数据、如何设定优化目标,如何设置约束等,这些都是LINGO的基本操作。
二、LINGO求解模型了解LINGO的基本操作之后,需要讲解LINGO的求解模型。
LINGO的数学模型是LINGO软件解决问题必需的部分。
对于LINGO求解模型的学习,需要学员掌握数学模型的建立方法和标准的数学模型。
培训学员掌握LINGO的求解模型知识是LINGO培训的核心。
三、LINGO的高级应用LINGO的高级应用需要讲授如何利用LINGO解决实际问题,需要讲解如何构建多约束模型来描述现实中的问题,如何设置变量、常数和目标函数等。
高级应用的讲授需要结合实例,让学员深入了解LINGO的实际应用场景,提高解决实际问题的能力。
四、LINGO的调试LINGO的调试是LINGO培训的重要组成部分。
在LINGO求解过程中,有时会出现错误,导致模型不能正常求解。
因此,需要讲解LINGO调试的方法和技巧,使得学员具备调试LINGO模型的能力。
五、LINGO应用举例为了让学员进一步巩固LINGO的知识,需要讲解一些LINGO的应用举例。
举例的内容包括:产品组合问题、生产调度问题、财务规划问题、运输规划问题等。
通过这些示例,让学员对LINGO的应用有更加深刻的理解。
六、LINGO的作业练习培训LINGO需要进行实际操作,软件操作的熟练程度可以通过作业考核来体现。
作业练习的难度需要逐渐增加,从简单到复杂地设置模型,巩固培训成果。
LINGO培训需要根据学员的水平进行分类管理,加强培训的个性化和针对性。
⾮线性整数规划模型(LINGO代码实现)⾮线性整数规划模型LINGO讲解分析:第⼀步:确定决策变量问题是确定调运⽅案,使得总运输费⽤最⼩。
⽽总运输费⽤=货物运量*货物单价,题⽬给了货物单价了,我们求货物运量即可,这⾥的货物运量则是我们的决策变量。
第⼆步:确定⽬标函数和约束条件上图第⼀⾏就是我们的⽬标函数,下⾯三⾏是我们的约束条件,在满⾜约束条件的前提下,软件会不断遍历Xij所有可能的值,然后z也会根据Xij的变化⽽产⽣不同的值,这个时候⽤⼀个min函数取所有可能值当中的最⼩值,即可。
第三步:⽤LINGO代码实现model:title 最少运费问题;sets:!集合的定义,WH是集合的名字,W1..W6是集合的长度,⼀般写成1..6,相当于创建了⼀个能放六个元素的容器WH,是抽象的,是虚⽆的,是⼀种声明,告诉我们“:”后⾯的变量是⼀个什么类型的变量,显然,后⾯的AI是⼀个确确实实有六个数的数组,是具体的,是实在WH/W1..W6/:AI;!集合的名称、集合内的成员、集合的属性(可以看成是与改集合有关的变量或常量,相当与数组);VD/V1..V8/:DJ;links(WH,VD):C,X;!以WH和VD为基础,衍⽣集合。
相当于把两个向量结合在⼀起,形成⼀个⼆维数组,有⾏和列,C和X这两个变量是实在的具体的⼆维数组,只不过后⾯C我们赋值了,X是通过系统根据约束条件和⽬标函数⾃⼰赋值的;endsetsdata:!数据段;AI=60,55,51,43,41,52;DJ=35,37,22,32,41,32,43,38;C=6,2,6,7,4,2,5,94,9,5,3,8,5,8,25,2,1,9,7,4,3,37,6,7,3,9,2,7,12,3,9,5,7,2,6,55,5,2,2,8,1,4,3;enddatamin=@sum(links(I,J):c(i,j)*x(i,j)); !⽬标函数.links我们上线提到了,是⼀个6X8的集合名;@for(WH(i):@sum(VD(j):x(i,j))<=AI(I));!约束条件.@for⼀出,你就要知道这⼀⾏写的就是约束条件了;@for(vd(j):@sum(WH(i):x(i,j))=DJ(j));!约束条件.;end。
用LINGO 解线性规划和整数规划在工程技术、经济管理、科学研究和日常生活等许多领域中,人们经常遇到的一类决策问题是:在一系列客观或主观限制条件下,寻求使关注的某个或多个指标达到最大(或最小)的决策。
例如:★ 结构设计要在满足强度要求条件下选择材料的尺寸,使其总重量最轻; ★ 资源分配要在有限资源约束下制定各用户的分配数量,使资源产生的总效益最大;★ 运输方案要在满足物资需求和装载条件下安排从各供应点到各需求点的运量和路线,使运输总费用最低;★ 生产计划要按照产品工艺流程和顾客需求,制定原料、零件、部件等订购、投产的日程和数量,尽量降低成本使利润最高。
上述这种决策问题通常称为优化问题。
人们解决这些优化问题的手段大致有以下几种:1.依赖过去的经验判断面临的问题。
这似乎切实可行,并且没有太大的风险,但是其处理过程会融入决策者太多的主观因素,难以客观地加以描述,从而无法确认结果的最优性。
2.做大量的试验反复比较。
这固然比较真实可靠,但是常要花费太多的资金和人力,而且得到的最优结果基本上离不开开始设计的试验范围。
3.用数学建模的方法建立数学规划模型求解最优决策。
虽然由于建模时要作适当的简化,可能使得结果不一定完全可行或达到实际上的最优,但是它基于客观规律和数据,又不需要多大的费用,具有前两种手段无可比拟的优点。
如果在此基础上再辅之以适当的经验和试验,就可以期望得到实际问题的一个比较圆满的回答,是解决这种问题最有效、最常用的方法之一。
1.1.1 数学规划模型数学规划模型一般有三个要素:一是决策变量,通常是该问题要求解的那些未知量,不妨用n 维向量12n x (x ,x ,,x )'= 表示;二是目标函数,通常是该问题要优化(最小或最大)的那个目标的数学表达式,它是决策变量x的函数,这里抽象地记作f(x);三是约束条件,由该问题对决策变量的限制条件给出,即x允许取值的范围x∈Ω,Ω称可行域,常用一组关于x的不等式(也可是等式)g i(x)≤0(I=1,2,…,m)来界定。
数学建模必备LINGO 在多目标规划和最大最小化模型中的应用一、多目标规划的常用解法多目标规划的解法通常是根据问题的实际背景和特征,设法将多目标规划转化为单目标规划,从而获得满意解,常用的解法有:1.主要目标法确定一个主要目标,把次要目标作为约束条件并设定适当的界限值。
2.线性加权求和法对每个目标按其重要程度赋适当权重0≥i ω,且1=∑ii ω,然后把)(x f i ii ∑ω作为新的目标函数(其中p i x f i ,,2,1),( =是原来的p 个目标)。
3.指数加权乘积法设p i x f i ,,2,1),( =是原来的p 个目标,令∏==pi a i ix f Z 1)]([其中i a 为指数权重,把Z 作为新的目标函数。
4.理想点法先分别求出p 个单目标规划的最优解*i f ,令∑-=2*))(()(iifx f x h然后把它作为新的目标函数。
5.分层序列法将所有p 个目标按其重要程度排序,先求出第一个最重要的目标的最优解,然后在保证前一个目标最优解的前提条件下依次求下一个目标的最优解,一直求到最后一个目标为止。
这些方法各有其优点和适用的场合,但并非总是有效,有些方法存在一些不足之处。
例如,线性加权求和法确定权重系数时有一定主观性,权重系数取值不同,结果也就不一样。
线性加权求和法、指数加权乘积法和理想点法通常只能用于两个目标的单位(量纲)相同的情况,如果两个目标是不同的物理量,它们的量纲不相同,数量级相差很大,则将它们相加或比较是不合适的。
二、最大最小化模型在一些实际问题中,决策者所期望的目标是使若干目标函数中最大的一个达到最小(或多个目标函数中最小的一个达到最大)。
例如,城市规划中需确定急救中心的位置,希望该中心到服务区域内所有居民点的距离中的最大值达到最小,称为最大最小化模型,这种确定目标函数的准则称为最大最小化原则,在控制论,逼近论和决策论中也有使用。
最大最小化模型的目标函数可写成)}(,),(),(max{min 21X f X f X f p X或)}(,),(),(min{max 21X f X f X f p X式中T n x x x X ),,,(21 是决策变量。
lingo线性规划线性规划(Linear Programming)是一种在数学和运筹学中常用的优化方法,用于求解遵循线性约束条件的最优解问题。
它的应用非常广泛,包括生产计划、供应链管理、资源分配、投资组合和运输调度等领域。
线性规划的目标是找到一组变量的最优值,使目标函数达到最大值或最小值。
这些变量受到各种约束条件的限制,包括线性等式和线性不等式。
线性规划的数学模型可以表示为:目标函数:max/min Cx约束条件:Ax ≤ b{x ≥ 0}其中,C是一个包含决策变量的向量,表示目标函数的系数;x是一个包含决策变量的向量,表示需要求解的变量;A是一个约束矩阵,表示线性约束条件;b是一个包含常数的向量,表示约束条件的右边值。
线性规划的解决方法通常有两种:单纯形法和内点法。
单纯形法是最常用的方法,它通过不断迭代,从一个解走向下一个更优的解,直到找到最优解。
内点法是一种较新的方法,通过在可行域的内部搜索解,而不是在边界上搜索解。
线性规划的一般步骤可以概括为以下几点:1. 建立线性规划模型:确定目标函数和约束条件,并对其进行数学表示。
2. 求解约束条件的可行域:化约束条件为等式或不等式,画出约束条件所构成的区域。
3. 确定最佳解的可行域:确定目标函数在可行域中的最大值或最小值的位置。
4. 通过单纯形法或内点法求解最优解:找到目标函数的最优解,并得出最优解的数值结果。
5. 解释和应用最优解:根据最优解的数值结果,解释它对问题的意义,并应用于实际决策中。
总之,线性规划是一种强大的数学优化方法,可以有效解决许多实际问题。
它具有明确的数学模型和求解流程,可以通过计算机软件进行自动求解。
然而,在实际应用中,建立准确的数学模型和选择合适的求解方法仍然是一项具有挑战性的任务。
lingo数学模型
"lingo"是一种用于数学建模和优化的软件工具。
它提供了一个
直观的界面,用于建立和求解复杂的数学模型,包括线性规划、整
数规划、非线性规划、多目标规划等。
lingo的使用可以帮助分析
师和决策者在面临复杂的决策问题时进行优化决策。
在数学建模方面,lingo可以用来建立数学模型,包括定义决
策变量、约束条件和目标函数。
用户可以通过lingo的界面直观地
输入模型的各个部分,而无需深入了解数学建模的具体语法和规则。
这使得非专业的用户也能够快速地建立数学模型。
在优化方面,lingo提供了强大的求解算法,可以对各种类型
的数学模型进行求解,以找到最优的决策方案。
lingo支持对模型
进行灵敏度分析,帮助用户了解参数变化对最优解的影响,从而更
好地进行决策。
除了数学建模和优化外,lingo还具有数据可视化功能,可以
直观地展示模型的结果和决策方案。
这有助于用户向决策者传达模
型分析的结果,从而更好地支持决策过程。
总的来说,lingo作为数学建模和优化工具,为用户提供了一
个方便、强大的平台,帮助他们解决复杂的决策问题。
通过lingo,用户可以更好地理解问题、制定决策,并得到最优的解决方案。
用LINDO、LINGO 和WHAT'S BEST!解运筹学问题优化模型介绍实际问题中的优化模型Min/Max z=f(x), x=(x1,...,x n)Ts.t. g i(x)≤0,i=1,2,...,mx1,...,x n≥0其中x~决策变量,f(x)~目标函数,g i(x)≤0~约束条件数学规划分类:线性规划(LP)二次规划(QP)非线性规划(NLP)连续规划整数规划(IP):0-1整数规划、一般整数规划、纯整数规划(PIP)、混合整数规划(MIP) LINDO 公司软件产品简要介绍美国芝加哥(Chicago)大学的Linus Schrage教授于1980年前后开发, 后来成立 LINDO系统公司(LINDO Systems Inc.),网址:LINDO: Linear INteractive and Discrete Optimizer (V6.1)LINGO: Linear INteractive General Optimizer (V8.0)LINDO API: LINDO Application Programming Interface (V2.0)What’s Best!: (SpreadSheet e.g. EXCEL) (V7.0) 演示(试用)版、学生版、高级版、超级版、工业版、扩展版… (求解问题规模和选件不同)LINDO和LINGO软件能求解的优化模型LIN D O:线性规划(LP)、二次规划(QP)LIN G O:线性规划(LP)、二次规划(QP)、非线性规划(NLP)建模时需要注意的几个问题1、尽量使用实数优化,减少整数约束和整数变量2、尽量使用光滑优化,减少非光滑约束的个数如:尽量少使用绝对值、符号函数、多个变量求最大/最小值、四舍五入、取整函数等3、尽量使用线性模型,减少非线性约束和非线性变量的个数(如x/y <5 改为x<5y)4、合理设定变量上下界,尽可能给出变量初始值5、模型中使用的参数数量级要适当(如小于103)LINDO使用简介例加工奶制品的生产计划1桶牛奶(经过12小时)产生3公斤奶制品A ,可获利24元/公斤或1桶牛奶(经过8小时)产生4公斤奶制品B ,可获利16元/公斤某天约束:50桶牛奶、时间480小时、至多加工100公斤A如何制定生产计划,使这一天获利最大?一些小问题如下:问1、35元可买到1桶牛奶,买吗?若买,这一天最多买多少?问2、可聘用临时工人,付出的工资最多是每小时几元?问3、奶制品A的获利增加到 30元/公斤,是否应改变生产计划?解:决策变量 用x桶牛奶生产A 用y桶牛奶生产B 目标函数Max z=72 x + 64 y约束条件 x+ y ≤50 (原料供应)12 x+ 8 y ≤480 (劳动时间)3 x ≤100 (加工能力,产量约束)x, y≥0 (非负约束)在LINDO输入窗中输入如下代码:max 72 x+64 yst2) x+y<503)12x+8y<4804) 3x<100end再点按求解命令即可得到优化结果(含灵敏度分析信息)LP OPTIMUM FOUND AT STEP 2OBJECTIVE FUNCTION V ALUE1) 3360.000V ARIABLE V ALUE REDUCED COSTX 20.000000 0.000000Y 30.000000 0.00000020桶牛奶生产A, 30桶生产B,利润3360元。
基于数学模型求解的LINGO使⽤(⼀):认识LINGO以及变量的定义本⽂为作者原创,若需转载使⽤请注明来源1、这篇帖⼦适合你么?(必读)这学期的⼀门课上接触了LINGO的使⽤,得益于⽼师超前的教学理念,我们⽤不多的课堂时间掌握了第⼀门像样的求解器语⾔。
对于我们专业来说,第⼀次使⽤LINGO是在运筹学课上,作为上机实验求解线性规划模型、⽬标规划、整数规划等简单的经典模型,⼀开始认为只要把⼀些模型简单的输⼊求解器按下Undo就可以,后来发现求解⼀些复杂的模型时,简单的誊抄是远远不够的,复杂的逻辑关系表⽰需要⾃⼰进⾏开发。
这个记录的帖⼦,是回顾了这⼀学期我学习LINGO的轨迹,直接从对于数学模型的理解⼊⼿,基于对模型的充分理解进⾏LINGO的使⽤。
如果你是本科⽣,这⼀系列的帖⼦⾜够对LINGO进⾏初步的了解,想要熟练掌握还需要⾃⼰进⾏练习和总结。
以下是我的⼼得和我认为在学习过程中最重要的理念:最重要的理解数学模型!最重要的理解数学模型!最重要的理解数学模型!如果在阅读或者编译的过程中出现问题,欢迎和我交流!评论区也好,邮箱也⾏!2、先看⼀个TSP问题吧!假设⼀艘船必须访问n个港⼝(PORT),这n个港⼝是⼀个完全图,船需要恰好访问所有港⼝⼀次,并且回到起点。
问题的背景就是这样,对于TSP问题,建模的类型以及求解⽅法在这⾥先不谈,刚学习LINGO先从标准的问题模型⼊⼿:在这⾥,i,j表⽰港⼝所在的城市具体的代码如下(没有对应的语⾔类型,故没有Highlight显⽰,以加粗代替):1 data:2 n=……;3 enddata4 sets:5 city/1..n/;6 link1(city,city):x,d;7 link2(city):u;8 endsets910 data:11 d=12 (对d(i,j)进⾏赋值,可以复制粘贴表格)13 ;14 enddata15 min=@sum(16 city(i):17 @sum(18 city(j):19 d(i,j)*x(i,j)20 )21 );2223 @for(city(j):24 @sum(city(i)|i#NE#j:25 x(i,j)26 )=127 );28 @for(city(i):29 @sum(city(j)|i#NE#j:30 x(i,j)31 )=132 );33 @for(city(i):34 @for(city(j):35 @bin(x(i,j)) !@gin整型;@free⼤于等于零的实数;36 )37 );383940 @for(city(i):41 @for(4243 city(j)|(i#GT#1)#AND#(i#LE#n)#AND#(i#NE#j)#AND#(i#NE#1)#AND#(j#NE#1):44 u(i)+u(j)-x(i,j)*n<=445 )4647 );可以看出,LINGO中可以⽤函数来进⾏求和的操作,并且可以对变量进⾏约束,解决了有些特殊的运算符号⽆法通过键盘直接输⼊的问题(很有⽤啊,不⽤挠头了,直接掉头发就是了)。