高中数学第03课时1.1.1 分类加法计数原理与分步乘法计数原理(三)
- 格式:doc
- 大小:69.54 KB
- 文档页数:2
第1讲 分类加法计数原理与分步乘法计数原理第十章 计数原理、概率、随机变量及其分布 1.理解分类加法计数原理、分步乘法计数原理及其意考试要求义.2.能解决简单的实际问题.01聚焦必备知识知识梳理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N =________种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有N=________种不同的方法.3.分类加法和分步乘法计数原理的区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤中的方法相互依存,只有各个步骤都完成了才算完成这件事.分类加法计数原理与分步乘法计数原理是解决排列组合问题的基础,并贯穿其始终.(1)分类加法计数原理中,完成一件事的方法属于其中一类,并且只属于其中一类.(2)分步乘法计数原理中,各个步骤中的方法相互依存,步与步之间“相互独立,分步完成”.常用结论1.思考辨析(在括号内打“ √”或“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( )(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.( )(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )夯基诊断× √ √ 2.回源教材(1)一项工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这项工作,不同选法的种数是________.不同的选法共有5+4=9(种)方法.答案:9(2)从A村去B村的道路有3条,从B村去C村的道路有2条,则从A村经B村去C村,不同路线的条数是________.从A村去B村有3种走法,由B村去C村有2种走法,根据分步乘法计数原理可得2×3=6(种).答案:6(3)如图所示,在A,B间有四个焊接点1,2,3,4,若焊接点脱落导致断路,则电路不通,今发现A,B之间电路不通,则焊接点脱落的不同情况有________种.电路不通可能是1个或多个焊接点脱落,问题比较复杂,但电路通的情况却只有3种,即2或3脱落或全不脱落,每个焊接点有脱落与不脱落两种情况,故共有24-3=13(种)情况.答案:13突破核心命题限时规范训练聚焦必备知识 11(4)3个班分别从5个风景点中选择一处游览,不同的选法有________种.因为第1、第2、第3个班各有5种选法,由分步乘法计数原理,可得不同的选法有5×5×5=125(种).答案:12502突破核心命题1.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有( )A.4种B.10种C.18种D.20种考 点 一分类加法计数原理B B 赠送1本画册,3本集邮册,需从4人中选取1人赠送画册,其余赠送集邮册,有4种方法.赠送2本画册,2本集邮册,只需从4人中选出2人赠送画册,其余2人赠送集邮册,有6种方法.由分类加法计数原理可知,不同的赠送方法共有4+6=10(种).2.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则B 这样的点的个数是( )A.9B.14C.15D.21B 当x=2时,x≠y,点的个数为1×7=7.当x≠2时,由P⊆Q,∴x=y.∴x可从3,4,5,6,7,8,9中取,有7种方法,因此满足条件的点共有7+7=14(个).3.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为________.当a=0时,b的值可以是-1,0,1,2,故(a,b)的个数为4;当a≠0时,要使方程ax2+2x+b=0有实数解,需使Δ=4-4ab≥0,即ab≤1.若a=-1,则b的值可以是-1,0,1,2,(a,b)的个数为4;若a=1,则b的值可以是-1,0,1,(a,b)的个数为3;若a=2,则b的值可以是-1,0,(a,b)的个数为2.由分类加法计数原理可知(a,b)的个数为4+4+3+2=13.答案:13分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词、关键元素和关键位置.(1)根据题目特点恰当选择一个分类标准;(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法才是不同的方法,不能重复;(3)分类时除了不能交叉重复外,还不能有遗漏.1.数独是源自18世纪瑞士的一种数学游戏.如图是数独的一个简化版,由3行3列9个单元格构成.玩该游戏时,需要将数字1,2,3(各3个)全部填入单元格,每个单元格填一个数字,要求每一行、每一列均有1,2,3这三个数字,则不同的填法有( )A.12种B.24种C.72种D.216种考 点 二分步乘法计数原理A A 先填第一行,有3×2×1=6(种)不同填法,再填第二行第一列,有2种不同填法,当该单元格填好后,其他单元格唯一确定.根据分步乘法计数原理可知,共有6×2=12(种)不同的填法.2.有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法(六名同学不一定都能参加)?(1)每人只参加一项,每项人数不限;(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加的项目不限.解:(1)每人都可以从三个竞赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得不同的报名方法共有36=729(种).(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).(3)每人参加的项目不限,因此每一个项目都可以从这六名同学中选出一人参赛,根据分步乘法计数原理,可得不同的报名方法共有63=216(种).1.利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.2.分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.考 点 三两个基本计数原理的综合应用考向 1与数字有关的问题例1 用0,1,2,3,4,5,6这7个数字可以组成________个无重复数字的四位偶数(用数字作答).要完成的“一件事”为“组成无重复数字的四位偶数”,所以千位数字不能为0,个位数字必须是偶数,且组成的四位数中四个数字不重复,因此应先分类,再分步.第1类,当千位数字为奇数,即取1,3,5中的任意一个时,个位数字可取0,2,4,6中的任意一个,再依次取百位、十位数字.共有3×4×5×4=240(种)取法.第2类,当千位数字为偶数,即取2,4,6中的任意一个时,个位数字可以取除首位数字的任意一个偶数数字,再依次取百位、十位数字.共有3×3×5×4=180(种)取法,共可以组成240+180=420(个)无重复数字的四位偶数.答案:420例2 如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是( )A.60B.48C.36D.242与几何有关的问题B B 一个长方体的面可以和它相对的面上的4条棱和两条对角线组成6个“平行线面组”,一共有6个面,共有6×6=36(个).长方体的每个对角面有2个“平行线面组”,共有6个对角面,一共有6×2=12(个).根据分类加法计数原理知共有36+12=48(个).例3 学习涂色能锻炼手眼协调能力,更能提高审美能力.现有四种不同的颜色:湖蓝色、米白色、橄榄绿、薄荷绿,欲给图中的小房子中的四个区域涂色,要求相邻区域不涂同一颜色,且橄榄绿与薄荷绿也不涂在相邻的区域内,则共有________种不同的涂色方法.3涂色与种植问题答案:66利用两个计数原理解题时的三个注意点(1)当题目无从下手时,可考虑要完成的这件事是什么,即怎样做才算完成这件事.(2)分类时,标准要明确,做到不重不漏,有时要恰当画出示意图或树状图.(3)对于复杂问题,一般是先分类再分步.训练1 (2024·临汾第一次适应考)如图,现要对某公园的4个区域进行绿化,有5种不同颜色的花卉可供选择,要求有公共边的两个区域不能用同一种颜色的花卉,则共有________种不同的绿化方案.(用数字作答)如图,从A开始摆放花卉,A有5种颜色花卉摆放方法,B有4种颜色花卉摆放方法,C有3种颜色花卉摆放方法;由D与B,C的花卉颜色不一样,与A的花卉颜色可以同色也可以不同色,则D有3种颜色花卉摆放方法.故共有5×4×3×3=180(种)不同的绿化方案.答案:180训练2 (2024·南平质检)甲与其他四位同事各有一辆私家车,车牌尾数分别是9,0,2,1,5,为遵守当地某月5日至9日5天的限行规定(奇数日车牌尾数为奇数的车通行,偶数日车牌尾数为偶数的车通行),五人商议拼车出行,每天任选一辆符合规定的车,但甲的车最多只能用一天,则不同的用车方案种数为________.5日至9日,日期尾数分别为5,6,7,8,9,有3天是奇数日,2天是偶数日,第一步,安排偶数日出行,每天都有2种选择,共有2×2=4(种)用车方案;第二步,安排奇数日出行,分两类,第一类,选1天安排甲的车,另外2天安排其他车,有3×2×2=12(种)用车方案,第二类,不安排甲的车,每天都有2种选择,共有23=8(种)用车方案,共计12+8=20(种)用车方案.根据分步乘法计数原理可知,不同的用车方案种数为4×20=80.答案:8003限时规范训练(七十三)A 级 基础落实练1.已知某公园有4个门,从一个门进,另一个门出,则不同的走法的种数为( )A.16B.13C.12D.10C C 将4个门编号为1,2,3,4,从1号门进入后,有3种出门的方式,共3种走法,从2,3,4号门进入,同样各有3种走法,不同走法共有4×3=12(种).2.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时B 要求每位教师不能在本班监考,则不同的监考方法有( )A.8种B.9种C.10种D.11种B 设四位监考教师分别为A,B,C,D,所教班级分别为a,b,c,d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c,d时,也分别有3种不同方法.由分类加法计数原理可知,共有3+3+3=9(种)不同的监考方法.3.如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.9B B 分两步,第一步,从E →F ,有6条可以选择的最短路径;第二步,从F →G ,有3条可以选择的最短路径.由分步乘法计数原理可知有6×3=18(条)可以选择的最短路径.4.从0,1,2,3,4,5这六个数字中,任取两个不同的数字相加,其D 和为偶数的不同取法的种数为( )A.30B.20C.10D.6D 从0,1,2,3,4,5这六个数字中任取两个不同的数字的和为偶数可分为两类:第一类,取出的两个数都是偶数,有0和2,0和4,2和4,共3种不同的取法;第二类,取出的两个数都是奇数,有1和3,1和5,3和5,共3种不同的取法.由分类加法计数原理得,共有3+3=6(种)不同的取法.5.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数D 成等比数列,这样的等比数列的个数为( )A.3B.4C.6D.8D 以1为首项的等比数列为1,2,4;1,3,9;以2为首项的等比数列为2,4,8;以4为首项的等比数列为4,6,9;把这四个数列顺序颠倒,又得到4个新数列,所以所求的数列共有2×(2+1+1)=8(个).6.如图所示,积木拼盘由A,B,C,D,E五块积木组成,若每块积木都要涂一种颜色,且为了体现拼盘的特色,相邻的区域需涂不同的颜色(如:A与B为相邻区域,A与D为不相邻区域),现有五种不同的颜色可供挑选,则不同的涂色方法的种数是( )A.780B.840C.900D.960D D 先涂A,则A有5种涂法,再涂B,因为B与A相邻,所以B的颜色只要与A不同即可,有4种涂法,同理C有3种涂法,D有4种涂法,E有4种涂法,由分步乘法计数原理,可知不同的涂色方法种数为5×4×3×4×4=960.7.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,三位同学按甲、乙、丙的顺序依次选一个作为礼物,如果让三位同学选取的礼物都满意,那么不同的选法有( )B A.360种B.50种C.60种D.90种B 第一类:甲同学选择牛,乙有2种选法,丙有10种选法,选法有1×2×10=20(种);第二类:甲同学选择马,乙有3种选法,丙有10种选法,选法有1×3×10=30(种),所以共有20+30=50(种)选法.8.(2024·宿州模拟)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与C 含有四个顶点的平面构成的“正交线面对”的个数为( )A.12B.24C.36D.48C 第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).9.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数的个数是________.因为a+b i为虚数,所以b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36(个)虚数.答案:3610.乘积(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)展开后的项数为________.从第一个括号中选一个字母有3种方法,从第二个括号中选一个字母有4种方法,从第三个括号中选一个字母有5种方法,故根据分步乘法计数原理可知共有N=3×4×5=60(项).答案:60。
人教A 版,高中数学,选修2-31.1分类加法计数原理与分步乘法计数原理课本第6页,练习1.填空:(1)一件工作可以用2种方法完成,有5人只会用第1种方法完成,另有4人只会用第2种方法完成,从中选出1人来完成这件工作,不同选法的种数是 。
(2)从A 村去B 村的道路有3条,从B 村去C 村的道路有2条,从A 村经B 村去C 村,不同路线的条数是 。
【解析】(1)分类加法计数原理要完成的“一件事情”是“选出1人完成工作”,不同的选法种数是5+4=9;(2)分步乘法计数原理要完成的“一件事情”是“从A 村经B 村到C 村去”,不同路线条数是3×2=6。
2.现有高一年级的学生3名,高二年级的学生5名,高三年级的学生4名,问:(1)从中任选1人参加接待外宾的活动,有多少种不同的选法?(2)从3个年级的学生中各选1人参加接待外宾的活动,有多少种不同的选法?【解析】(1)分类加法计数原理要完成的“一件事情”是“选出1人参加活动”,不同的选法种数是3+5+4=12;(2)分步乘法计数原理要完成的“一件事情”是“从3个年级的学生中各选1人参加活动”,不同选法种数是3×5×4=60。
3.在例1中,如果数学也是A 大学的强项专业,则A 大学共有6个专业可以选择,B 大学共有4个专业可以选择,那么用分类加法计数原理,得到这名同学可能的专业选择种数为6410+=。
这种算法有什么问题?【解析】因为要确定的是这名同学的专业选择,并不要考虑学校的差异,所以应当是6+4-1=9(种)可能的专业选择。
课本第10页,练习1.乘积12312312345()()()a a a b b b c c c c c ++++++++展开后共有多少项?【解析】分步乘法计数原理要完成的“一件事情”是“得到展开式的一项”。
由于每一项都是i j k a b c 的形式,所以可以分三步完成:第一步,取i a ,有3种方法;第二步,取j b ,有3种方法;第三步,取k c ,有5种方法。
高中数学第一章计数原理1.1分类加法计数原理和分步乘法计数原理3课堂导学案新人教A版选修1、1 分类加法计数原理与分步乘法计数原理3课堂导学三点剖析一、“分类”与“分步”是区分两个计数原理的唯一标准【例1】某同学有若干本课外参考书,其中外语5本,数学6本,物理2本,化学3本,他欲带参考书到图书馆看书、(1)若从这些参考书中带一本去图书馆,有多少种不同的带法?(2)若外语、数学、物理和化学参考书各带一本,有多少种不同的带法?(3)若从这些参考书中选2本不同学科的参考书带到图书馆,有多少种不同的带法?思路分析:(1)中“带一本参考书”应运用加法原理;(2)中“各带一本参考书”应运用乘法原理;(3)中“第2本不同学科的书”应分情况讨论,具有综合性、解析:(1)要完成的事是“带一本参考书”,由于无论带哪一学科的书都完成了这件事,因此是分类问题,应用加法原理得5+6+2+3=16(种)不同的带法、(2)要完成的事是“外语、数学、物理和化学各带一本”、因此,选一个学科中的一本书只完成了这件事的一部分,只有几个学科的书都选定了之后,才完成这件事,因此是分步计数问题,应用乘法原理,有5623=180(种)不同的带法、(3)要完成的事是“带2本不同学科的书”,因此要分情况考虑,即先考虑是带哪两个学科的书,如带外语、数学各一本,则选一本外语书或选一本数学书都只完成了这一件事的一部分,因此要用乘法原理,即有56=30种选法、同样地,外语、物理各选一本,有52=10种选法、选外语、化学各一本有53=15种选法……,从而上述每种选法都完成了这件事、因此这些选法种数之间还应用加法原理,共有56+52+53+62+63+23=91(种)二、两个计数原理的综合应用分类和分步的先后问题【例2】从1到200的自然数中,各个数位上都不含数字8的自然数有多少个?分析:由题设条件要先分类,第一类考虑一位数中有多少不含数字8的自然数;第二类考虑两位数中有多少个不含数字8的自然数,此类中又要分个数和位数两步,即要分步;第三类考虑三位数中有多少个不含数字8,也要分个位、位、百位三步、故应先用分类计数原理,在每一类中需要分步的再用分步计数原理求解、解析:由题意分三类解决,第一类:一位数中有8个大于0且不含数字8的自然数、第二类:两位数中有多少不含数字8的自然数,此类需要分两步,第一步:个位上除8之外有9种选法,第二步:位数上除0和8之外有8种选法,要根据分步计数原理,得第二类数中有89=72(个)数符合要求、第三类:三位数中有多少不含数字8的自然数,此类需要分两个小类,一类是百位数为1的三位数,此类需分三步,第一步:个位上除8之外有9种选法;第二步:位数上除8之外有9种选法;第三步:百位数为1,有1种选法、根据分步计数原理,得此类数中有99=81(个)数符合要求、另一类是百位数为2的三位数,即200,就是1个,由分类计数原理得此时第三类的三位数中有81+1=82(个)不含数字8的自然数、故先用分类计数原理再结合分步计数原理,得从1到200的自然数中各个数位上都不含数字8的自然有N=8+72+82=162(个)、三、用两个计数原理解题时,要注意化归思想和分类讨论思想的使用【例3】求与正四面体四个顶点距离之比为1∶1∶1∶2的平面的个数、解析:设正四面体的顶点为A,B,C,D,到这四个点距离之比为1∶1∶1∶2的平面α有两类:(1)点A,B,C在平面α的同侧,有2个(如图)、①②(2)点A,B,C在平面α的两侧,有6个(如图)、① ② ③ ④ ⑤ ⑥转换点A,B,C,D,共可得48=32个平面、各个击破【类题演练1】已知集合M={-3,-2,-1,0,1,2},P(a,b)是平面上的点,a,b∈M:(1)P(a,b)可表示平面上多少个不同的点?(2)P(a,b)可表示多少个坐标轴上的点?解析:(1)完成这件事分成两个步骤:a 的取法有6种,b的取法也有6种,∴P点个数为:N=66=36(个)(2)完成这件事可分三类:x轴上(不含原点)有5个;y轴上(不含原点)有5个;既在x轴上,又在y轴上的点即原点也适合,∴共有N=5+5+1=11(个)【变式提升1】甲厂生产的收音机外壳形状有3种,颜色有4种,乙厂生产的收音机外壳形状有4种,颜色有5种、这两厂生产的收音机仅从外壳的形状和颜色看,共有多少种不同的品种?解析:分两类:一类是甲厂生产的有34种,一类是乙厂生产的有45种,根据加法原理共有34+45=32种、【类题演练2】将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端点颜色不同;如果只有红、黄、蓝、绿、黑5种颜色可供使用,求不同的染色方法总数、解析:如图所示,四棱锥P-ABCD 中,第一步先将侧面PAB上的三点P、A、B染色,由于只有5种颜色且具有同一条棱上的两端点颜色不同,再分三个步骤共有543=60(种)染法、其次,当P、A、B用三种不同的颜色染好后,不妨设分别染的是P红、A 黄、B蓝、若点C染黄色,则D可染蓝、绿、黑,即有3种染法、若点C染绿色,则D可染蓝、黑,即有2种染法、若点C染黑色,则D可染蓝、绿,即有2种染法、故第二步C和D还有7种染法、最后,由分步计数原理,得共有607=420(种)染法、【变式提升2】同室四人各写一张贺卡,先集中起来,然后每人从中拿一张别人送出的贺卡,则四张贺卡的不同分配方式有( )A、6种B、9种C、11种D、23种解析:记四人为甲、乙、丙、丁,则甲送出的卡片可以且只可以由其他的三人之一收到、故有3种分配方式;以乙收到为例,其他人收到卡片的情况可分为两类:第一类:甲收到乙送出的卡片,这时,丙、丁只有互送卡片一种分配方式、第二类:甲收到的不是乙送出的卡片,这时,甲收到卡片的方式有2种(分别为丙和丁送出的),对于每一种情形,丁收到卡片的方式只有一种、因此,根据分类与分步计数原理,得不同的分配方式数为:3(1+2)=9、答案:B【类题演练3】在坐标平面上画出63条直线:y=b,y=+2b,y=+2b,其中b=-10,-9,-8, …,-1,0,1,…8,9,10,这些直线将平面切成若干个等边三角形,其中边长为的等边三角形有多少个?解析:6条最外面的直线围成一个边长为的正六边形,穿过原点O的三条直线将这六边形分成6个边长为的等边三角形、因为每个这样的大三角形的边长是小三角形边长的10倍,且每个大三角形被分成102个小三角形,所以正六边形内部共有边长为的小三角形为6102=600(个)、另外,与正六边形每条边相邻的外部都有10个边长为的小三角形(如图)、故边长为23的等边三角形的个数为N=6102+610=660、【变式提升3】某赛季足球比赛的计分规则是:胜一场,得3分;平一场得1分;负一场是0分、一球队打完15场,积33分、若不考虑顺序,该队胜、负、平的情形共有( )A、3种B、4种C、5种D、6种解析:设该队胜x场,平y场,负z场,则x,y,z是非负整数,且因为不考虑胜、平、负的顺序,所以问题转化为求此方程组的不同非负整数解的组数、由②得,y=3(11-x),代入①式,得z=2(x-9)、由0≤y≤15,0≤z≤15,可知因为x是非负整数,所以这个不等式的解为9≤x≤11,即x最多只能取9,10,11三个值,对应的y值也只能取6,3,0三个值,对应的z值也只能取0,2,4三个值、从而①②组成的方程组有且只有三组的非负整数解,选A、。
1.1分类加法计数原理与分步乘法计数原理(第一课时)教学设计一、教学内容解析(一)教材的地位和作用本节课是人教版《数学》选修2-3第一章第一节(第一课时)。
分类加法计数原理与分步乘法计数原理是人类在大量的实践经验的基础上归纳出的基本规律,是解决计数问题的最基本、最重要的方法,它们不仅是推导排列数、组合数计算公式的依据,而且其基本思想方法也贯穿在解决本章应用问题的始终,在本章中是奠基性的知识。
返璞归真的看两个原理,它们实际上是学生从小学就开始学习的加法运算与乘法运算的推广,它们是解决计数问题的理论基础。
从思想方法的角度看,运用分类加法计数原理解决问题是将一个复杂问题分解为若干“类别”,然后分类解决,各个击破;运用分步乘法计数原理是将一个复杂问题的解决过程分解为若干“步骤”,先对每个步骤进行细致分析,再整合为一个完整的过程。
这样做的目的是为了分解问题、简化问题。
由于排列、组合及二项式定理的研究都是作为两个计数原理的典型应用而设置的,因此,理解和掌握两个计数原理,是学好本章内容的关键。
(二)教学目标1.通过实例,能归纳总结出分类加法计数原理和分步乘法计数原理,经历从特殊到一般的思维过程,进一步提高学生学习数学、研究数学的兴趣;2.掌握分类加法计数原理与分步乘法计数原理,能说明两个计数原理的不同之处,能根据具体问题的特征、选择恰当的原理解决一些简单的实际问题,体现数学实际应用和理论相结合的统一美,经历从特殊到一般的思维过程;3.经历由实际问题推导出两个原理,再回归实际问题的解决这一过程,体会数学源于生活、高于生活、用于生活的道理,让学生体验到发现数学、运用数学的过程。
(三)教学重点与难点重点:归纳地得出分类加法计数原理和分步乘法计数原理,能应用它们解决简单的实际问题。
难点:正确地理解“完成一件事情”的含义;根据实际问题的特征、正确地区分“分类”或“分步”。
二、学生学情分析:1.认知基础:在学习必修2 “古典概型”时突出了树形图、列举法在计数中的作用;在学习和生活中,我们会不自觉地使用“分类”和“分步”的方法来思考解决问题。
1.1 分类加法计数原理与分步乘法计数原理第三课时教学目标知识与技能分类加法计数原理和分步乘法计数原理的应用.过程与方法通过对简单实例的分析概括,总结分类加法计数原理和分步乘法计数原理的应用的方法.情感、态度与价值观引导学生形成“自主学习”与“合作学习”等良好的学习方式,培养学生的抽象概括能力和分类讨论能力.重点难点教学重点:分类加法计数原理和分步乘法计数原理的应用.教学难点:分类加法计数原理和分步乘法计数原理的应用.教学过程复习回顾提出问题1:有四位同学参加三项不同的比赛,(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项比赛只许一位同学参加,有多少种不同的结果?提出问题2:设集合A={a,b,c,d,e,f},B={x,y,z},则从集合A到B共有多少个不同的映射?活动设计:请同学分析思路和解法依据,再请另外的同学补充.活动成果:问题1.(1)分四步,每位同学选一个项目为一步,每位同学有三种选择,即每步有三种不同的方法,根据分步乘法计数原理,四位同学共有参赛方法:3×3×3×3=81种;(2)分三步,每项比赛选择一名同学参加为一步,每项比赛被选择的方法有四种,即每步有四种不同的方法,根据分步乘法计数原理,三项比赛共有参赛方法:4×4×4=64种.问题2.分6步:先选a的象,有3种可能,再选b的象也是3种可能,…,最后选f 的象也有3种可能,由分步乘法计数原理知,共有36=729种不同的映射.设计意图:通过两个简单的问题,引导学生回顾分类加法计数原理和分步乘法计数原理.提出问题3:请同学们回忆推广的两个原理的内容,并回忆两个原理的区别与联系.活动设计:教师提问,学生回答,请不同的同学加以补充.活动成果:1.分类加法计数原理:完成一件事,有n类不同的方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理:完成一件事,需要n个不同的步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N =m1×m2×…×m n种不同的方法.3.分类加法计数原理和分步乘法计数原理的区别与联系:(1)相同点:都是回答有关完成一件事的不同方法种数的问题;(2)不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,只完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.设计意图:检查学生对两个原理的掌握情况,为本节课的学习提供知识和方法基础.典型示例例1计算机编程人员在编写好程序以后要对程序进行测试.程序员需要知道到底有多少条执行路径(即程序从开始到结束的路线),以便知道需要提供多少个测试数据.一般地,一个程序模块由许多子模块组成,它是一个具有许多执行路径的程序模块.问:这个程序模块有多少条执行路径?另外为了减少测试时间,程序员需要设法减少测试次数,你能帮助程序员设计一个测试方式,以减少测试次数吗?思路分析:整个模块的任意一条路径都分两步完成:第1步是从开始执行到A点;第2步是从A点执行到结束.而第1步可由子模块1或子模块2或子模块3来完成;第二步可由子模块4或子模块5来完成.因此,分析一条指令在整个模块的执行路径需要用到两个计数原理.解:由分类加法计数原理,子模块1或子模块2或子模块3中的子路径条数共为18+45+28=91;子模块4或子模块5中的子路径条数共为38+43=81.又由分步乘法计数原理,整个模块的执行路径条数共为91×81=7 371.在实际测试中,程序员总是把每一个子模块看成一个黑箱,即通过只考察是否执行了正确的子模块的方式来测试整个模块.这样,他可以先分别单独测试5个模块,以考察每个子模块的工作是否正常.总共需要的测试次数为18+45+28+38+43=172.再测试各个模块之间的信息交流是否正常,需要测试的次数为3×2=6.如果每个子模块都正常工作,并且各个子模块之间的信息交流也正常,那么整个程序模块就工作正常.这样,测试整个模块的次数就变为172+6=178.点评:通过这个例题,我们发现,先分类再分步计数,比先分步再分类计数,在技术次数上要少很多.例2随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需要扩容.交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有3个不重复的英文字母和3个不重复的阿拉伯数字,并且3个字母必须合成一组出现,3个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?思路分析:按照新规定,牌照可以分为两类,即字母组合在左和字母组合在右.确定一个牌照的字母和数字可以分六个步骤.解:将汽车牌照分为两类,一类的字母组合在左,另一类的字母组合在右.字母组合在左时,分六个步骤确定一个牌照的字母和数字:第一步,从26个字母中选1个,放在首位,有26种选法;第二步,从剩下的25个字母中选1个,放在第二位,有25种选法;第三步,从剩下的24个字母中选1个,放在第三位,有24种选法;第四步,从10个数字中选1个,放在第四位,有10种选法;第五步,从剩下的9个数字中选1个,放在第五位,有9种选法;第六步,从剩下的8个数字中选1个,放在第六位,有8种选法.根据分步乘法计数原理,字母组合在左的牌照个数为26×25×24×10×9×8=11 232 000.同理,字母组合在右的牌照个数也是11 232 000.所以,共能给11 232 000+11 232 000=22 464 000辆汽车上牌照.点评:先分类再分步使得问题变得简单,如果先分步再分类则显得无从下手.理解新知提出问题1:根据以上问题的解决过程,你能归纳一下用分类加法计数原理和分步乘法计数原理解决计数问题的方法吗?活动设计:分组讨论后,举手发言,教师请不同的同学加以补充.活动成果:用两个计数原理解决计数问题时,最重要的是在开始计算之前要进行仔细的分析——需要分类还是需要分步.分类要做到“不重不漏”.分类后再对每一类进行计数,最后用分类加法计数原理求和,计算总数.分步要做到“步骤完整”——完成了所有步骤,恰好完成任务,当然步与步之间要相互独立.分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.设计意图:引导学生总结方法,进一步加深对两个原理的理解.提出问题2:乘法运算是特定条件下加法运算的简化,你认为,分步乘法计数原理和分类加法计数原理具有怎样的关系?你得到什么启示?活动设计:分组讨论后,举手发言,教师请不同的同学加以补充.活动成果:分步乘法计数原理是分类加法计数原理的简化,所以在解决问题时分类是根本,分步起到简化的作用.设计意图:进一步加深对两个原理的理解,确立分类的主题方法地位.【巩固练习】1.如图,从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通.从甲地到丙地共有多少种不同的走法?解:从总体上看,由甲到丙有两类不同的走法:第一类,由甲经乙去丙,又需分两步,所以m1=2×3=6种不同的走法;第二类,由甲经丁去丙,也需分两步,所以m2=4×2=8种不同的走法;所以从甲地到丙地共有N=6+8=14种不同的走法.2.求下列集合的元素个数.(1)M={(x,y)|x,y∈N,x+y≤6};(2)H={(x,y)|x,y∈N,1≤x≤4,1≤y≤5}.解:(1)分7类:①x=0,y有7种取法;②x=1,y有6种取法;③x=2,y有5种取法;④x=3,y有4种取法;⑤x=4,y有3种取法;⑥x=5,y有2种取法;⑦x=6,y 只有1种取法.因此M共有7+6+5+4+3+2+1=28个元素.(2)分两步:①先选x,有4种可能;②再选y,有5种可能.由分步乘法计数原理,H 共有4×5=20个元素.【变练演编】用0,1,2,3,4,5这六个数字,(1)可以组成多少个无重复数字的三位数?(2)可以组成多少个不同的三位数?(3)可以组成多少个无重复数字的三位的奇数?(4)可以组成多少个无重复数字的小于1 000的自然数?(5)可以组成多少个大于3 000,小于5 421的无重复数字的四位数?解:(1)解法一:分三步:①先选百位数字.由于0不能作百位数,因此有5种选法;②十位数字有5种选法;③个位数字有4种选法.根据分步乘法计数原理知所求不同三位数共有5×5×4=100个.解法二:分两类:第一类,选择0.分三步:①先确定0的位置,有2种选法;②确定百位数字,有5种选法;③确定剩下的一位数字,有4种选法.根据分步乘法计数原理,这一类共有2×5×4=40个数.第二类:不选0.分三步:①先选百位数字,有5种选法;②十位数字有4种选法;③个位数字有3种选法.根据分步乘法计数原理知,这一类共有5×4×3=60个数.根据分类加法计数原理,共有40+60=100个数.解法三:排除法若不考虑0的特殊性,共有6×5×4=120种不同的排法,其中0在百位的有5×4=20种排法,所以三位数共有120-20=100个.(2)解法一:分三步:①先选百位数字.由于0不能作百位数,因此有5种选法;②十位数字有6种选法;③个位数字有6种选法.根据分步乘法计数原理知所求不同三位数共有5×6×6=180个.解法二:排除法若不考虑0的特殊性,共有6×6×6=216种不同的排法,其中0在百位的有6×6=36种排法,所以三位数共有216-36=180个.(3)解法一:分三步:①先选个位数字,有3种选法;②再选百位数字,有4种选法;③选十位数字也是4种选法,所求三位奇数共有3×4×4=48个.解法二:分两类:第一类,首位选奇数;第二类,首位不选奇数.第一类分三步,先确定百位数字,有3种选择;第二步,确定个位数字,有2种选择;第三步,确定十位数字,有4种选择.根据分步乘法计数原理,这一类共有3×2×4=24个不同的奇数.第二类分三步,先确定百位数字,有2种选择;第二步,确定个位数字,有3种选择;第三步,确定十位数字,有4种选择.根据分步乘法计数原理,这一类共有2×3×4=24个不同的奇数.根据分类加法计数原理,共有24+24=48个不同的奇数.(4)分三类:①一位数,共有6个;②两位数,共有5×5=25个;③三位数共有5×5×4=100个.因此,比1 000小的自然数共有6+25+100=131个.(5)分4类:①千位数字为3,4之一时,共有2×5×4×3=120个;②千位数字为5,百位数字为0,1,2,3之一时,共有4×4×3=48个;③千位数字是5,百位数字是4,十位数字为0,1之一时,共有2×3=6个;④还有5 420也是满足条件的1个.故所求自然数共120+48+6+1=175个.点评:排数字问题是最常见的一种题型,要特别注意首位不能排0.【达标检测】1.集合A={1,2,-3},B={-1,-2,3,4},从A,B中各取一个元素作为点P(x,y)的坐标,(1)可以得到多少个不同的点?(2)这些点中,位于第一象限的有几个?2.有三个车队分别有5辆、6辆、7辆车,现欲从其中两个车队各抽调一辆车外出执行任务,有多少种不同的抽调方案?答案:1.(1)24 (2)8 2.107课堂小结1.知识收获:分类加法计数原理和分步乘法计数原理的综合应用,使用两个原理应注意的问题和方法.2.方法收获:解决计数问题时先分类后分步的方法.3.思维收获:化归思想、分类讨论思想.补充练习【基础练习】1.某城市的电话号码,由六位升为七位(首位数字均不为0),则该城市可以增加的电话部数是________.2.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,可组成不同的二次函数共有________个,其中不同的偶函数共有________个.3.等腰三角形的三边均为正整数,且其周长不大于10,这样的不同形状的三角形的种数为________种.4.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.(1)若从这些书中任取一本,有多少种不同的取法?(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?答案:1.8.1×106 2.18 6 3.10 4.(1)14 (2)90 (3)63【拓展练习】5.在3 000至8 000之间有多少个无重复数字的奇数?6.某电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?答案:5.123 2 6.212 00设计说明本节课由浅入深给不同层次的学生都提供了一个理解的平台,而此时作为教师重点要做好的是帮助学生掌握解这一类型题目时的分析思路和步骤,若有学生在解题分析时不很清楚,教师要及时地进行归纳小结,能够使学生在应用两个计数原理时思路进一步清晰和明确,从而在学生的记忆中逐步建立起一个完整的认知结构.本节课的主要特点是引导学生进行实例分析、自主探究、归纳总结.备课资料例1一蚂蚁沿着长方体的棱,从其中的一个顶点爬到相对的另一个顶点的最近路线共有多少条?解:从总体上看,如图,蚂蚁从顶点A爬到顶点C1有三类方法,从局部上看每类又需两步完成,所以,第一类,m1=1×2=2条;第二类,m2=1×2=2条;第三类,m3=1×2=2条.所以,根据分类加法计数原理,从顶点A到顶点C1的最近路线共有N=2+2+2=6条.例2如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?解:按地图A、B、C、D四个区域依次分四步完成,第一步,m1=3种,第二步,m2=2种,第三步,m3=1种,第四步,m4=1种,所以根据分步乘法计数原理,得到不同的涂色方案共有N=3×2×1×1=6种.例3将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个格子的标号与所填的数字均不同的填法有多少种?解:1号方格里可填2,3,4三个数字,有3种填法.1号方格填好后,再填与1号方格内数字相同的号的方格,又有3种填法,其余两个方格只有1种填法.所以共有3×3×1=9种不同的方法.例4某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有多少种?(以数字作答)解:从题意来看6部分种4种颜色的花,又从图形看知必有2组同颜色的花,从同颜色的花入手分类求.(1)②与⑤同色,则③⑥也同色或④⑥也同色,所以共有N1=4×3×2×2×1=48种;(2)③与⑤同色,则②④或⑥④同色,所以共有N2=4×3×2×2×1=48种;(3)②与④且③与⑥同色,则共有N3=4×3×2×1=24种.所以,共有N=N1+N2+N3=48+48+24=120种.。