2019届高考理科数学第一轮总复习检测10
- 格式:doc
- 大小:297.00 KB
- 文档页数:9
……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………湛江一中2019届高三理科数学周二测试卷命题:何敏华 做题:李小林 审题:柯梅清一、单选题(共12题,每题5分,满分60分)1.如图所示的几何体,关于其结构特征,下列说法不.正确的是( ) A . 该几何体是由两个同底的四棱锥组成的几何体 B . 该几何体有12条棱、6个顶点C . 该几何体有8个面,并且各面均为三角形D . 该几何体有9个面,其中一个面是四边形,其余均为三角形2.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( ) A . 若α⊥β,m ⊂α,n ⊂β,则m⊥n B . 若m⊥α,m∥n,n∥β,则α⊥β C . 若m⊥n,m ⊂α,n ⊂β,则α⊥β D . 若α∥β,m ⊂α,n ⊂β,则m∥n3.“九章算术”是我国古代数学名著,在“九章算术”中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,若某“阳马”的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该“阳马”的表面积为( ) A .21+B .221+C .22+D .222+4.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑,若三棱锥P ABC -为鳖臑, PA ⊥平面,3,4,5ABC PA AB AC ===,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为( ) A . 17π B . 25π C . 34π D . 50π5.已知三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SA⊥平面ABC ,AB⊥BC 且AB=BC=1,2,则球O 的表面积是( ) A . 4π B .34π C . 3π D . 43π 6.三棱锥S-ABC 中,SA BC ⊥,SC AB ⊥则S 在底面ABC 的投影一定在三角形ABC 的( ) A . 内心 B . 外心 C . 垂心 D . 重心……○…………外…………○…………装…………○…………订…………○…………线…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………A .623 B . 27 C .67D .4 8.下列各图是正方体或正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点中不.共面..的一个图是( )A. B. C. D. 9.一个几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积为A .B .C .D .10.如图,在直三棱柱ABC-A 1B 1C 1中,∠BCA=900,点D 1和F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,则BD 1与AF 1所成角的余弦值是( )A .B .C .D .11.下面是某几何体的视图,则该几何体的体积为( ) A .37 B .38 C .39 D .310……○…………外…………○…………装…………○…………订…………○…………线…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线………… A .451π B .241πC . π41D .π31二、填空题(共4题,每题5分,满分20分)13.设m,n 是两条不重合的直线,βα,是两个不同的平面,有下列四个命题: ①若m βαβα//,,⊂⊂n ,则m//n ;②若n m n m //,,βα⊥⊥则βα//; ③若,,,n m n m ⊥⊥⊥βα则βα⊥; ④若α⊂n n m ,//,则α//m .则正确的命题(序号)为____________.14.已知直三棱柱ABC-A 1B 1C 1中,AB=3,AC=4,AB ⊥AC ,AA 1=2,则该三棱柱内切球的表面积与外接球的表面积的和为______ .15.如图,已知三棱锥O-ABC ,OA=OB=OC=1,︒=∠=∠60BOC AOB ,︒=∠90COA ,M 、N 分别是棱OA 、BC 的中点,则直线MN 与AC 所成的角的余弦值为__________.16.一个正方体纸盒展开后如图所示, 在原正方体纸盒中有如下结论 ①AB ⊥EF ;②AB 与CM 所成的角为60°; ③EF 与MN 是异面直线; ④MN ∥CD .以上四个命题中,正确命题的序号是 _________三.解答题(共3题,每题12分,满分36分)17.在直角坐标系xOy 中,已知直线⎩⎨⎧===ααsin cos 1t y t x l (t 为参数),⎪⎪⎩⎪⎪⎨⎧+=+==)4sin()4cos(2παπαt y t x l (t 为参数),其中)43,0(πα∈,以原点O 为极点,x 轴非负半轴为极轴,取相同长度单位建立极坐标系,曲线C 的极坐标方程为.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)写出l 1,l 2的极坐标方程和曲线C 的直角坐标方程;(2)设l 1,l 2分别与曲线C 交于点A ,B(非坐标原点),求|AB|的值.18.如图,已知四棱锥P-ABCD 中,平面PAD ⊥平面ABCD ,平面PCD ⊥平面ABCD ,E 为PB 上任意一点,O 为菱形ABCD 对角线的交点。
绝密★启用前六大注意1 考生需自己粘贴答题卡的条形码考生需在监考老师的指导下,自己贴本人的试卷条形码。
粘贴前,注意核对一下条形码上的姓名、考生号、考场号和座位号是否有误,如果有误,立即举手报告。
如果无误,请将条形码粘贴在答题卡的对应位置。
万一粘贴不理想,也不要撕下来重贴。
只要条形码信息无误,正确填写了本人的考生号、考场号及座位号,评卷分数不受影响。
2 拿到试卷后先检查有无缺张、漏印等拿到试卷后先检查试卷有无缺张、漏印、破损或字迹不清等情况,尽管这种可能性非常小。
如果有,及时举手报告;如无异常情况,请用签字笔在试卷的相应位置写上姓名、考生号、考场号、座位号。
写好后,放下笔,等开考信号发出后再答题,如提前抢答,将按违纪处理。
3 注意保持答题卡的平整填涂答题卡时,要注意保持答题卡的平整,不要折叠、弄脏或撕破,以免影响机器评阅。
若在考试时无意中污损答题卡确需换卡的,及时报告监考老师用备用卡解决,但耽误时间由本人负责。
不管是哪种情况需启用新答题卡,新答题卡都不再粘贴条形码,但要在新答题卡上填涂姓名、考生号、考场号和座位号。
4 不能提前交卷离场按照规定,在考试结束前,不允许考生交卷离场。
如考生确因患病等原因无法坚持到考试结束,由监考老师报告主考,由主考根据情况按有关规定处理。
5 不要把文具带出考场考试结束,停止答题,把试卷整理好。
然后将答题卡放在最上面,接着是试卷、草稿纸。
不得把答题卡、试卷、草稿纸带出考场,试卷全部收齐后才能离场。
请把文具整理好,放在座次标签旁以便后面考试使用,不得把文具带走。
6 外语听力有试听环外语考试14:40入场完毕,听力采用CD 播放。
14:50开始听力试听,试听结束时,会有“试听到此结束”的提示。
听力部分考试结束时,将会有“听力部分到此结束”的提示。
听力部分结束后,考生可以开始做其他部分试题。
2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
[机密 ]2019 年1月 25日前高 2019 届学业质量调研抽测(第一次)理科数学试题卷理科数学试题卷共6 页,考试时间 120 分钟,满分 150 分 .注意事项:1.答题前,考生务势必自己的姓名、准考据号填写在答题卡上 .2.作答时,务势必答案写在答题卡上,写在本试卷及底稿纸上无效 .3.考试结束后,将本试卷、答题卡一并回收.一、选择题:本大题共12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1. 已知会合 A ={ 1, 2 , m } , B ={ 3 , 4 } ,若 A ∪ B ={ 1, 2 , 3, 4 } ,则实数 m 为A. 1或 2B. 2 或 3C. 1或3 D. 3 或4 2. 命题 p : (2x)( x 1) 0 ;命题 q : 0 x 1.则命题 p 成立是命题 q 成立的A .必需不充足条件B .充足不用要条件C .充足必需条件D.既不充足也不用要条件3. 已知 15sincos(2) ,则 tan 2 =A .15 B.15 .15 157C8D .784. 甲、乙、丙、丁四位同学参加奥赛, 此中只有一位获奖, 有人走访了四位同学, 甲说: “是乙或丙获奖. ”乙说: “甲、 丙都未获奖. ”丙说: “我获奖了 . ” 丁说: “是乙获奖. ”已知四位同学的话只有一句是对的,则获奖的同学是A. 甲B. 乙C. 丙D. 丁5. 下表是我国某城市在 2018 年 1 月份至 10 月份各月最低温与最高温(° C )的数据表.月份 1 2 3 4 5 6 7 8 9 10 最高温5 9 9 11 17 24 27 30 31 21 最低温-12-31-271719232510理科数学试题 第 1 页(共 6页)已知该城市的各月最低温与最高温拥有有关关系,依据该表,则以下结论错误的选项是A.最低温与最高温为正有关B.每个月最高温与最低温的均匀值在前8 个月逐月增添开始a 2, t0t t aC.月温差(最高温减最低温)的最大值出此刻 1 月D.1 至 4 月的月温差(最高温减最低温)相对于7 至 10 月,颠簸性更大a1 6.如下图的程序框图,运转程序后,输出的a 的值为1 aA.1B.3C.4D.7t 3是347117.《莱茵德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把 120 个面包分给 5 个人,使每人所得成等差数列,且使许多的三份之和的1是较少的两份之和,则最少的一份面包个数为7A .2B .11C . 13D .468. 从 6 种不一样的颜色中选出一些颜色给如下图的 4 个格子涂色,每个格子涂一种颜色,且相邻的两个格子颜色不一样,则不一样的涂色方法有否输出a结束第 6 题图A.360种B.种C.种D.750种第 8 题图5106309.将函数f()2sin2x2cos 2x的图象向左平移个单位,获得 y g( x) 的图象,x66则以下说法正确的选项是.函数 g (x) 的最小正周期为2B.函数 g( x) 的最小值为1ACg (x) 的图象对于x对称D.函数 g( x)在2,上单一递减.函数6310. 已知函数f ( x)2x log 32x,若不等式 f (1) 3 成立,则实数m 的取值范围是2x m A.1,B.,1C. (0, 1)D. (1,1) 2211.已知抛物线C y22 px 的焦点F与双曲线4x24 y21的右焦点同样,过点 F 分别:3理科数学试题第 2 页(共 6页)作两条直线 l 1 , l 2 ,直线 l 1 与抛物线 C 交于 A , B 两点,直线 l 2 与抛物线 C 交于 D , E两点,若 l 1 与 l 2 的斜率的平方和为 1,则 | AB |+| DE | 的最小值为A . 16B. 20C . 24D. 3212. 如图,四边形 OABC 是边长为 1的正方形,OD 3 ,点 P 为 BCD 内(含界限)的动点,设 OPOCOD( ,R) ,则的最大值是54A . 1B.9CB420PC .3D. 17460OA第 12 题图D二、填空题:此题共4 个小题,每题5 分,共 20 分.把答案填写在答题卡相应地点上.13. 已知复数 z 1 1 2i , z 1 z 2 2 i ,则 z 1 z 2 __________.14. 在1 ) 9 (用数字作答).( xx 2 的睁开式中,常数项是15. 若直线 l :y kx2 2与曲线 C :3 2 225 交于 A ,B两点,则(x 2) ( y 3 2)AB 的最小值为.16. 已知函数 yf ( x) 和 y g( x) 的图象对于 y 轴对称,当函数 y f (x) 和 y g( x) 在区间 [ a ,b ] 上同时递加或许同时递减时, 把区间 [ a ,b ] 叫做函数 y f ( x) 的“不动区间” . 若区间 [ 1, 2 ] 为函数 f (x) 2x t 的“不动区间”,则实数t 的取值范围是.理科数学试题 第 3 页(共 6页)三、解答题:共70 分.解答时应写出必需的文字说明、演算步骤或推理过程.并答在答题卡相应的地点上.第17 题第21题为必考题,每个试题考生都一定做答.第 22 题第 23 题为选考题,考生依据要求作答.(一)必考题:共60 分.17. ( 本小题满分12 分)已知数列 { a} 的前n 项和为 S,n 1.S n22n n(Ⅰ)求数列 { a n } 的通项公式;(Ⅱ)令 b n(3n 1)a n,设数列 { b n } 的前 n 项和为 T n,求 T n.18. ( 本小题满分12 分)自来水企业对某镇居民用水状况进行检查,从该镇居民中随机抽取50户作为样本,得到他们 10月份的用水量(单位:吨),用水量分组区间为[5 , 15],( 15, 25] ,( 25,35] ,( 35, 45] ,由此获得样本的用水量频次散布直方图(如图).(Ⅰ)求 a 的值,并依据样本数据,试预计该镇居民10 月份用水量的众数与均匀值;(Ⅱ)以样本的频次作为概率,从该镇居民中随机抽取3户,此中10 月份用水量在[5 ,15] 内的用户数为X ,求 X 的散布列和数学希望.频次组距a0 515253545用水量(吨)第18 题图理科数学试题第 4 页(共 6页)19.( 本小题满分 12 分)如下图,一公园有一块三角形空地ABO ,此中 OA= 3km, OB = 3 3km,? AOB 90o .公园管理方拟在中间开挖一个三角形人工O湖 OMN ,此中 M , N 在边 AB 上( M , N 不与 A, B 重合,M 在 A, N 之间), 且 ? MON30o .B(Ⅰ)若 M 在距离 A 点 1km 处,求 OM 的长; AM N第 19 题图(Ⅱ)为节俭投入资本,三角形人工湖OMN 的面积要尽可能小.设 ? AOMq , 试确立 q 的大小,使 VOMN 的面积最小.20. ( 本小题满分12 分)如图,已知椭圆 C :x 2y 2 1 ,其左右焦点为 F 1( 2,0) 及 F 2 (2,0) ,过点 F 1 的直线交a 2b 2椭圆 C 于 A , B 两点,线段 AB 的中点为 G ,AB 的中垂线与 x 轴和 y 轴分别交于 D ,E两点,且 | AF 1 | 、 | F 1F 2 | 、 |AF 2 | 组成等差数列.yy(Ⅰ)求椭圆 C 的方程;AGF 1DG1 ,△ OED ( O 为原点)的面积D O(Ⅱ)记△的面积为 SxF 2F 1为 S 2 .试问:能否存在直线AB ,使得 S 1BEyS 2 ?请说明第 20 题图原因.21. ( 本小题满分 12 分)已知 a R ,函数 f ( x) ln( x 1) x 2ax 2 .(Ⅰ)若函数 f ( x) 在 [ 2,) 上为减函数,务实数a 的取值范围;理科数学试题 第 5 页(共 6页)(Ⅱ)设正实数m m m1 m21,求证:对 ( 1,) 上的随意两个实数x1x2 1、 2 知足、,总有 f (m1 x1m2 x2 )m1 f (x1 )m2 f ( x2 ) 成立.( 二)选考题:共10 分.请考生在第22 、23题中任选一题作答.如多做,则按所做的第一题计分 .22. 【选修 4-4 :坐标系与参数方程】( 本小题满分10 分)在直角坐标系 xoy 中,直线l的参数方程为x 1 t(t为参数)O为极点,at,以坐标原点y4x 轴正半轴为极轴成立极坐标系,曲线 C 的极坐标方程为24sin 5 0.( I )若点P的极坐标为1,,且点 P 在直线l上,求直线l 的直角坐标方程;( II )若直线l与曲线C交于A, B两点,当AB最小时,求直线l的极坐标方程.23.【选修 4-5 :不等式选讲】 ( 本小题满分 10 分)已知函数 f ( x) x 21x 1 .2( I )求函数f (x)的图象与x轴所围成的三角形的面积;(II )设函数f ( x)的最小值为M,若对于x的不等式x2x 2m M 有实数解,务实数m 的取值范围.高2019 届学业质量调研抽测(第一次)理科数学参照答案及评分建议一、选择题:1-5 DABDB 6-10 CADCD 11-12CD二、填空题:13.3 i,, 15 .2 5 ,16.[ 2,1 ].2三、解答题:理科数学试题第 6 页(共 6页)17.解: (I)当 n 2 时,利用公式 a n S n S n1,可得 a n2n,.................4分考证当 n 1 时是合适的,即a nnn N*)(..........................5分2;( II) T n b1 b2b3... b n22522823...(3n 1)2n,①2T n222523824...(3n1)2n +1, ② (7)分① - ②得:T n4322323 ...32 n(3 n1)2 n 1...........9分4 34(12n 1 )(3 n1)2n 18 (3n4)2n 1,12T n8 (3n4)2 n 1............................................12分18. 解:( I )由题意得,(0.02+0.032+ a +0.018 )× 10=1,解得a =0.03 ; ........2分由最高矩形中点的横坐标为20,可预计该镇居民10 月份用水量的众数约为20吨; .......................................................4 分50 户居民 10 月份用水量的均匀值为:x=0.2 ×10+0.32 × 20+0.3 × 30+0.18 × 40=24.6 (吨),故预计该镇居民10 月份每户用水量的均匀值约为吨. .. ............6 分(Ⅱ)利用样本预计整体,该镇居民10 月份用水量在 [5 , 15]内的概率为 0.2,则 X ~ B (3,1),X=0,1,2,3;50436*******;P( X 0) =C()=;P( X 1)=C()=35355125125=C241212; P( X3)313=1..............10分P( X 2)(5)=125= C(5)125 353∴ X 的散布列为:X0123 P6448121 125125125125理科数学试题第 7 页(共 6页)E( X)644821213..................12分013125512512512519. 解:(Ⅰ)在V ABO中,OA= 3,OB = 3 3,? AOB90o,? OAB60 o,.................................................2分在 VOAM中,由余弦定理得: OM 2 = AO 2 + AM 2 -2AO ?AM cos A 7 ,OM =7 ,..................................................5分(Ⅱ) ? AOM q,0o < q <60o,在 VOAM 中,由OM=OA,得 OM =33,sin 行OAB sin OMA2sin(q + 60o )在 VOAN 中,由ON=OA,得 ON 3 3 3 3,sin 行OAB sin ONA2sin(90 )2cos (8)分S =1OM 仔ONsin MON =1? 3 3 3 31V OMN2 2 2sin(60 )2cos2=27=2760 )cos cos8 3cos216sin(8sin=2743cos2 4 34sin 2=27,060.......................11分60 )438sin(2当 26090 ,即15时,27取最小值.60 )48sin(23应设计 ? AOM15o,可使 VOMN 的面积最小...................12分20.解:( I )|AF1|、|F1F2|、|AF2|组成等差数列,y2 a =| AF1 |+|AF2|=2|F1F2|=8,Ay a=4.....2分GD O又由于 c=2,因此b2=12, .....................3分F1F2xB E y理科数学试题第 8 页(共 6页)椭圆 C 的方程为x 2 y 2分161 . (4)12( II )假定存在直线 AB ,使得 SS ,明显直线 AB 不可以与x , y 轴垂直.设 AB 方12程为 yk( x 2) , (5)分将其代入 x2y 21,整理得 (4k 23)x 2 16k 2 x 16k 248 0 , (6)分16 12设 A,)B16k 2( x 1 y 1x 1 x 2,, ( x 2 , y 2 ) , 3 4k 2点 G 的横坐标为x 1 x 28k22,G8k22,6k2 ). (8)分23 4k(4k 4k3 3DG ⊥ AB ,6k2k 22k 23 4k 2 k1,解得 x D,即 D ( , 0) ,8k 23 4k 2 4k 2x D33 4k2∵ Rt △ GDF 1 和 Rt △ ODE 相像,∴若 S 1S 2 ,则 | GD |=| OD |, (10)分8k 22k 2 2 ) 2(6k )22k 2 2 ,整理得 8 k 2(34k 234k4k 2 3 4k +9=0.3方程 8 k 2 +9=0 无解, 不存在直线 AB ,使得 S 1S 2 . (12)分21. 解:( I )f ' (x)12xa, (1)分x 1函数 f ( x) 在 [ 2,) 上为减函数,即 f ' ( x)12x a 0在 [ 2,) 上恒成立,x11也即 a2x在 [2, ) 上恒成立, (3)分x 1令 h( x)2x1 ,则 h( x) 在 [ 2, ) 上为增函数, h(x)min = h(2) = 11 ,11x 1 3a分3 ; (5)理科数学试题 第 9 页(共 6页)( II )设1x1x2,令 F(x) f (m1 x m2 x2 ) m1 f(x) m2 f (x2 ) ,x ( 1, x2 ] ,则)0 ,(),F ' x) m1 f '( m1x m2 x2 ) m1 f '( x)m(1f '(m1x m2 x2 ) f '( x)F( x2m1 x m2 x2x x(m11)m2 x2m2 x m2 x2m2 ( x2x)0 ,m1x m2 x2x , (7)分又 f '( x)12x a ,1,x 1 f ''( x)( x 1)22 0f ' (x) 在 ( 1,) 上是减函数, f ' (m1x m2 x2 ) f ' (x) ,m(f '( m x m x) f '( x)) 0(0 ,......................9分11 2 2,即 F ' x)F( x) (1, x2]上是减函数,F( x) F ( x2 ) 0,在F( x)0 ,f ( m1x m2x2) m1f ( x) m2f ( x2) 0,...........................11分x ( 1, x2 ] ,有 f (m1x m2 x2 )m1 f (x)m2 f ( x2 ) ,又1x1x2,f (m1 x1m2x2) m1f ( x1) m2f ( x2).................................12分22.解:(I)由x1t(t为参数)l 的直角坐标方程为:y4a( x 1),..2分得,直线y4at由 P 的极坐标为1,得: P 的直角坐标为1,0 ............................3分,又点 P 在直线上,代入得a2,...............................................4分∴直线 l 的直角坐标方程为:y2x 2 .......................................5分( II )由24sin50 得曲线C 的直角坐标方程为:x2y 2 4 y50 ,即:x2( y 2)29. ..........................................................6分理科数学试题第 10 页(共 6页)∴曲线 C 的圆心为 M (0,2) ,半径 r 3. ............................................. 7 分 ∵直线 l : y 4 a( x 1) 过定点 N (1,4) ,且该点在圆 C 内 ,..........................8 分 ∴直线 l 与圆 C 交于 A, B 两点,当 AB 最小时 , 有 l MN , k l k MN 1,...............9 分 k l 1 0 1 直线 l 的直角坐标方程 y 4 1 ( x 1) 4 2 2 , 2 , 化为极坐标方程为: cos2 sin 9 0 . (10)分 23. 解:( I )原函数可化为:1 x 3(x 2) 2f ( x) 31( 2 x 2) , (3)x 分 2 1 x 3( x 2) 2 函数 f ( x) 的图象与 x 轴所围成的三角形三极点坐标分别为: ( 6,0),( 2, 2),( 2 ,0) 3,∴此三角形面积 S 12 6) 165分 ( 3 2.................................. 2 3 . ( II )由( I )知函数 f ( x) 的最小值 M = f ( 2) 2 , (6)分 ? 对于 x 的不等式 x 2 x 2m M 有实数解即 x 2 x 2m 2 有实数解, 即 2m x 2 x 2 有实数解 , .................................................8 分 令 h(x) x 2 x 2 , 当 x 1 时, h(x)min ( 1 ) 2 1 2 7 2 2 2 4 ,2m 7 , 即 m 7 . ........................................................ 10 分 4 8理科数学试题 第 11 页(共 6页)理科数学试题第 12 页(共 6页)。
2019届高三理科数学第一次大联考试题附答案姓名准考证号(在此卷上答题无效)绝密★启用前三湘名校教育联盟•2019届高三第一次大联考理科数学本试卷共4页。
全卷满分150分,考试时间120分钟。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={ <0},B={ >1},则=A. (1,3)B. (1,6)C. (2,3)D. (2,6)2.已知复数z满足,则其共轭复数的虚部为A.-2B.-1C.1D.23.设向量,则下列结论中正确的是A.a//bB.(a+b)丄bC.(a-b)丄bD.|a-b|=|b|4.已知x,y满足约束条件,则的最小值为A. B. 1 C. D.25.“”是“函数为奇函数”的A.充分不必要条件B. 必要不充分条件C. 充要条件D.既不充分也不必要条件6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为A.8B.16C.24D.487.设,则A. a<b〈cB. b<a<cC.c〈a〈bD. c<b〈a8.中国有个名句“运筹帷幄之中,决胜千里之外”。
其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如下表:表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位用纵式表示,十位,千位,十万位用横式表示,以此类推,例如2268用算筹表示就是=||丄|||.执行如图所示程序框图,若输人的x=1, y = 2,则输出的S用算筹表示为9.过双曲线C: (a>b>0)的一个焦点F向其一条渐近线引垂线,垂足为E,0为坐标原点,若△OEF的面积为1,其外接圆面积为,则C的离心率为A. B. C.2 D.10.设>0,>0,将函数的图像向左平移个单位长度得到图像C1,将函数的图像向右平移个单位长度得到图像C2,若C1与C2重合,则A. B. C. D.11.在正方体ABCD-A1B1C1D1中,三棱锥A1-BC1D内切球的表面积为,则正方体外接球的体积为A. B. C. D.12.已知函数,若且,则的最小值为A. B. C. D. 2二、填空题:本题共4小题,每小题5分,共20分。
课时规范练53 算法初步基础巩固组1.如图,若依次输入的x 分别为5π6,π6,相应输出的y 分别为y 1,y 2,则y 1,y 2的大小关系是( )A.y 1=y 2B.y 1>y 2C.y 1<y 2D.无法确定 答案:C解析:由算法框图可知,当输入的x 为5π6时,sin 5π6>cos 5π6成立,所以输出的y 1=sin5π6=12;当输入的x 为π6时,sin π6>cos π6不成立,所以输出的y 2=cos π6=√32,所以y 1<y 2.2.(河南六市一模)已知[x]表示不超过x的最大整数.执行如图所示的算法框图,若输入x的值为2.4,则输出z的值为( )A.1.2B.0.6C.0.4D.-0.4答案:D解析:执行该算法框图,输入x=2.4,y=2.4,x=[2.4]-1=1,满足x≥0,x=1.2,y=1.2,x=[1.2]-1=0,满足x≥0,x=0.6,y=0.6,x=[0.6]-1=-1,不满足x≥0,终止循环,z=-1+0.6=-0.4,输出z的值为-0.4.3.(河北石家庄四模)如图是计算1+13+15+…+131的值的算法框图,则图中①②处可以填写的语句分别是( )A.n=n+2,i>16B.n=n+2,i≥16C.n=n+1,i>16D.n=n+1,i≥16答案:A解析:式子1+13+15+…+131中所有项的分母构成公差为2的等差数列1,3,5,…,31,则①处填n=n+2.令31=1+(k-1)×2,k=16,共16项,而1到129共15项,需执行最后一次循环,此时i=16,所以②中应填“i>16”.故选A.4.秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,即使在现代,它依然是利用计算机解决多项式问题的最优算法,其算法的算法框图如图所示,若输入的a0,a1,a2,…,a n分别为0,1,2,…,n.若n=5,根据该算法计算当x=2时多项式的值,则输出的结果为( )A.248B.258C.268D.278答案:B解析:该算法框图是计算多项式f(x)=5x5+4x4+3x3+2x2+x当x=2时的值,f(2)=258,故选B.5.某算法框图如图所示,运行该程序后输出S=( )A.53B.74C.95D.116答案:D解析:根据算法框图可知其功能为计算:S=1+11×2+12×3+…+1n(n+1)=1+1-12+12−13+…+1n−1n+1=1+1-1n+1=2n+1n+1,初始值为n=1,当n=6时,输出S,可知最终赋值S时n=5,所以S=2×5+15+1=116,故选D.6.(湖北武汉模拟)元朝时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个算法框图,若输入的a,b 分别为5,2,则输出的n=( )A.2B.3C.4D.5 答案:C解析:执行算法框图得n=1,a=152,b=4,a≤b 不成立;n=2,a=454,b=8,a≤b 不成立;n=3,a=1358,b=16,a≤b 不成立;n=4,a=40516,b=32,a≤b 成立.故输出的n=4,故选C.综合提升组7.执行如图的算法框图,如果输入的x ∈-π4,π,则输出y 的取值范围是( )A.[-1,0]B.[-1,√2]C.[1,2]D.[-1,1]答案:B解析:流程图计算的输出值为分段函数: y={2cos 2x +sin2x -1,x <π2,cos 2x +2sinx -1,x ≥π2,原问题即求解函数在区间[-π4,π]上的值域.当-π4≤x<π2时,y=2cos 2x+sin2x-1=cos2x+1+sin2x-1=√2sin (2x +π4),-π4≤x<π2,则-14π≤2x+π4<54π,此时函数的值域为[-1,√2]. 当π2≤x≤π时,y=cos 2x+2sinx-1=-sin 2x+2sinx,π2≤x≤π,则0≤sinx≤1,此时函数的值域为[0,1].综上可得,函数的值域为[-1,√2]∪[0,1],即[-1,√2]. 即输出y 的取值范围是[-1,√2].故选B.8.(河南开封一模)我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的算法框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的语句是( )A.i<7,s=s-1i ,i=2iB.i≤7,s=s -1i,i=2iC.i<7,s=s2,i=i+1D.i≤7,s=s2,i=i+1答案:D解析:由题意可知第一天后剩下12,第二天后剩下122……由此得出第7天后剩下127,结合选项分析得,①应为i≤7,②应为s=s2,③应为i=i+1,故选D.9.如图所示的程序,若最终输出的结果为6364,则在程序中“ ”处应填入的语句为( )A.i>=8B.i>=7C.i<7D.i<8答案:B解析:S=0,n=2,i=1,执行S=12,n=4,i=2;S=12+14=34,n=8,i=3;S=34+18=78,n=16,i=4;S=78+116=1516,n=32,i=5;S=1516+132=3132,n=64,i=6;S=3132+164=6364,n=128,i=7.此时满足题目条件输出的S=6364,∴“ ”处应填上i>=7.故选B.10.根据某校10位高一同学的身高(单位:cm)画出的茎叶图(图1),其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,设计一个算法框图(图2),用A i(i=1,2, (10)表示第i个同学的身高,计算这些同学身高的方差,则算法框图①中要补充的语句是( )图1图2A.B=B+A iB.B=B+A i2C.B=(B+A i-A)2D.B=B2+A i2答案:B解析:由s2=(x1-x)2+(x2-x)2+…+(xn-x)2n=x 12+x 22+…+x n 2-2(x 1+x 2+…+x n )x+nx 2n =x 12+x 22+…+x n 2-2nx 2+nx 2n =x 12+x 22+…+x n 2n −x 2,循环退出时i=11,知x 2=(Ai -1)2. 所以B=A 12+A 22+…+A 102,故算法框图①中要补充的语句是B=B+A i 2.故选B.11.执行如图所示的算法框图,若输入的m,n 分别为385,105(图中“m MOD n”表示m 除以n 的余数),则输出的m= .答案:35解析:执行算法框图,可得m=385,n=105,r=70,m=105,n=70,不满足条件r=0;r=35,m=70,n=35,不满足条件r=0;r=0,m=35,n=0,满足条件r=0,退出循环,输出的m 值为35.创新应用组12.(河南郑州二模)执行如图的算法框图,如果输入的ε为0.01,则输出s 的值为( )A.2-124B.2-125C.2-126D.2-127答案:C解析:执行算法框图,s=1,x=12,不满足条件x<0.01; s=1+12,x=122,不满足条件x<0.01; s=1+12+122,x=123,不满足条件x<0.01; ……由于126>0.01,而127<0.01,可得当s=1+12+122+…+126,x=127时,满足条件x<0.01,输出s=1+12+122+…+126=2-126.故选C. 13.(河南郑州模拟)我们可以用随机数法估计π的值,如图所示的算法框图表示其基本步骤(函数RAND 是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为( )A.3.119B.3.126C.3.132D.3.151答案:B解析:在空间直角坐标系O-xyz 中,不等式组{0<x <1,0<y <1,0<z <1表示的区域是棱长为1的正方体区域,相应区域的体积为13=1;不等式组{0<x <1,0<y <1,0<z <1,x 2+y 2+z 2<1表示的区域是棱长为1的正方体区域内的18球形区域,相应区域的体积为18×43π×13=π6,因此π6≈5211000,即π≈3.126,故选B.。
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……2019高三一轮复习第一次检测考试数学(理科)试题一、选择题(共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x∈N|x2+2x﹣3≤0},则集合A的真子集个数为()A. 3B. 4C. 31D. 32【答案】A【解析】【分析】求出集合,由此能求出集合A的真子集的个数.【详解】由题集合,∴集合A的真子集个数为.故选:A.【点睛】本题考查集合真子集的个数的求法,考查真子集等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.命题:“,”的否定为A. ,B. ,C. ,D. ,【答案】C【解析】特称命题的否定是全称命题,特称命题“”的否定为全称命题:,故选C.3.若,则()A. B. C. D.【答案】B【解析】分析:先对两边取对数,求出的值,再根据对数的换底公式和运算性质计算,即可求出答案.详解:,,故选B.点睛:本题考查指对互化,对数的换底公式和运算性质,属于基础题.4.设,则等于()A. B. C. 1 D.【答案】D【解析】【分析】原积分化为根据定积分的计算法则计算即可【详解】由题故选:D.【点睛】本题考查了定积分的计算,关键是求出原函数,属于基础题,5.已知曲线f(x)=lnx+在点(1,f(1))处的切线的倾斜角为,则a的值为()A. 1B. ﹣4C. ﹣D. ﹣1【答案】D【解析】分析:求导,利用函数f(x)在x=1处的倾斜角为得f′(1)=﹣1,由此可求a的值.详解: 函数(x>0)的导数,∵函数f(x)在x=1处的倾斜角为∴f′(1)=﹣1,∴1+=﹣1,∴a=﹣1.故选:D.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点及斜率,其求法为:设是曲线上的一点,则以的切点的切线方程为:.若曲线在点的切线平行于轴(即导数不存在)时,由切线定义知,切线方程为.6.已知偶函数f(x)在[0,+∞)单调递增,若f(2)=﹣2,则满足f(x﹣1)≥﹣2的x的取值范围是()A. (﹣∞,﹣1)∪(3,+∞)B. (﹣∞,﹣1]∪[3,+∞)C. [﹣1,﹣3]D. (﹣∞,﹣2]∪[2,+∞)【答案】B【解析】【分析】根据题意,结合函数的奇偶性与单调性分析可得若,即有,可得,解可得的取值范围,即可得答案.【详解】根据题意,偶函数在单调递增,且,可得,若,即有,可得,解可得:即的取值范围是;故选:B.【点睛】本题考查函数的单调性与奇偶性的综合应用,关键是利用函数的奇偶性与单调性转化原不等式.7.已知定义在R上的奇函数f(x)满足f(x+2)=﹣f(x),若f(﹣1)>﹣2,f(﹣7)=,则实数a的取值范围为()A. B. (﹣2,1) C. D.【答案】C【解析】【分析】由是定义在上的奇函数,且满足,求出函数的周期,由此能求出实数的取值范围.【详解】∵是定义在上的奇函数,且满足,,函数的周期为4,则又,即,即解得故选C.【点睛】本题考查函数的周期性和奇偶性的应用,是基础题.解题时要认真审题,仔细解答.8.若函数f(x)=a x﹣a﹣x(a>0且a≠1)在R上为减函数,则函数y=log a(|x|﹣1)的图象可以是()A. B. C. D.【答案】C【解析】【分析】由函数在上为减函数,由此求得的范围,结合的解析式.再根据对数函数的图象特征,得出结论.【详解】由函数在上为减函数,故.函数是偶函数,定义域为函数的图象,时是把函数的图象向右平移1个单位得到的,故选:C.【点睛】本题主要考查函数的奇偶性和单调性的应用,对数函数的图象特征,函数图象的平移规律,属于中档题.9.已知函数f(x)是定义域为R的周期为3的奇函数,且当x∈(0,1.5)时f(x)=ln(x2﹣x+1),则方程f(x)= 0在区间[0,6]上的解的个数是()A. 5B. 7C. 9D. 11【答案】C【解析】【分析】要求方程在区间上的解的个数,根据函数是定义域为的周期为3的奇函数,且当时,可得一个周期内函数零点的个数,根据周期性进行分析不难得到结论.【详解】∵时,令,则,解得,又∵是定义域为的的奇函数,∴在区间上,,又∵函数是周期为3的周期函数则方程在区间的解有0,1,1.5,2,3,4,4.5,5,6共9个故选:D.【点睛】本题考查函数零点个数的判断,考查函数的奇偶性,周期性的应用,属中档题. 10.点P在边长为1的正方形ABCD的边上运动,M是CD的中点,则当P沿A﹣B﹣C﹣M运动时,点P经过的路程x与△APM的面积y的函数y=f(x)的图象的形状大致是图中的()A. B. C. D.【答案】A【解析】【分析】随着点P的位置的不同,讨论三种情形即在AB上,在BC上,以及在CM上分别建立面积的函数,分段画出图象即可.【详解】根据题意得,分段函数图象分段画即可,故选:A.【点睛】本题主要考查了分段函数的图象,分段函数问题,应切实理解分段函数的含义,把握分段解决的策略.11.对于任意x∈R,函数f(x)满足f(2﹣x)=﹣f(x),且当x≥1时,函数f(x)=lnx,若a=f(2﹣0.3),b=f(log3π),c=f(﹣)则a,b,c大小关系是()A. b>a>cB. b>c>aC. c>a>bD. c>b>a【答案】A【解析】【分析】由判断函数关于点对称,根据时是单调增函数,判断在定义域上单调递增;再由自变量的大小判断函数值的大小.【详解】对于任意函数满足,∴函数关于点对称,当时,是单调增函数,∴在定义域上是单调增函数;由∴∴b>a>c.故选:A.【点睛】本题主要考查了与函数有关的命题真假判断问题,涉及函数的单调性与对称性问题,是中档题.12.设函数f'(x)是函数f(x)(x∈R)的导函数,已知f'(x)<f(x),且f'(x)=f'(4﹣x),f(4)=0,f(2)=1,则使得f(x)﹣2e x<0成立的x的取值范围是()A. (﹣2,+∞) B. (0,+∞) C. (1,+∞) D. (4,+∞)【答案】B【解析】【分析】构造函数,利用的导数判断函数的单调性,求出不等式的解集即可.【详解】设则即函数在上单调递减,因为,即导函数关于直线对称,所以函数是中心对称图形,且对称中心,由于,即函数过点,其关于点(的对称点(也在函数上,所以有,所以而不等式即即所以故使得不等式成立的的取值范围是故选:B.【点睛】本题考查了利用导数判断函数的单调性,并由函数的单调性和对称性解不等式的应用问题,属中档题.二、填空题(共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.已知命题p:“存在x∈R,使”,若“非p”是假命题,则实数m的取值范围是_____.【答案】【解析】试题分析:非p即:“对任意x∈R, 4x+2x+1+m0”,如果“非p”是假命题,即m-4x-2x+1,而令t=,y===,,所以m<0,故答案为。
2019年四川省成都七中高考数学一诊试卷(理科)一、选择题(本大题共12小题,共60.0分)1.若随机变量~,且,则A. B. C. D.【答案】A【解析】解:随机变量~,且,.故选:A.由已知结合正态分布曲线的对称性即可求解.本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量和的应用,考查曲线的对称性,属于基础题.2.函数的图象大致是A. B. C. D.【答案】D【解析】解:函数的定义域为R,,故排除A,C;,当时,,可知在上为减函数,排除B.故选:D.由函数的定义域及排除A,C,再由导数研究单调性排除B,则答案可求.本题考查函数的图象及图象变换,训练了利用导数研究函数的单调性,是中档题.3.“牟合方盖”是我国古代数学家刘徽在探求球体体积时构造的一个封闭几何体,它由两等径正贯的圆柱体的侧面围成,其直观图如图其中四边形是为体现直观性而作的辅助线当“牟合方盖”的正视图和侧视图完全相同时,其俯视图为A. B. C. D.【答案】B【解析】解:根据几何体的直观图:由于直观图“牟合方盖”的正视图和侧视图完全相同时,该几何体的俯视图为有对角线的正方形.故选:B.直接利用直观图“牟合方盖”的正视图和侧视图完全相同,从而得出俯视图形.本题考查的知识要点:直观图和三视图之间的转换,主要考查学生的空间想象能力和转化能力,属于基础题型.4.设i是虚数单位,复数z满足,则z的虚部为A. 1B.C.D. 2【答案】C【解析】解:由,得,即.的虚部为.故选:C.把已知等式变形,再由复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.5.执行如图的算法程序,若输出的结果为120,则横线处应填入A.B.C.D.【答案】C【解析】解:模拟程序的运行,可得,执行循环体,,执行循环体,,执行循环体,,执行循环体,,执行循环体,,由题意,此时,不满足条件,退出循环,输出S的值为120.可得横线处应填入的条件为.故选:C.分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出变量S的值,要确定进入循环的条件,可模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到题目要求的结果.算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.6.设实数x,y满足,则的最大值是A. B. C. 1 D.【答案】D【解析】解:画出满足条件的平面区域,如图示:而的几何意义表示过平面区域内的点与点的连线的斜率,由,解得:,,故选:D.画出约束条件的可行域,利用目标函数的几何意义,求解即可.本题主要考查线性规划的应用以及直线斜率的求解,利用数形结合是解决本题的关键.7.“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】D【解析】解:,推不出,推不出,“”是“”的既不充分也不必要条件.故选:D.首先转化,然后根据充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.8.函数的图象的一条对称轴方程是A. B. C. D.【答案】B【解析】解:.由,得,,当时,,即函数的对称轴为,故选:B.利用两角和差的余弦公式结合辅助角公式进行化简,结合三角函数的对称性进行求解即可.本题主要考查三角函数的对称性,利用辅助角公式将函数进行化简是解决本题的关键.9.将多项式分解因式得,m为常数,若,则A. B. C. 1 D. 2【答案】D【解析】解:由,,可得:,解得,即为:,时,,故选:D.由两,通过,求出m,然后利用二项式定理求解即可.本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.10.已知正三棱锥的高为6,侧面与底面成的二面角,则其内切球与四个面都相切的表面积为A. B. C. D.【答案】B【解析】解:过顶点V做平面ABC是正三棱锥,为中心,过O做,垂足为D,连接VD,则为侧面与底面成的二面角,侧面与底面成的二面角,,,,,,.,为内切球的半径.,内切球的表面积.故选:B.过顶点V做平面ABC,过O做,垂足为D,连接VD,则为侧面与底面成的二面角,从而,分别求出OD、AB、VD的长,由此利用等体积法求解.本题考查棱锥的外接球球半径的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.11.设a,b,c分别是的内角A,B,C的对边,已知,设D是BC边的中点,且的面积为,则等于A. 2B. 4C.D.【答案】A【解析】解:,,,,,,,,故选:A.先根据正余弦定理求出,,再将,化为,后用数量积可得.本题考查了平面向量数量积的性质及其运算,属基础题.12.如果不是等差数列,但若,使得,那么称为“局部等差”数列已知数列的项数为4,记事件A:集合2,3,4,,事件B:为“局部等差”数列,则条件概率A. B. C. D.【答案】C【解析】解:由已知数列{x n}的项数为4,记事件A:集合{x1,x2,x3,x4}{1,2,3,4,5},则事件A的基本事件为:,,,,,共5个,在满足事件A的条件下,事件B:{x n}为“局部等差”数列有,共1个,即条件概率P(B|A)=,故选:C.由即时定义可得:事件A的基本事件为:,,,,,共5个,在满足事件A的条件下,事件B:{x n}为“局部等差”数列有,共1个,由条件概率可得:P(B|A)=,得解.本题考查了对即时定义的理解及条件概率,属中档题.二、填空题(本大题共4小题,共20.0分)13.某学校初中部共120名教师,高中部共180名教师,其性别比例如图所示,已知按分层抽样抽方法得到的工会代表中,高中部女教师有6人,则工会代表中男教师的总人数为______.【答案】12【解析】解:高中部女教师有6人,占,则高中部人数为x,则,得人,即抽取高中人数15人,则抽取初中人数为人,则男教师有人故答案为:12根据高中女教师的人数和比例,先求出抽取高中人数,然后在求出抽取初中人数即可得到结论.本题主要考查分层抽样的应用,根据人数比例以及男女老少人数比例建立方程关系是解决本题的关键.14.设抛物线C:的焦点为F,准线为l,点M在C上,点N在l上,且,若,则的值为______.【答案】3【解析】解:根据题意画出图形,如图所示;抛物线,焦点,准线为;设,,则,解得,;,,又,,解得.故答案为:3.根据题意画出图形,结合图形求出抛物线的焦点F和准线方程,设出点M、N的坐标,根据和求出的值.本题考查了抛物线的方程与应用问题,也考查了平面向量的坐标运算问题,是中档题.15.设,,c为自然对数的底数,若,则的最小值是______.【答案】【解析】解:,,则,即,由基本不等式得,则,当且仅当,即当时,等号成立,因此,的最小值为.故答案为:.利用定积分计算出,经过配凑得出,将代数式与代数式相乘,利用基本不等式可得出的最小值.本题考查定积分的计算,同时也考查了利用基本不等式求最值,解决本题的关键在于对代数式进行合理配凑,考查计算能力,属于中等题.16.若函数有三个不同的零点,则实数a的取值范围是______.【答案】【解析】解:由题意函数可知:函数图象的左半部分为单调递增指数函数的部分,有一个零点,函数图象的右半部分为开口向上的3次函数的一部分,必须有两个零点,,,如上图,要满足题意:,,可得,解得.综合可得,故答案为:.由题意可得需使指数函数部分与x轴有一个交点,3次函数的图象由最小值并且小于0,x大于0的部分,只有两个交点.本题考查根的存在性及根的个数的判断,数形结合是解决问题的关键,属中档题.三、解答题(本大题共7小题,共82.0分)17.正项等比数列中,已知,.Ⅰ求的前n项和;Ⅱ对于Ⅰ中的,设,且,求数列的通项公式.【答案】解:Ⅰ正项等比数列的公比设为q,已知,,可得,,解得,,即;Ⅱ,且,可得.【解析】Ⅰ正项等比数列的公比设为q,运用等比数列的通项公式,解方程可得首项和公比,即可得到所求求和;Ⅱ由,结合数列的分组求和和等比数列的求和公式,计算可得所求和.本题考查等比数列的通项公式和求和公式的运用,考查数列的恒等式和求和方法:分组求和,考查方程思想和运算能力,属于基础题.18.“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”江南梅雨的点点滴滴都流润着浓洌的诗情每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南Q镇~年梅雨季节的降雨量单位:的频率分布直方图,试用样本频率估计总体概率,解答下列问题:Ⅰ“梅实初黄暮雨深”假设每年的梅雨天气相互独立,求Q镇未来三年里至少有两年梅雨季节的降雨量超过350mm的概率;Ⅱ“江南梅雨无限愁”在Q镇承包了20亩土地种植杨梅的老李也在犯愁,他过去种植的甲品种杨梅,平均每年的总利润为28万元而乙品种杨梅的亩产量亩与降雨量之间的关系如下面统计表所示,又知乙品种杨梅的单位利润为元,请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅可以使总利润万元的期望更大?需说明理由【答案】解:Ⅰ频率分布直方图中第四组的频率为,则江南Q镇在梅雨季节时降雨量超过350mm的概率为,所以Q镇未来三年里至少有两年梅雨季节的降雨量超过350mm的概率为或;Ⅱ根据题意,总利润为元,其中,700,600,400;所以随机变量万元的分布列如下图所示;则总利润万元的数学期望为万元,因为,所以老李来年应该种植乙品种杨梅,可使总利润的期望更大.【解析】Ⅰ由频率分布直方图计算对应的频率,利用频率估计概率,求出对应的概率值;Ⅱ根据题意计算随机变量的分布列和数学期望,比较得出结论和建议.本题考查了频率分布直方图和离散型随机变量的分布列应用问题,是中档题.19.已知椭圆的离心率为,且经过点.Ⅰ求椭圆的标准方程;Ⅱ设O为椭圆的中心,点,过点A的动直线l交椭圆于另一点B,直线l上的点C满足.,求直线BD与OC的交点P的轨迹方程.【答案】解:Ⅰ椭圆的离心率,且,,,椭圆的标准方程为,Ⅱ设直线l的方程为当t存在时,由题意,代入,并整理可得,解得,于是,即,设,,解得,于是,,,,,,直线BD与OC的交点P的轨迹是以OD为直径的圆除去O,D两点,轨迹方程为,即,【解析】Ⅰ根据椭圆的离心率和,即可求出椭圆的方程,Ⅱ设直线l的方程为当t存在时,由题意,代入,并整理可得,求出点B的坐标,根据向量的运算求出点C的坐标,再根据向量的运算证明,即可求出点P的轨迹方程本题考查直线与椭圆的位置关系的综合应用,椭圆的方程的求法,考查转化思想以及计算能力,函数与方程的思想的应用.20.如图,在多面体ABCDE中,AC和BD交于一点,除EC以外的其余各棱长均为2.Ⅰ作平面CDE与平面ABE的交线l并写出作法及理由;Ⅱ求证:平面平面ACE;Ⅲ若多面体ABCDE的体积为2,求直线DE与平面BCE所成角的正弦值.【答案】解:Ⅰ过点E作或的平行线,即为所求直线l.理由如下:和BD交于一点,,B,C,D四点共面,又四边形ABCD边长均相等,四边形ABCD为菱形,从而,又平面CDE,且平面CDE,平面CDE,平面ABE,且平面平面,.证明:Ⅱ取AE的中点O,连结OB,OD,,,,,,平面OBD,平面OBD,,又四边形ABCD是菱形,,又,平面ACE,又平面BDE,平面平面ACE.解:Ⅲ由多面体ABCDE的体积为2,得,,设三棱锥的高为h,则,解得,,平面ABE,以O为原点,OB为x轴,OE为y轴,OD为z轴,建立如图所示的空间直角坐标系,则,0,,0,,1,,1,,1,,1,,设平面BCE的法向量y,,则,取,得,设直线DE与平面BCE所成角为,则.直线DE与平面BCE所成角的正弦值为.【解析】Ⅰ过点E作或的平行线,即为所求直线由AC和BD交于一点,得A,B,C,D四点共面,推导出四边形ABCD为菱形,从而,进而平面CDE,由此推导出.Ⅱ取AE的中点O,连结OB,OD,推导出,,从而平面OBD,进而,由四边形ABCD是菱形,得,从而平面ACE,由此能证明平面平面ACE.Ⅲ由,得,求出三棱锥的高为,得平面ABE,以O为原点,OB为x轴,OE为y轴,OD为z轴,建立如图所示的空间直角坐标系,利用向量法能求出直线DE与平面BCE 所成角的正弦值.本题考查两平面的交线的求法,考查面面垂直的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.21.已知函数,其中a为常数.Ⅰ若曲线在处的切线在两坐标轴上的截距相等,求a之值;Ⅱ若对,都有,求a的取值范围.【答案】解:Ⅰ函数的导数为,由题意可得,,可得切线方程为,即有,解得;Ⅱ若对,,在递减,当时,,在递减,,由恒成立,可得,与矛盾;当时,,在递增,可得即,由恒成立,可得且,可得;当时,,,且在递减,可得存在,,在递增,在递减,故,由恒成立,可得,,可得,又的最大值为,由,,可得,设,,,可得在递增,即有,即,不等式恒成立,综上可得a的范围是.【解析】Ⅰ求得的导数,可得切线的斜率和切点,由题意可得a的方程,解方程可得a;Ⅱ若对,,在递减,讨论,,,结合函数的单调性和不等式恒成立思想,以及函数零点存在定理,构造函数法,即可得到所求范围.本题考查导数的运用:求切线方程和单调性、极值和最值,考查函数零点存在定理和分类讨论思想方法,以及各种函数法,考查化简整理的运算能力,属于难题.22.在平面直角坐标系xOy中曲线C的参数方程为其中t为参数在以O为极点、x轴的非负半轴为极轴的极坐标系两种坐标系的单位长度相同中,直线l的极坐标方程为.Ⅰ求曲线C的极坐标方程;Ⅱ求直线l与曲线C的公共点P的极坐标.【答案】解:Ⅰ平面直角坐标系xOy中曲线C的参数方程为其中t为参数,曲线C的直角坐标方程为,,将,代入,得曲线C的直角坐标方程为,,将,代入,得,曲线C的极坐标方程为Ⅱ将l与C的极坐标方程联立,消去,得,,,,方程的解为,即,代入,得,直线l与曲线C的公共点P的极坐标为【解析】Ⅰ由曲线C的参数方程求出曲线C的直角坐标方程,由此能求出曲线C的极坐标方程.Ⅱ将l与C的极坐标方程联立,得,从而,进而方程的解为,由此能求出直线l与曲线C的公共点P的极坐标.本题考查曲线的极坐标方程的求法,考查直线与曲线的公共点的极坐标的求法,考查直角坐标方程、参数方程、极坐标方程的互化等基础知识,考查运算求解能力,是中档题.23.已知函数,且a,b,.Ⅰ若,求的最小值;Ⅱ若,求证:.【答案】解:Ⅰ由柯西不等式可得,当且仅当时取等号,即;,即的最小值为.证明:Ⅱ,,故结论成立【解析】Ⅰ根据柯西不等式即可求出最小值,Ⅱ根据绝对值三角不等式即可证明.本题考查了柯西不等式和绝对值三角形不等式,考查了转化和化归的思想,属于中档题.。
专题2.3基本初等函数【三年咼考】4 2 11. 【2019高考新课标3理数】已知a =2空,b=45, c=25',则( )(A) b ::: a :::c ( B) a ::: b ::: c (C) b :::c ... a(D) c ... a::: b【答案】A4 2 2 1 2 2【解析】因为a= 23=4345= b,c = 253= 53• 43= a,所以b :.a ::: c,故选A.5 b a2. 【2019 高考浙江理数】已知a>b>1.若log a b+log b a=—, a =b ,贝U a= , b=.2 --- ----------【答案】4 2【强忻】设log/三匕则r Al,因为F —==斗n r = 2 n 口■扩,因此扌三扩=> 卩=户=>2&=罗nb三2卫=4.3. [2019高考上海理数】已知点(3,9)在函数f(x)=1,a x的图像上,贝Uf (x)的反函数f」(x) = _________ .【答案】log2(x -1)【解析】将点(3,9)带入函数f x = 1 • a x的解析式得a = 2,所以f x =1 2x,用y表示x 得x = log2(y -1),所以f x = log2(x -1).4. [2019高考天津理数】已知函数f (x) = x (4^3)x 3a,^ 0,( a>0,且a z 1)在R[log a(x+1) + 1,x^0上单调递减,且关于x的方程I f(x)戶2 -x恰好有两个不相等的实数解,则a的取值范围是( )2 23 1 2 3 1 2 3(A) (0, ] (B) [―,—] ( C) [―,]_{ —} (D)[―,)【」{—}3 34 3 3 4 3 3 4【答案】C的实数解,可皿闰-S 扫弓又a = -B 寸』抛物线p = F+(4o —3找+%与直线 41 j 3=2-工相切,也符合题童…I 实数立的去范围是[-f -]U{-},故选C3 3 45.【2019高考上海理数】已知 a ・R ,函数f(x) =log 2(〕 a).x(1)当a = 5时,解不等式f (x) • 0 ;(2)若关于x 的方程f (x) - log?" -4)x • 2a - 5] =0的解集中恰好有一个元素,求a 的取 值范围;1(3)设a ■ 0,若对任意t [^,1],函数f (x)在区间[t,t 1]上的最大值与最小值的差不超过1,求a 的取值范围. 【解析】(1)由log 2 1 50,得1 5 1,解得x l x丿 x\(2) 1 a 二 a -4 x 2a -5, a —4 x 2a — 5 x -1 =0,当 a = 4 时,x = -1,经检x1验,满足题意.当a = 3时,x^ x 2 - -1,经检验,满足题意.当a = 3且a = 4时,x^a — 4x^ -1,x 广x 2. x 1是原方程的解当且仅当丄• a • 0 ,即a 2 ; x 2是原方程的解当且仅1当一,a ・0,即a 1 •于是满足题意的a ・1,2 1.综上,a 的取值范围为1,2 1U :3,4?.x2【解析】宙/■&)在丘上递减可知由方程|/(x)|=2 3 4-工恰好有两个不相等,所以f x 在0, •::上单调递减•函数 f x 在区间lt,t 1 1上的最大值与最小值分别为 f t ,f t -f t 1 二呃 J a-log2 丄a <1 即at2 a 1 t-1-0, It +1 丿对任意-1,1 成立.因为a 0,所以函数y=a「am在区间1,1上单调递增,1 3 1 3 12 2t 时,y有最小值—a ,由一a 0,得a .故a的取值范围为,■::.2 4 2 4 23 IL36. 【2019高考四川,理8】设a,b都是不等于1的正数,则“ 3a. 3b. 3 ”是“log a 3 :::log b 3 ”的()(A)充要条件(B)充分不必要条件(C必要不充分条件(D)既不充分也不必要条件【答案】B【解析】若3">3*>3,则Q—从而有1昭/<嗨异,故为充耸条件一若106,3<lo gi3不一定有比如4 =丄上二务从而3J>3*>3不成立”故选B37. 【2019高考北京,理7】如图,函数f x的图象为折线ACB,则不等式f x > log2 x 1的解集是()A. 〈x|—1:::x w 0? B .〈x|—1 w x w 1? C.〈x|—1:::x < 1 D .〈x | —1 ::: x < 2【答案】C【解析】如图所示,把函数y二log2x的图象向左平移一个单位得到y二log 2(x 1)的图象x - 1时两图象相交,不等式的解为-1 :::x < 1,用集合表示解集选C8. 【2019高考天津,理7】已知定义在R上的函数f x =2x^ -1 (m为实数)为偶函数,记 a = f (log °.53),b = f (log ? 5 ),c = f (2m ),则 a,b,c 的大小关系为()(A ) a ::: b ::: c (B ) a ::: c ::: b (C ) c ::: a ::: b (D ) c ::: b ::: a 【答案】C【解析】因为函数f x i ;=2x R _1为偶函数,所以m = o ,即f x i ; = 2x -1,所以b = f log ? 5 二 2log 25 一1 = 4,c 二 f 2m 二 f (0) = 2。
第10讲 函数的图像考试说明 1.掌握基本初等函数的图像特征,能熟练运用基本初等函数的图像解决问题. 2.掌握图像的作法:描点法和图像变换. 3.会运用函数的图像理解和研究函数性质.考情分析真题再现■ [2017-2013]课标全国真题再现1.[2017·全国卷Ⅲ] 函数y=1+x+的部分图像大致为 ( )A BC D[解析] D函数y=1+x+的图像可以看成是由y=x+的图像向上平移一个单位长度得到的,并且y'=1+x+'=1+,当x→∞时,y'→1,所以可确定答案为A或D,又当x=1时,y=1+1+sin 1>2,由图像可以排除A,故选D.2.[2016·全国卷Ⅱ]已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y=与y=f(x)图像的交点为(x1,y1),(x2,y2),…,(x m,y m),则(x i+y i)=()A.0B.mC.2mD.4m[解析] B由f(-x)=2-f(x)得f(x)的图像关于点(0,1)对称,∵y==1+的图像也关于点(0,1)对称,∴两函数图像的交点必关于点(0,1)对称,且对于每一组对称点(x i,y i)和(x'i,y'i)均满足x i+x'i=0,y i+y'i=2,∴(x i+y i)=x i+y i=0+2·=m.3.[2015·全国卷Ⅰ]设函数f(x)=e x(2x-1)-ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.B.C. D.[解析] D令g(x)=e x(2x-1),则g'(x)=e x(2x+1),由g'(x)>0得x>-,由g'(x)<0得x<-,故函数g(x)在上单调递减,在上单调递增.又函数g(x)在x<时,g(x)<0,在x>时,g(x)>0,所以其大致图像如图所示.直线y=ax-a过点(1,0).若a≤0,则f(x)<0的整数解有无穷多个,因此只能a>0.结合函数图像可知,存在唯一的整数x0,使得f(x0)<0,即存在唯一的整数x0,使得点(x0,ax0-a)在点(x0,g(x0))的上方,则x0只能是0,故实数a应满足即解得≤a<1.故实数a的取值范围是,1.4.[2015·全国卷Ⅱ]如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD 与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图像大致为()[解析] B当点P在BC上时,=tan x,=,+=tan x+,即f(x)=tan x+,x∈,由正切函数的性质可知,函数f(x)在上单调递增,所以其最大值为1+,且函数y=f(x)的图像不可能是线段,排除选项A,C.当点P在CD上运动时,我们取P为CD的中点,此时x=,f=2,由于2<1+,即f<f,排除选项D.综上可知,只有选项B中图像符合题意.■ [2017-2016]其他省份类似高考真题[2017·山东卷]已知当x∈[0,1]时,函数y=(mx-1)2的图像与y=+m的图像有且只有一个交点,则正实数m的取值范围是 ()A.(0,1]∪[2,+∞)B.(0,1]∪[3,+∞)C.(0,]∪[2,+∞)D.(0,]∪[3,+∞)[解析] B应用排除法.当m=时,画出y=(x-1)2与y=+的图像,由图可知,两函数的图像在[0,1]上无交点,排除C,D;当m=3时,画出y=(3x-1)2与y=+3的图像,由图可知,两函数的图像在[0,1]上恰有一个交点.故选B.【课前双基巩固】知识聚焦2.f(x-a)f(x)+b -f(x)f(-x)-f(-x)log a x(a>0且a≠1)f(ax)af(x)y=y=f()对点演练1.y=0[解析] y=lo x=-log a x,故两个函数图像关于x轴,即直线y=0对称.2.x=0[解析] y==a-x,故两个函数的图像关于y轴,即直线x=0对称.3.y=x [解析] 两个函数互为反函数,故两个函数图像关于直线y=x对称.4.③[解析] 将y=两边平方,得y2=|1-x2|(y≥0),即x2+y2=1(y≥0)或x2-y2=1(y≥0),所以③正确.5.y=(2x+3)2[解析] 得到的是y=[2(x+1)+1]2=(2x+3)2的图像.6.y=ln[解析] 根据伸缩变换方法可得,所求函数解析式为y=ln.7.-log2(x-1)[解析] 与f(x)的图像关于直线y=x对称的图像所对应的函数为g(x)=-log2x,再将其图像右移1个单位得到h(x)=-log2(x-1)的图像.8.[解析] y=其图像如图所示:【课堂考点探究】例1[思路点拨] (1)利用图像的平移和翻折作图;(2)利用图像的平移作图;(3)利用偶函数的关系作图,先作出x≥0时的图像,再关于y轴对称作出另一部分的图像.解:(1)首先作出y=lg x的图像,然后将其向右平移1个单位,得到y=lg(x-1)的图像,再把所得图像在x轴下方的部分翻折到x轴上方,即得所求函数y=|lg(x-1)|的图像,如图①所示(实线部分).(2)将y=2x的图像向左平移1个单位,得到y=2x+1的图像,再将所得图像向下平移1个单位得到y=2x+1-1的图像,如图②所示.(3)y=x2-|x|-2=其图像如图③所示.变式题解:(1)先画出函数y=x2-4x+3的图像,再将其x轴下方的图像翻折到x轴上方,如图①所示.(2)y==2-的图像可由y=-的图像向左平移1个单位,再向上平移2个单位得到,如图②所示.(3)y=10|lg x|=其图像如图③所示.例2[思路点拨] 选用函数图像经过的几个特殊点验证排除.B[解析] 由f(0)=-1,得函数图像过点(0,-1),可排除D,由f(-2)=4-4=0,f(-4)=16-16=0,得函数图像过点(-2,0),(-4,0),可排除A,C,故选B.例3[思路点拨] 根据函数的奇偶性及单调性可作出判断.D[解析] 令f(x)=,则f(-x)===f(x),∴f(x)是偶函数,图像关于y轴对称,排除B,C.当x>1时,y==,显然y>0且函数单调递减,故D正确.例4[思路点拨] 对函数f(x)=2x的图像作相应的对称变换可得到图中所示的图像,再写出相应的解析式.C[解析] 题图中是函数y=-2-|x|的图像,即函数y=-f(-|x|)的图像,故选C.强化演练1.D[解析] 当x=1时,y=0,即函数图像过点(1,0),由选项中图像可知,只有D符合.2.A[解析] 由函数定义域知2x-2≠0,即x≠1,排除B,C;当x<0时,y=<0,排除D.故选A.3.C[解析] 由=>0,得x>0,又<1,故y<0,只能是选项C中的图像.4.A[解析] 先作出函数f(x)=log a x(0<a<1)的图像,当x>0时,y=f(|x|+1)=f(x+1),其图像由函数f(x)的图像向左平移1个单位得到,又函数y=f(|x|+1)为偶函数,所以再将函数y=f(x+1)(x>0)的图像关于y轴对称翻折到y轴左边,得到x<0时的图像,故选A.例5[思路点拨] 根据图像可判断其对应函数的定义域、奇偶性、单调性等情况,从而确定符合性质的相应函数的解析式.D[解析] 由函数的图像可知,函数的定义域为R,所以B不符合;又图像关于原点对称,可知函数是奇函数,排除C;函数在定义域内有增有减,不是单调函数,而选项A为增函数,不符合.所以选D.例6[思路点拨] (1)作出分段函数f(x)的图像,结合图像从单调性、最值角度考虑;(2)先化简函数的解析式,在同一坐标系中画出函数y=的图像与函数y=kx-2的图像,结合图像可得实数k的取值范围.(1)[-8,-1](2)(0,1)∪(1,4)[解析] (1)作出函数f(x)的图像,当x≤-1时,函数f(x)=log2单调递减,且最小值为f(-1)=-1,则令log2=2,解得x=-8;当x>-1时,函数f(x)=-x2+x+在(-1,2)上单调递增,在[2,+∞)上单调递减,则最大值为f(2)=2,又f(4)=<2,f(-1)=-1,故所求实数m的取值范围为[-8,-1].(2)y===函数y=kx-2的图像恒过点(0,-2).在同一坐标系中画出函数y=的图像与函数y=kx-2的图像,结合图像可得,实数k的取值范围是(0,1)∪(1,4).例7[思路点拨] 对这样一个非常规不等式应采用数形结合处理,不妨构建函数f(x)=3sin x,g(x)=lo x,将原不等式转化成两函数图像的位置关系,再进行研究.A[解析] 不等式3sin x-lo x<0,即3sin x<lo x.设f(x)=3sin x,g(x)=lo x,在同一坐标系中分别作出函数f(x)与g(x)的图像,由图像可知,当x为整数3或7时,有f(x)<g(x),所以不等式3sin x-lo x<0的整数解的个数为2.例8[思路点拨] 根据所给的条件可确定函数f(x)的图像,并作出函数y=log7|x-2|的图像,由两函数图像的交点个数确定方程解的个数.B[解析] 由函数f(x)是R上的奇函数,得f(0)=0,由f(x+2)=-f(x),可得f(1-x)=f(1+x),f(x+4)=f(x),∴函数f(x)的图像关于直线x=1对称,且f(x)是周期为4的周期函数.在同一坐标系中画出y=f(x)和y=log7|x-2|的图像(图略),由图像不难看出,其交点个数为7,即方程解的个数为7.故选B.强化演练1.C[解析] f(x)=画出函数f(x)的图像,观察图像可知,函数f(x)的图像关于原点对称,故函数f(x)为奇函数,且在(-1,1)上单调递减.2.5[解析] 方程2[f(x)]2-3f(x)+1=0的解为f(x)=或1.作出函数y=f(x)的图像,由图像知零点的个数为5.3.∪[解析] 在0,上,y=cos x>0,在,4上,y=cos x<0.由f(x)的图像知,在1,上,<0.因为f(x)为偶函数,y=cos x也是偶函数,所以y=为偶函数,所以<0的解集为-,-1∪1,.4.[解析] y=作出其图像,如图所示.此曲线与y轴交于点(0,a),最小值为a-,要使直线y=1与其有四个交点,只需a-<1<a,所以1<a<.【备选理由】例1考查分段函数,由各区间上的单调性及函数值确定函数图像;例2为依据函数图像判定相应函数图像,由所给函数图像反映的性质,探究所求函数的性质,有一定的技巧性;例3以新定义为背景,考查函数图像的应用,要注意图像对称性的应用.1[配合例3使用] [2018·南阳第一中学月考]函数f(x)=log2|2x-1|的图像大致是()[解析] C函数可化为f(x)=所以当x>0时,函数为增函数,当x<0时,函数为减函数,可排除A,B,结合图像可知,当x<0时,f(x)<0,排除D,故选C.2[配合例5使用] [2017·长沙长郡中学一模]已知函数y=f(x)的图像如图所示,则函数g(x)=f[f(x)]的图像可能是()[解析] C∵f[f(-x)]=f[f(x)],∴排除A,B;又g(1)=f(0)=-1,∴排除D,故选C.3[配合例8使用] 规定“⊗”表示一种运算,即a⊗b=a2+2ab-b2.设函数f(x)=x⊗2,且关于x的方程f(x)=lg|x+2|(x≠-2)恰有四个互不相等的实数根x1,x2,x3,x4,则x1+x2+x3+x4的值是()A.-4B.4C.8D.-8[解析] D函数f(x)=x2+4x-4,由于函数y=f(x),y=lg|x+2|的图像(如图)均关于直线x=-2对称,故四个实数根之和为-8.。
绝密 ★ 启用前2019年高考(理科)数学总复习综合试题(一)总分:150分,时间:120分钟注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12个小题,每小题5分,共60分. 1.在复平面内,复数z =cos 3+isin 3(i 为虚数单位),则|z |为( ) A .1 B .2 C .3D .42.|x |·(1-2x )>0的解集为( ) A .(-∞,0)∪⎝⎛⎭⎫0,12 B .⎝⎛⎭⎫-∞,12 C .⎝⎛⎭⎫12,+∞D .⎝⎛⎭⎫0,12 3.已知双曲线y 2a 2-x 2b 2=1(a >0,b >0)的离心率为3,则该双曲线的渐近线方程为( )A .x -2y =0B .2x -y =0C .2x ±y =0D .x ±2y =04.执行如图所示的程序框图,若输入的n 的值为5,则输出的S 的值为( )此卷只装订不密封级 姓名 准考证号 考场号 座位号A.17 B.36C.52 D.725.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了() A.60里B.48里C.36里D.24里6.函数f(x)=(cos x)·ln |x|的大致图象是()7.如图,半径为5 cm的圆形纸板内有一个相同圆心的半径为1 cm的小圆,现将半径为1 cm 的一枚硬币抛到此纸板上,使整块硬币完全随机落在纸板内,则硬币与小圆无公共点的概率为( )A .12B .2125C .14D .348.如图,正四面体A -BCD 中,E 、F 分别是棱BC 和AD 的中点,则直线AE 和CF 所成的角的余弦值为( )A .13B .23C .14D .349.已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1x +y ≤3y ≥a (x -3),若z =2x +y 的最小值为1,则a 等于( )A .14B .12C .1D .210.在△ABC 中,BC =6,AB =2,1+tan A tan B =2ABAC ,则AC =( )A .6-1B .1+ 6C .3-1D .1+ 311.已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( )A .2x +y +1=0B .2x -y -5=0C .2x -y -1=0D . 2x -y +5=012.设函数f (x )满足xf ′(x )+f (x )=ln x x ,f (e)=1e,则函数f (x )( )A .在(0,e)上单调递增,在(e ,+∞)上单调递减B .在(0,+∞)上单调递增C .在(0,e)上单调递减,在(e ,+∞)上单调递增D .在(0,+∞)上单调递减二、填空题:本大题共4小题,每小题5分,共20分.13.在二项式⎝ ⎛⎭⎪⎪⎫3x -123x 6的展开式中,第四项的系数为________. 14.设S n 是数列{a n }的前n 项和,2S n +1=S n +S n +2(n ∈N *),若a 3=3,则a 100=______. 15.已知向量|a |=2,b 与(b -a )的夹角为30°,则|b |最大值为________.16.设点M ,N 是抛物线y =ax 2(a >0)上任意两点,点G (0,-1)满足GN →·GM →>0,则a 的取值范围是_________.三、解答题:17.(12分)已知数列{a n }的前n 项和为S n ,且⎩⎨⎧⎭⎬⎫S n n +1是首项和公差均为12的等差数列.(1)求数列{a n }的通项公式;(2)若b n =a 2n +1+a 2n +2a n +1·a n +2,求数列{b n }的前n 项和T n .18.(12分)2017年省内事业单位面向社会公开招聘工作人员,为保证公平竞争,报名者需要参加笔试和面试两部分,且要求笔试成绩必须大于或等于90分的才有资格参加面试,90分以下(不含90分)则被淘汰.现有2 000名竞聘者参加笔试,参加笔试的成绩按区间[30,50),[50,70),[70,90),[90,110),[110,130),[130,150]分段,其频率分布直方图如下图所示(频率分布直方图有污损),但是知道参加面试的人数为500,且笔试成绩在[50,110)的人数为1 440.(1)根据频率分布直方图,估算竞聘者参加笔试的平均成绩;(2)若在面试过程中每人最多有5次选题答题的机会,累计答题或答错3题即终止答题.答对3题者方可参加复赛.已知面试者甲答对每一个问题的概率都相同,并且相互之间没有影响.若他连续三次答题中答对一次的概率为964,求面试者甲答题个数X的分布列和数学期望.19.(12分)如图,在四棱锥P-ABCD中,已知PB⊥底面ABCD,BC⊥AB,AD∥BC,AB=AD=2,CD⊥PD,异面直线P A与CD所成角等于60°.(1)求证:平面PCD⊥平面PBD;(2)求直线CD和平面P AD所成角的正弦值;(3)在棱P A上是否存在一点E,使得平面P AB与平面BDE所成锐二面角的正切值为5?若存在,指出点E的位置,若不存在,请说明理由.20.(12分)如图,已知椭圆x2a2+y2b2=1(a>b>0)的左右顶点分别是A(-2,0),B(2,0),离心率为22.设点P (a ,t )(t ≠0),连接P A 交椭圆于点C ,坐标原点是O .(1)证明:OP ⊥BC ;(2)若三角形ABC 的面积不大于四边形OBPC 的面积,求|t |的最小值.21.(12分)已知函数f (x )=2x -(x +1)ln x ,g (x )=x ln x -a x 2-1. (1)求证:对∀x ∈(1,+∞),f (x )<2;(2)若方程g (x )=0有两个根,设两根分别为x 1、x 2,求证:ln x 1+ln x 22>1+2x 1x 2.以下两题请任选一题: [选修4-4:坐标系与参数方程]22.(10分)已知直线l 的参数方程为⎩⎨⎧x =mty =3t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ+4ρ2sin 2θ=4,直线l 过曲线C的左焦点F .(1)直线l 与曲线C 交于A ,B 两点,求|AB |; (2)设曲线C 的内接矩形的周长为c ,求c 的最大值.[选修4-5:不等式证明选讲]23.(10分)已知函数f (x )=9sin 2x +4cos 2x ,x ∈⎝⎛⎭⎫0,π2,且f (x )≥t 恒成立. (1)求实数t 的最大值;(2)当t 取最大时,求不等式⎪⎪⎪⎪x +t5+|2x -1|≤6的解集.2019年高考(理科)数学总复习综合试题(一)答案及解析一、选择题:本大题共12个小题,每小题5分,共60分. 1.在复平面内,复数z =cos 3+isin 3(i 为虚数单位),则|z |为( ) A .1 B .2 C .3D .4解析:|z |=cos 23+sin 23=1.故选A . 答案:A2.|x |·(1-2x )>0的解集为( ) A .(-∞,0)∪⎝⎛⎭⎫0,12 B .⎝⎛⎭⎫-∞,12 C .⎝⎛⎭⎫12,+∞ D .⎝⎛⎭⎫0,12 解析:由不等式|x |(1-2x )>0可得 x ≠0,且1-2x >0,求得x <12,且x ≠0,故选A .答案:A3.已知双曲线y 2a 2-x 2b 2=1(a >0,b >0)的离心率为3,则该双曲线的渐近线方程为( )A .x -2y =0B .2x -y =0C .2x ±y =0D .x ±2y =0解析:双曲线y 2a 2-x 2b 2=1(a >0,b >0)的离心率为3,可得c a =3,即a 2+b 2a 2=3,可得b a =2.则该双曲线的渐近线方程为x ±2y =0.故选D . 答案:D4.执行如图所示的程序框图,若输入的n 的值为5,则输出的S 的值为( )A . 17B .36C .52D .72解析:根据程序框图可知k =1,S =0,进入循环体后,循环次数、S 的值、k 的值的变化情况为:所以输出的S 的值为72.故选D .5.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了( )A .60里B .48里C .36里D .24里解析:记每天走的路程里数为{a n },可知{a n }是公比q =12的等比数列,由S 6=378,得S 6=a 1⎝⎛⎭⎫1-1261-12=378,解得:a 1=192,∴a 4=192×123=24,a 5=192×124=12,此人第4天和第5天共走了24+12=36里.故选C .答案:C6.函数f (x )=(cos x )·ln |x |的大致图象是( )解析:函数f (x )=(cos x )·ln |x |是偶函数,排除C ,D . 当x =π6时,f ⎝⎛⎭⎫π6=32·ln π6<0.排除A ,故选B . 答案:B7.如图,半径为5 cm 的圆形纸板内有一个相同圆心的半径为1 cm 的小圆,现将半径为1 cm 的一枚硬币抛到此纸板上,使整块硬币完全随机落在纸板内,则硬币与小圆无公共点的概率为( )A .12B .2125C .14D .34解析:记“硬币落下后与小圆无公共点”为事件A ,硬币要落在纸板内,硬币圆心距离纸板圆心的距离应该小于4,其面积为16π,无公共点也就意味着,硬币的圆心与纸板的圆心相距超过2 cm ,以纸板的圆心为圆心,作一个半径2 cm 的圆,硬币的圆心在此圆外面,则硬币与半径为1 cm 的小圆无公共交点.所以有公共点的概率为416,无公共点的概率为P (A )=1-416=34,故选D .答案:D8.如图,正四面体A -BCD 中,E 、F 分别是棱BC 和AD 的中点,则直线AE 和CF 所成的角的余弦值为( )A .13B .23C .14D .34解析:连接BF 、EF ,∵正四面体A -BCD 中,E 、F 分别是棱BC 和AD 的中点,∴BF ⊥AD ,CF ⊥AD ,又BF ∩CF =F ,∴AD ⊥面BCF ,∴AE 在平面BCF 上的射影为EF ,设异面直线AE 和CF 所成的角为θ,正四面体棱长为1,则AE =CF =32,EF =22.∵cos θ=cos ∠AEF ·cos ∠EFC ,∴cos θ=2232×2232=23.故直线AE 和CF 所成的角的余弦值为23.故选B .答案:B9.已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1x +y ≤3y ≥a (x -3),若z =2x +y 的最小值为1,则a 等于( )A .14B .12C .1D .2解析:先根据约束条件画出可行域,如图示:z =2x +y ,将最小值转化为y 轴上的截距的最小值,当直线z =2x +y 经过点B 时,z 最小,由⎩⎪⎨⎪⎧ x =12x +y =1得:⎩⎪⎨⎪⎧x =1y =-1,代入直线y =a (x -3)得,a =12, 故选B .答案:B10.在△ABC 中,BC =6,AB =2,1+tan A tan B =2ABAC ,则AC =( )A .6-1B .1+ 6C .3-1D .1+ 3解析:∵1+tan A tan B =2AB AC ,∴sin (A +B )sin B cos A =2c b ,∴sin C sin B cos A =2c b ,∴1cos A =2,即cos A =12,A ∈(0,π),解得A =π3. 由余弦定理可得:(6)2=22+b 2-4b cos π3,∴b 2-2b -2=0,解得b =1+ 3.故选D . 答案:D11.已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( )A .2x +y +1=0B .2x -y -5=0C .2x -y -1=0D . 2x -y +5=0解析:设Q (x ,y ),则P (-2-x,4-y ),代入2x -y +3=0得2x -y +5=0. 答案:D12.设函数f (x )满足xf ′(x )+f (x )=ln x x ,f (e)=1e,则函数f (x )( ) A .在(0,e)上单调递增,在(e ,+∞)上单调递减 B .在(0,+∞)上单调递增C .在(0,e)上单调递减,在(e ,+∞)上单调递增D .在(0,+∞)上单调递减解析:∵[xf (x )]′=xf ′(x )+f (x ),∴[xf (x )]′=ln x x =⎝⎛⎭⎫ln 2x 2+c ′,∴xf (x )=12ln 2x +c ,∴f (x )=ln 2x 2x +c x,∵f (e)=1e ,∴1e =12e +c e ,即c =12,∴f ′(x )=2ln x -ln 2x 2x 2-12x 2=-ln 2x -2ln x +12x 2=-(ln x -1)22x 2<0,∴f (x )在(0,+∞)为减函数.故选D . 答案:D二、填空题:本大题共4小题,每小题5分,共20分.13.在二项式⎝ ⎛⎭⎪⎪⎫3x -123x 6的展开式中,第四项的系数为________. 解析:由已知二项式得到展开式的第四项为: T 4=C 36(3x )3⎝ ⎛⎭⎪⎫-123x 3=-52. 答案:-5214.设S n 是数列{a n }的前n 项和,2S n +1=S n +S n +2(n ∈N *),若a 3=3,则a 100=______. 解析:∵S n 是数列{a n }的前n 项和,2S n +1=S n +S n +2(n ∈N *), ∴数列{S n }是等差数列,设公差为d ,可得S n -S n -1=d . ∴a 3=S 3-S 2=d =3,则a 100=S 100-S 99=d =3.故答案为3. 答案:315.已知向量|a |=2,b 与(b -a )的夹角为30°,则|b |最大值为________. 解析:以|a |,|b |为邻边做平行四边形ABCD ,设AB →=a ,AD →=b , 则BD →=b -a ,由题意∠ADB =30°,设∠ABD =θ,∵|a |=2,∴在△ABD 中,由正弦定理可得,AB sin 30°=AD sin θ,∴AD =4sin θ≤4.即|b |的最大值为4.故答案为4. 答案:416.设点M ,N 是抛物线y =ax 2(a >0)上任意两点,点G (0,-1)满足GN →·GM →>0,则a 的取值范围是_________.解析:过G 点作抛物线的两条切线,设切线方程为y =kx -1, 切点坐标为A (x 0,y 0),B (-x 0,y 0),则由导数的几何意义可知⎩⎪⎨⎪⎧y 0=ax 20y 0=kx 0-12ax 0=k ,解得k =±2a .∵GN →·GM →>0恒成立,∴∠AOB <90°, 即∠AGO <45°,∴|k |>tan45°=1,即2a >1, 解得a >14.故答案为⎝⎛⎭⎫14,+∞.答案:⎝⎛⎭⎫14,+∞ 三、解答题:17.(12分)已知数列{a n }的前n 项和为S n ,且⎩⎨⎧⎭⎬⎫S n n +1是首项和公差均为12的等差数列.(1)求数列{a n }的通项公式;(2)若b n =a 2n +1+a 2n +2a n +1·a n +2,求数列{b n }的前n 项和T n .解:(1)∵⎩⎨⎧⎭⎬⎫S n n +1是首项和公差均为12的等差数列,∴S n n +1=12+12(n -1)=n2,∴S n =n (n +1)2.∴n =1时,a 1=S 1=1;n ≥2时,a n =S n -S n -1=n (n +1)2-n (n -1)2=n .n =1时也成立.∴a n =n .(2)b n =a 2n +1+a 2n +2a n +1·a n +2=(n +1)2+(n +2)2(n +1)(n +2)=n +1n +2+n +2n +1=2+1n +1-1n +2,∴数列{b n }的前n 项和T n =2n +⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n +1-1n +2=2n +12-1n +2.18.(12分)2017年省内事业单位面向社会公开招聘工作人员,为保证公平竞争,报名者需要参加笔试和面试两部分,且要求笔试成绩必须大于或等于90分的才有资格参加面试,90分以下(不含90分)则被淘汰.现有2 000名竞聘者参加笔试,参加笔试的成绩按区间[30,50),[50,70),[70,90),[90,110),[110,130),[130,150]分段,其频率分布直方图如下图所示(频率分布直方图有污损),但是知道参加面试的人数为500,且笔试成绩在[50,110)的人数为1 440.(1)根据频率分布直方图,估算竞聘者参加笔试的平均成绩;(2)若在面试过程中每人最多有5次选题答题的机会,累计答题或答错3题即终止答题.答对3题者方可参加复赛.已知面试者甲答对每一个问题的概率都相同,并且相互之间没有影响.若他连续三次答题中答对一次的概率为964,求面试者甲答题个数X 的分布列和数学期望.解:(1)设竞聘者成绩在区间[30,50),[90,110),[110,130)的人数分别为x ,y ,z , 则(0.017 0+0.014 0)×20×2 000+x =2 000-500,解得x =260, (0.017 0+0.014 0)×20×2 000+y =1 440,解得y =200, 0.003 2×20×2 000+200+z =500,解得z =172, 竞聘者参加笔试的平均成绩为:12 000×(260×40+200×100+172×120)+(0.014×60+0.017×80+0.003 2×140)×20=78.48(分).(2)设面试者甲每道题答对的概率为p ,则C 13p (1-p )2=964,解得p =34, 面试者甲答题个数X 的可能取值为3,4,5, 则P (X =3)=⎝⎛⎭⎫343+⎝⎛⎭⎫143=716,P (X =4)=C 13⎝⎛⎭⎫14⎝⎛⎭⎫343+C 13⎝⎛⎭⎫34⎝⎛⎭⎫142⎝⎛⎭⎫14=45128, P (X =5)=1-P (X =3)-P (X =4)=1-716-45128=27128,∴X 的分布列为:E (X )=716×3+45128×4+27128×5=483128.19.(12分)如图,在四棱锥P -ABCD 中,已知PB ⊥底面ABCD ,BC ⊥AB ,AD ∥BC ,AB =AD =2,CD ⊥PD ,异面直线P A 与CD 所成角等于60°.(1)求证:平面PCD ⊥平面PBD ;(2)求直线CD 和平面P AD 所成角的正弦值;(3)在棱P A 上是否存在一点E ,使得平面P AB 与平面BDE 所成锐二面角的正切值为5?若存在,指出点E 的位置,若不存在,请说明理由.(1)证明:∵PB ⊥底面ABCD ,∴PB ⊥CD , 又∵CD ⊥PD ,PD ∩PB =P ,PD ,PB ⊂平面PBD , ∴CD ⊥平面PBD ,∵CD ⊂平面PCD , ∴平面PCD ⊥平面PBD .(2)解:如图,以B 为原点,BA 、BC 、BP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,由(1)知△BCD 是等腰直角三角形,∴BC =4,设BP =b (b >0),则B (0,0,0),A (2,0,0),C (0,4,0),D (2,2,0),P (0,0,b ), 则P A →=(2,0,-b ),CD →=(2,-2,0), ∵异面直线P A 、CD 所成角为60°,∴cos 60°=|P A →·CD →||P A →||CD →|=44+b 2·22=12,解得b =2, ∵AD →=(0,2,0),P A →=(2,0,-2),设平面P AD 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AD →=2y =0n ·P A →=2x -2z =0,取x =1,得n =(1,0,1),设直线CD 和平面P AD 所成角为θ,则sin θ=|cos 〈CD →,n 〉|=|CD →·n ||CD →||n |=22×8=12,∴直线CD 和平面P AD 所成角的正弦值为12.(3)假设棱P A 上存在一点E ,使得平面P AB 与平面BDE 所成锐二面角的正切值为5, 设PE →=λP A →(0<λ<1),且E (x ,y ,z ),则(x ,y ,z -2)=λ(2,0,-2), ∴E (2λ,0,2-2λ),设平面DEB 的一个法向量为m =(a ,b ,c ), BE →=(2λ,0,2-2λ),BD →=(2,2,0),则⎩⎪⎨⎪⎧m ·BE →=2λa +(2-2λ)c =0m ·BD →=2a +2b =0,取a =λ-1,得m =(λ-1,1-λ,λ),平面P AB 的法向量p =(0,1,0),∵平面P AB 与平面BDE 所成锐二面角的正切值为5, ∴平面P AB 与平面BDE 所成锐二面角的余弦值为66, ∴|cos 〈m ,p 〉|=|m ·p ||m ||p |=1-λ2(1-λ)2+λ2=66, 解得λ=23或λ=2(舍),∴在棱P A 上存在一点E ,使得平面P AB 与平面BDE 所成锐二面角的正切值为5,E 为棱P A 上靠近A 的三等分点.20.(12分)如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别是A (-2,0),B (2,0),离心率为22.设点P (a ,t )(t ≠0),连接P A 交椭圆于点C ,坐标原点是O .(1)证明:OP ⊥BC ;(2)若三角形ABC 的面积不大于四边形OBPC 的面积,求|t |的最小值. (1)证明:由题意可知:a =2,e =ca =1-b 2a 2=22,则b =1, ∴椭圆的标准方程:x 22+y 2=1,设直线P A 的方程 y =t22(x +2),则⎩⎨⎧x 22+y 2=1y =t22(x +2),整理得:(4+t 2)x 2+22t 2x +2t 2-8=0, 解得:x 1=-2,x 2=42-2t 24+t 2,则C 点坐标⎝ ⎛⎭⎪⎫42-2t24+t2,4t 4+t 2, 故直线BC 的斜率k BC =-2t ,直线OP 的斜率k OP =t 2, ∴k BC ·k OP =-1, ∴OP ⊥BC ;(2)解:由(1)可知:四边形OBPC 的面积 S 1=12×|OP |×|BC |=2|t ||t 2+2|t 2+4,则三角形ABC 的面积S 2=12×22×4|t |4+t 2=42|t |4+t 2,由42|t |4+t 2≤2|t ||t 2+2|t 2+4,整理得:t 2+2≥4, 则|t |≥2,∴|t |min =2,|t |的最小值2.21.(12分)已知函数f (x )=2x -(x +1)ln x ,g (x )=x ln x -a x 2-1. (1)求证:对∀x ∈(1,+∞),f (x )<2;(2)若方程g (x )=0有两个根,设两根分别为x 1、x 2,求证:ln x 1+ln x 22>1+2x 1x 2.证明:(1)∵f (x )=2x -(x +1)ln x , ∴f ′(x )=1-ln x -1x ,令h (x )=1-ln x -1x,∴h ′(x )=-1x +1x 2=1-xx 2<0,在(1,+∞)恒成立,∴h (x )在(1,+∞)单调递减, ∴h (x )<h (1)=1-ln 1-1=0,∴f (x )在(1,+∞)单调递减,∴f (x )<f (1)=2, ∴对∀x ∈(1,+∞),f (x )<2(2)由g (x )=x ln x -ax 2-1=0,得ln x -1x =ax ,于是有ln x 1-1x 1=ax 1,ln x 2-1x 2=ax 2,两式相加得ln x 1x 2-x 1+x 2x 1x 2=a (x 1+x 2),①,两式相减得lnx 2x 1-x 1-x 2x 1x 2=a (x 2-x 1),②, 由②可得lnx 2x 1x 2-x 1+1x 1x 2=a ,③,将③代入①可得,ln x 1x 2-x 1+x 2x 1x 2=⎝ ⎛⎭⎪⎪⎫ln x 2x 1x 2-x 1+1x 1x 2(x 1+x 2), 即ln x 1x 2-2×x 1+x 2x 1x 2=x 1+x 2x 2-x 1·ln x 2x 1,不妨设0<x 1<x 2,t =x 2x 1>1,则x 1+x 2x 2-x 1·ln x 2x 1=t +1t -1 ln t ,由(1)可得t +1t -1ln t >2,∴ln x 1x 2-2×x 1+x 2x 1x 2>2,∵ln x 1x 2-2×x 1+x 2x 1x 2<4x 1x 2x 2x 1=ln x 1x 2-4x 1x 2=2ln x 1x 2-4x 1x 2,∴2ln x 1x 2-4x 1x 2>2,∴ln x 1x 2-2x 1x 2>1, 即ln x 1+ln x 22>1+2x 1x 2. 以下两题请任选一题:[选修4-4:坐标系与参数方程]22.(10分)已知直线l 的参数方程为⎩⎨⎧x =mty =3t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ+4ρ2sin 2θ=4,直线l 过曲线C 的左焦点F .(1)直线l 与曲线C 交于A ,B 两点,求|AB |; (2)设曲线C 的内接矩形的周长为c ,求c 的最大值.解:(1)曲线C :x 24+y 2=1,∴F (-3,0),曲线C 与直线联立得13t 2-23t -1=0,方程两根为t 1,t 2,则AB =2|t 1-t 2|=1613. (2)设矩形的第一象限的顶点为(2cos θ,sin θ)⎝⎛⎭⎫0<θ<π2,所以c =4(2cos θ+sin θ)=45sin(θ+φ), 所以当sin(θ+φ)=1时,c 最大值为45. [选修4-5:不等式证明选讲]23.(10分)已知函数f (x )=9sin 2x +4cos 2x ,x ∈⎝⎛⎭⎫0,π2,且f (x )≥t 恒成立. (1)求实数t 的最大值;(2)当t 取最大时,求不等式⎪⎪⎪⎪x +t5+|2x -1|≤6的解集. 解:(1)因为f (x )=9sin 2x +4cos 2x ,x ∈⎝⎛⎭⎫0,π2,且f (x )≥t 恒成立, 所以只需t ≤f (x )min ,又因为f (x )=9sin 2x +4cos 2x =⎝⎛⎭⎫9sin 2x +4cos 2x (sin 2x +cos 2x )=13+9cos 2x sin 2x +4sin 2xcos 2x≥13+29×4=25,所以t ≤25,即t 的最大值为25.(2)t 的最大值为25时原式变为|x +5|+|2x -1|≤6, 当x ≥12时,可得3x +4≤6,解得12≤x ≤23;当x ≤-5时,可得-3x -4≤6,无解;当-5≤x ≤12时,可得-x +6≤6,可得0≤x ≤12;综上可得,原不等式的解集是⎩⎨⎧⎭⎬⎫x |0≤x ≤23.。
2019届高三理科数学一轮复习《充分条件和必要条件》一、选择题(本大题共12小题)1.若两个集合A、B是非空集合,则“AA=⋃”的()BBA=⋂”是“AA. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2.设,则“”是“”的( )A. 必要不充分条件B. 充分不必要条件C. 充分必要条件D. 既不充分也不必要条件3.在中,角所对边分别为,若是钝角三角形,则p是q的()条件A. 充分非必要B. 必要非充分C. 充要条件D. 既不充分也不必要4.设{ a n}是等比数列,则“a1<a2<a3是“数列{ a n}是递增数列”的()条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要5.若实数,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.“”是“函数有零点”的()条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要7.若集合A={1,}、B={3,4}, 则“m= 2 ”是“A∩ B={4}”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.在中,角对应的边分别为.若则“”是" ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件9.“”是“”的()A. 必要不充分条件B. 充分不必要条件C. 充分必要条件D. 既不充分也不必要条件10.若a、b、c是常数,则“a>0且b2-4 ac<0”是“对任意x∈R,有ax2+ bx+ c>0”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 必要条件11.“x>5”的一个必要而不充分条件是()A. B. C. D.12.“是函数在区间内单调递增”的()A. 充分必要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件二、填空题(本大题共4小题)13.有下列四个命题:①命题“若则互为倒数”的逆命题;②命题“面积相等的三角形全等”的否定;③命题“若则有实根”的否命题;④命题“直线和直线垂直的充要条件是”,其中是真命题的序号是_____________14.“函数在上是单调递增函数”是“函数在上是单调递增函数”的条件(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”);15.若<<是不等式m-1<x<m+1成立的一个充分非必要条件,则实数m的取值范围是______ .16.“”是“”的___________条件. (选填“充要”、“充分不必要”、“必要不充分”“既不充分也不必要”)三、解答题(本大题共6小题)17.命题p:实数满足,其中;命题q:实数满足或,且是的必要不充分条件,求的取值范围.18.已知集合 .(1)能否相等?若能,求出实数的值;若不能,试说明理由;(2)若命题,命题,且是充分不必要条件,求实数的取值范围 .19.已知命题:,命题:.(1)若,求实数的值;(2)若是的充分条件,求实数的取值范围.20.集合A==-+,,,B={x| x+m2≥1}.若“x∈A”是“x∈B”的充分不必要条件,求实数m的取值范围.21.已知p:,q:,若是的必要不充分条件,求实数m的取值范围。
2019年安徽省马鞍山市高考数学一模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知集合,,则A. B. C. D.【答案】C【解析】解:,或,;;.故选:C.可解出集合A,B,然后进行补集、交集的运算即可.考查描述法、区间的定义,一元二次不等式的解法,对数函数的单调性,以及交集、补集的运算.2.已知,,其中i是虚数单位,则的虚部为A. B. C. D.【答案】D【解析】解:,,,则的虚部为.故选:D.把,代入,再由复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.已知正项等比数列的前n项和为,若,则A. B. C. D.【答案】B【解析】解:正项等比数列的前n项和为,,,解得 ,,.故选:B .利用正项等比数列 的前n 项和公式、通项公式列出方程组,求出 ,,由此能求出 的值. 本题考查等比数列的前5项和的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.4. 某班男生与女生各一组进行古诗词默写比赛,两组每个同学得分的茎叶图如图所示,男生组和女生组得分的平均数分别为 、 ,标准差分别为 、 ,则A. B. C. D.【答案】D【解析】解:根据茎叶图中的数据,得;甲的平均数是,乙的平均数是 ;甲的方差是s 1 , 标准差是 ;乙的方差是, 标准差是 ; , . 故选:D .根据茎叶图中的数据,求出甲、乙的平均数和方差,得出标准差,通过比较可以得出结论.本题考查了利用茎叶图中的数据求平均数和方差的问题,作为选择题也可以利用平均数与方差表示的含义,估算出结果,是基础题.5. 已知实数x 、y 满足,则 的最大值与最小值之和为A. 5B.C. 6D. 7【答案】B【解析】解:由实数x 、y 满足,作出可行域如图,的几何意义为原点O 到可行域内点的距离的平方, 由图可知,O 到直线 的距离最小为: . 可行域内的点与坐标原点的距离最大: . 的最大值与最小值之和为:.故选:B .由约束条件作出可行域,由 的几何意义,即原点O 到可行域内点的距离的平方,结合点到直线的距离公式以及两点间距离公式求得答案. 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.6. 的展开式中 的系数为A.B. 1024C. 4096D. 5120【答案】C【解析】解: ,二项展开式 的通项为 , 二项展开式 的通项为 ,令,得,所以,展开式中 的系数为 .故选:C .先将二项式变形为 ,分别写出两个二项式展开式的通项,并分别令x 的指数为10,求出两个参数的值,代入展开式之后将两个系数相减可得出答案.本题考查二项式定理求指定项的系数,考查二项式定理的应用,同时也考查了计算能力,属于中等题.7. 已知还数 ,将函数 的图象向右平移个单位,得到数 的图象,则函数图象的一个对称中心是A.B.C.D.【答案】C【解析】解:,将函数 的图象向右平移个单位,得到数 的图象, 即, 由,得,,当 时,,即函数 的一个对称中心为, 故选:C .利用三角函数的平移关系求出 的解析式,结合三角函数的对称性进行求解即可.本题主要考查三角函数的图象变换和性质,求出函数 的解析式以及利用三角函数的对称性是解决本题的关键.8. 已知某几何体的三视图如图所示,网格中小正方形的边长为1,则该几何体的体积为A.B. C.D.【答案】A【解析】解:根据三视图知,该几何体是棱长为2的正方体,截去一个圆锥体,如图所示;则该几何体的体积为.故选:A .根据三视图知该几何体是棱长为2的正方体截去一个圆锥体,结合图中数据求出该几何体的体积.本题利用几何体三视图考查了求几何体体积的应用问题,是基础题.9. 函数的大致图象为A.B.C.D.【答案】D【解析】解:,排除,B,C,当时,,则,排除A,故选:D.利用,以及函数的极限思想进行排除即可.本题主要考查函数图象的识别和判断,利用排除法结合函数的极限思想是解决本题的关键.10.已知三棱锥中,平面平面BCD,,,,则三棱锥的外接球的表面积A. B. C. D.【答案】C【解析】解:平面平面BCD,平面平面,,平面BCD,平面ABD,,则是边长为的等边三角形,由正弦定理可得,的外接圆直径为.所以,三棱锥的外接球直径为,.因此,该球的表面积为.故选:C.先利用平面与平面垂直的性质定理得出平面ABD,并利用正弦定理计算出的外接圆直径2r,然后利用公式计算出外接球的半径R,最后利用球体表面积公式可得出答案.本题考查球体表面积的计算,考查平面与平面垂直的性质定理,解决本题的关键在于找出线面垂直,并利用合适的模型求出球体的半径,同时也考查了计算能力,属于中等题.11.倾斜角为的直线l经过双曲线的左焦点,交双曲线于A、B两点,线段AB的垂直平分线过右焦点,则此双曲线的渐近线方程为A. B. C. D.【答案】A【解析】解:如图为的垂直平分线,可得,且,可得,,由双曲线的定义可得,,即有,即有,,,由,可得,可得,即,,则渐近线方程为.故选:A.由垂直平分线性质定理可得,运用解直角三角形和双曲线的定义,求得,结合勾股定理,可得a,c的关系,进而得到a,b的关系,即可得到所求双曲线的渐近线方程.本题考查双曲线的方程和性质,主要是渐近线方程的求法,考查垂直平分线的性质和解直角三角形,注意运用双曲线的定义,考查运算能力,属于中档题.12.1642年,帕斯卡发明了一种可以进行十进制加减法的机械计算机年,莱布尼茨改进了帕斯卡的计算机,但莱布尼兹认为十进制的运算在计算机上实现起来过于复杂,随即提出了“二进制”数的概念之后,人们对进位制的效率问题进行了深入的研究研究方法如下:对于正整数n,,我们准备nx不同的卡片,其中写有数字0,1,,的卡片各有n张如果用这些卡片表示n位x进制数,通过不同的卡片组合,这些卡片可以表示x个不同的整数例如,时,我们可以表示出共个不同的整数假设卡片的总数nx为一个定值,那么x进制的效率最高则意味着nx张卡片所表示的不同整数的个数最大根据上述研究方法,几进制的效率最高?A. 二进制B. 三进制C. 十进制D. 十六进制【答案】B【解析】解:设为一定值.则nx张卡片所表示的不同整数的个数,,假设x,,则,两边求导可得:,可得时,函数y取得最大值.比较,的大小即可.分别6次方可得:,,可得,.根据上述研究方法,3进制的效率最高.故选:B.设为一定值可得nx张卡片所表示的不同整数的个数,,假设x,,可得,利用求导研究其单调性即可得出.本题考查了利用研究函数的单调性极值与最值、进位制,考查了推理能力与计算能力,属于中档题.二、填空题(本大题共4小题,共20.0分)13.已知函数,则______.【答案】【解析】解:函数,,.故答案为:.推导出,从而,由此能求出结果.本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.14.已知向量,单位向量满足,则向量的坐标为______.【答案】或【解析】解:设向量,则,又,,即,;由解得或;则向量的坐标为或故答案为:或设出向量的坐标,根据题意列出方程组求单位向量的坐标.本题考查了平面向量的坐标运算与应用问题,是基础题.15.已知抛物线C:的焦点F为椭圆的右顶点,直线l是抛物线C的准线,点A在抛物线C上,过A作,垂足为B,若直线BF的斜率,则的面积为______.【答案】【解析】解:抛物线C:的焦点F为椭圆的右顶点,,.设,,可得.故A在上,可得.,则的面积为.故答案为:.可得设,,可得求得,即可得的面积.本题考查直线和抛物线的位置关系,解题时要认真审题,仔细解答.16.已知正项数列的前n项和为,数列的前n项积为,若,则数列中最接近2019的是第______项【答案】45【解析】解:,可得,且;由,解得;由,解得;推得,,时,,,由,当时,,当时,,当时,.综上可得数列中最接近2019的是第45项.故答案为:45.分别令,2,3,,归纳得到,再由数列的递推式可得数列的通项公式,进而计算所求值.本题考查数列的通项公式的求法,注意运用归纳法,考查化简运算能力,属于中档题.三、解答题(本大题共7小题,共82.0分)17.在中,角A为锐角,,,的面积为.设D为AC的中点,求BD的长度;求的值..解得:,角A为锐角,,为AC的中点,,在中,由余弦定理可得:.,,,在中,由余弦定理可得:,由正弦定理,可得:.【解析】由已知利用三角形面积公式可求,由角A为锐角,利用同角三角函数基本关系式可求,由D为AC的中点,可求,在中,由余弦定理可得BD的值.由已知在中,根据余弦定理可得BC,进而根据正弦定理可得的值.本题主要考查了三角形面积公式,同角三角函数基本关系式,余弦定理,正弦定理在解三角形中的综合应用,考查了转化思想和数形结合思想的应用,属于中档题.18.田忌赛马是《史记》中记载的一个故事,说的是齐国将军田忌经常与齐国众公子赛马,孙膑发也们的马脚力都差不多,都分为上、中、下三等于是孙膑给田忌将军制定了一个必胜策略:比赛即将开始时,他让田忌用下等马对战公子们的上等马,用上等马对战公子们的中等马,用中等马对战公子们的下等马,从而使田忌赢得公子们许多赌注假设田忌的各等级马与某公子的各等级马进行一场比赛获胜的概率如表所示:比赛规则规定:一次比由三场赛马组成,每场由公子和田忌各出一匹马出骞,结果只有胜和负两种,并且毎一方三场赛马的马的等级各不相同,三场比赛中至少获胜两场的一方为最终胜利者.如果按孙膑的策略比赛一次,求田忌获胜的概率;如果比赛约定,只能同等级马对战,每次比赛赌注1000金,即胜利者赢得对方1000金,每月比赛一次,求田忌一年赛马获利的数学期望.【答案】解:记事件A:按孙膑的策略比赛一次,田忌获胜.对于事件A,三次比赛中,由于第三场必输,则前两次比赛中田忌都胜.因此,;设田忌在每次比赛所得奖金为随机变量,则随机变量的可能取值为和1000,若比赛一次,田忌获胜,则三场比赛中,田忌输赢的分布为:胜胜胜、负胜胜、胜负胜、胜胜负,设比赛一次,田忌获胜的概率为P,则.随机变量的分布列如下表所示:所以,.因此,田忌一年赛马获利的数学期望为金.【解析】由题意知,田忌第三场比赛必输,则前两场比赛都胜,因而利用相互独立事件的概率乘法公式可得出答案;先计算出田忌比赛一次获胜的概率,并计算出田忌比赛一次获利的数学期望,再这个期望上乘以12即可得出田忌一年赛马获利的数学期望.本题考查离散型随机变量及其数学期望,解决本题的关键就是弄清概率的类型,并计算出相应事件的概率,考查计算能力,属于中等题.19.已知三棱柱中,,,,.求证:面面ABC;若,在线段C上是否存在一点P,使二面角的平面角的余弦值为?若存在,确定点P的位置;若不存在,说明理由,【答案】证明:如图,,四边形为菱形,连接,则,又,且,平面,则,又,即,平面,而平面ABC,面面ABC;解:以C为坐标原点,分别以CA,CB所在直线为x,y轴建立空间直角坐标系,,,,0,,2,,0,,0,设在线段AC上存在一点P,满足,使得二面角的平面角的余弦值为.则.0,,,,,.设平面的一个法向量为,由,取,得;平面的一个法向量为.由,解得:舍,或.故在线段AC上存在一点P,满足,使二面角的平面角的余弦值为.【解析】由,可得四边形为菱形,则,又,利用线面垂直的判定可得平面,得到,结合,即可证明平面,从而得到面面ABC;以C为坐标原点,分别以CA,CB所在直线为x,y轴建立空间直角坐标系,设在线段AC上存在一点P,满足,使得二面角的平面角的余弦值为,利用二面角的平面角的余弦值为求得值得答案.本题考查平面与平面垂直的判定,考查空间想象能力与思维能力,训练了利用空间向量求解二面角,是中档题.20.已知椭圆E的方程为,离心率,且矩轴长为4.求椭圆E的方程;已知,,若直线l与圆相切,且交椭圆E于C、D两点,记的面积为,记的面积为,求的最大值.【答案】解:设椭圆E的焦距为,椭圆E的短轴长为,则,由题意可得,解得,因此,椭圆E的方程为;由题意知,直线l的斜率存在且斜率不为零,不妨设直线l的方程为,设点、,由于直线l与圆,则有,所以,.点A到直线l的距离为,点B到直线l的距离为,将直线l的方程与椭圆E的方程联立,消去y并整理得.由韦达定理可得,.由弦长公式可得.所以,.当且仅当时,即当时,等号成立.因此,的最大值为12.【解析】根据题意列出有关a、b、c的方程组,求出a、b、c的值,可得出椭圆E的方程;设直线l的方程为,先利用原点到直线l的距离为2,得出m与k满足的等式,并将直线l的方程与椭圆E的方程联立,列出韦达定理,计算出弦CD的长度的表达式,然后分别计算点A、B到直线l的距离、,并利用三角形的面积公式求出的表达式,通过化简,利用基本不等式可求出的最大值.本题考查直线与椭圆的综合,考查椭圆的方程以及直线与圆的位置关系,同时也考查了韦达定理法在椭圆综合中的应用,属于中等题.21.已知函数在上是增函数.求实数a的值;若函数有三个零点,求实数k的取值范围.【答案】解:当时,是增函数,且,故当时,为增函数,即恒成立,函数的导数恒成立,当时,,此时相应恒成立,即恒成立,即恒成立,当时,,此时相应恒成立,即恒成立,即恒成立,则,即.若,则在R上是增函数,此时最多有一个零点,不可能有三个零点,则不满足条件.故,当时,有一个零点,,故0也是故的一个零点,故当时,有且只有一个零点,即有且只有一个解,即,得,,则,在时有且只有一个根,即与函数,在时有且只有一个交点,,由得,即得,得,此时函数递增,由得,即得,得,此时函数递减,即当时,函数取得极小值,此时极小值为,,作出的图象如图,要使与函数,在时有且只有一个交点,则或,即实数k的取值范围是.【解析】根据分段函数的单调性,结合导数判断函数在上单调递增即可讨论时不满足,则,根据分段函数单调在时,已经存在两个零点,在等价为当时,有且只有一个零点,利用参数法分离法结合图象进行求解即可.本题主要考查分段函数的应用,以及函数零点个数问题,求函数的导数,研究函数的单调性和极值以及利用参数法分离法,以及数形结合是解决本题的关键综合性较强,运算量较大,难度较大.22.在平面直角坐标系xOy中,将椭圆上每一点的横坐标保持不变,纵坐标变为原来的一半,得曲线C,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为.写出曲线C的普通方程和直线l的直角坐标方程;已知点且直线l与曲线C交于A、B两点,求的值.【答案】解:将椭圆上每一点的横坐标保持不变,纵坐标变为原来的一半,得曲线C,设为椭圆上的点,在已知变换下变为C上点,依题意,得.由,得,曲线C的普通方程为.直线l的极坐标方程为.直线l的直角坐标方程为.点且直线l与曲线C交于A、B两点,在直线l上,把直线l的参数方程代入,得:,则,..【解析】设为椭圆上的点,在已知变换下变为C上点,依题意,得由此能求出曲线C 的普通方程;由直线l的极坐标方程,能求出直线l的直角坐标方程.求出直线l的参数方程代入,得:,由此能求出的值.本题考查曲线的普通方程、直线的直角坐标方程的求法,考查两线段的倒数和的求法,考查参数方程、直角坐标方程、极坐标方程的互化等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.23.已知函数.解不等式;若,使成立,求实数m的取值范围.【答案】解:或或解得不等式的解集为由得令,则,,【解析】分三种情况去绝对值解不等式再相并;由得,在构函数,求出最小值为,转化为可解得.本题考查了绝对值不等式的解法,属中档题.。
一、选择题1.已知集合3{(,)|}A x y y x ==,{(,)|}B x y y x ==,则A B 的元素个数是()A.0B. 1C. 2D. 3 答案: D 解答:【评析】本题考查集合的表示、交集的运算,考查幂函数的图像.凸显了直观想象考查.解答本题首先要能理解集合,A B 表示的是点集,表示的是两个幂函数的图像上所有点组成的集合,其次需要熟悉常见幂函数的图像,最后要理解集合A B 的元素个数就是这两个函数图像交点的个数.由幂函数3,y x y x ==的图像可以知道,它们有三个交点(1,1),(0,0),(1,1)--,所以集合A B有三个元素.2.已知在复平面内,复数12,z z 对应的点分别是12(2,1),(1,1)Z Z -,则复数12z z 对应的点在() A.第一象限 B. 第二象限 C. 第三象限D.第四象限 答案: D 解答:【评析】本题考查复数的几何意义、复数运算,突显数学运算、直观想象的考查.解答本题首先 要理解复平面内点与复数的对应关系,其次要能熟练进行复数的四则运算.122i (2i)(1i)13i 1i 22z z ----===+,对应的点的坐标是13(,)22-,在第四象限. 3.已知{}n a 是等差数列,且12343,6a a a a +=-+=-,则{}n a 的前10项和等于()A. 15-B. 25-C. 45-D. 60- 答案: C 解答:【评析】本题考查等差数列的判定、通项公式、前n 项和公式,考查方程思想.突显了数学建模的考查.解答本题首先要知道{}n a 是等差数列,则212{}nn a a 也是等差数列,建立等差数列模型,其次是要找好新等差数列的首项123a a +=-及公差3412'()()d a a a a ,最后需要理解到{}n a 的前10项和即为数列212{}nn a a 的前5项和.解答本题也可以首先根据条件列出两个关于1,a d的方程,从而求出1,a d,再利用前n 项和公式求解.101234910()()()3(12345)45S a a a a a a =++++++=-⨯++++=-.4.已知向量(1,0),(3,4)a b ==-的夹角为θ,则cos θ2等于()A. 725-B.725 C. 2425-D.2425答案: A 解答:【评析】本题考查向量的坐标运算、二倍角公式,突显了数学抽象的考查.解答本题首先要根据 向量夹角公式和坐标运算公式求出cos ,再利用二倍角的余弦公式求解.33cos 155θ-==-⨯,所以27cos 22cos 125θθ=-=-. 5.已知00(,)A x y 是抛物线24y x =上的点,点F 的坐标为(1,0),则“0[1,3]x ∈”是“||[3,4]AF ∈”的()A.充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 答案: B 解答:【评析】本题考查抛物线的定义、标准方程、充要条件的判定,突显了逻辑推理的考查.解答本题首先要根据抛物线的标准方程和定义找到||AF 与0x的关系,从而发现||[3,4]AF 的等价条件,其次要正确理解条件与结论的关系,准确作出判断.||[3,4]AF ∈001[3,4][2,3]x x ⇔+∈⇔∈,因为[2,3][1,3]⊂≠,所以选B .6.下图是相关变量,x y 的散点图,现对这两个变量进行线性相关分析,方案一:根据图中所有数据,得到线性回归方程11y b x a =+,相关系数为1r ;方案二:剔除点(10,21),根据剩下数据得到线性回归方程:22y b x a =+,相关系数为2r .则()A.1201r r <<<B. 2101r r <<<C. 1210r r -<<<D. 2110r r -<<< 答案: D 解答:【评析】本题考查线性回归分析,重点考查散点图、相关系数,突显了数据分析、直观想象的考查.解答本题首先要能理解散点图,其次需要理解相关系数与正负相关的关系,最后还需要理解相关系数的意义:其绝对值越接近1,说明两个变量越具有线性相关性.负相关,所以12,0r r <,因为剔除点(10,21)后,剩下点数据更具有线性相关性,||r 更接近1,所以2110r r -<<<.7.设23342,log 15,log 20a b c ===,则,,a b c 的大小关系是() A.a b c << B. a c b << C. b c a << D. c b a << 答案: B 解答:【评析】本题考查对数运算,考查指数、对数函数的性质,考查不等式的性质,考查函数与方程思想,突显了数学运算、数学建模的考查.解答本题首先需要根据对数运算将,b c 化简,然后建立指数函数、对数函数模型,根据指数函数、对数函数的性质判断,,a b c 与2的大小关系,最后还需要根据换底公式、不等式性质等判断出,b c 的大小关系.122a <=,3log 92b >=,4log 162c >=,所以a 最小,341log 5,1log 5b c =+=+,因为11lg 5lg 50lg 3lg 4lg 3lg 4lg 3lg 4b c <<⇒>⇒>⇒>. 8.执行如图所示程序框图,输出的结果是()A.5B. 6C. 7D. 8 答案: B 解答:【评析】本题考查程序框图、等比数列的判定、等比数列的前n项和公式,突显了数学运算、数学建模的考查.解答本题首先要根据程序框图正确得到等比数列模型,再根据等比数列前n 项和公式求解.该题易错点是B 是数列1{2}n 的前1n 项和,而不是数列{2}n 的前n 项和. 如图所示i n =时,B 是等比数列1{2}n -的前1n +项和,即21122221n n B +=++++=-,由1100210117n B n +≥⇒≥⇒+≥,所以输出的是6.9.过两点(4,0),(4,0)A B -分别作斜率不为0且与圆226290(0)x y x my m +--+=≠相切的直线,AC BC ,当m 变化时,交点C 的轨迹方程是()A.221(3)97x y x -=> B. 221(4)169x y x -=>C. 212(0)y x x => D. 216(0)y x x => 答案: A 解答:【评析】本题考查圆的方程、双曲线的定义及其标准方程.突显了直观想象、逻辑推理的考查.解答本题首先要正确根据圆的方程找到圆心和半径,然后根据圆的切线性质发现动点C 满足的几何条件,从而判断出动点C 的轨迹,再根据双曲线的标准方程找出轨迹方程.圆方程为222(3)()x y m m -+-=与x 轴相切于点(3,0)M ,设,AC BC 与圆的切点分别为,N P ,则||||||||||||6AC BC AN BP AM BM -=-=-=,所以点C 的轨迹是以,A B 为焦点且实轴长为6的双曲线的右支,所以选A .10.在解三角形的问题中,其中一个比较困难的问题是如何由三角形的三边,,a b c 直接求三角形的面积,据说这个问题最早是由古希腊数学家阿基米德解决的,他得到了海伦公式即()()()S p p a p b p c =---,其中1()2p a b c =++.我国南宋著名数学家秦九韶(约1202-1261)也在《数书九章》里面给出了一个等价解法,这个解法写成公式就是2221()4S c a =-∆,这个公式中的∆应该是() A.2()2a cb ++ B.2a c b+- C. 2222c a b +-D.2a b c++ 答案: C 解答:【评析】本题考查余弦定理、三角形面积公式、同角三角函数关系式,弘扬中国古代数学文化,突显了数学抽象的考查.解答本题首先要注意观察、联想三角形面积公式1sin 2Sca B ,从而发现∆应该等于|cos |ca B ,再根据余弦定理得到答案.因为222cos 2c a b ac B +-=1sin 2ac B S ==.11.如图,1111ABCD A B C D -是棱长为4的正方体,P QRH -是棱长为4的正四面体,底面ABCD ,QRH 在同一个平面内,QH BC //,则正方体中过AD 且与平面PHQ 平行的截面面积是()A.B.C.D. 答案: C 解答:【评析】本题考查正棱锥的平行关系、等角定理,考查空间想象能力,突显了直观想象的考查.解答本题首先要根据面面平行的性质定理确定截面的形状,再根据正四面体的性质、等角定理等确定点,E F 的具体位置、AE 的长度,从而求出截面面积.设截面与1111,A B D C 分别相交于点,E F 则//EF AD ,过点P 作平面QRH 的垂线,垂足为O,则O 是底面QRH 的中心.设OR HQ G =,则EAB PGO ∠=∠,又因为23RG RO OG ===,3PO ==,所以sin sin 3PO EAB PGO PG ∠=∠==,所以43EA EA =⇒=,所以四边形AEFD的面积4S =⨯=.12.已知函数e ,0,()2e (1),0xx m mx x f x x x -⎧++<⎪=⎨⎪-≥⎩(e 为自然对数的底),若方程()()0f x f x -+=有且仅有四个不同的解,则实数m 的取值范围是() A.(0,e) B. (e,+)∞ C. (0,2e) D.(2e,)+∞答案: D 解答:【评析】本题考查函数的奇偶性、函数零点、导数的几何意义,考查函数与方程思想、数形结合思想、转化与化归思想,突显了直观想象、数学抽象、逻辑推理的考查.解答本题首先需要根据方程特点构造函数()()()F x f x f x ,将方程根的问题转化为函数零点问题,并根据函数的奇偶性判断出函数()F x 在(0,)上的零点个数,再转化成方程1e ()2x x m x =-解的问题,最后利用数形结合思想,构造两个函数,转化成求切线斜率问题,从而根据斜率的几何意义得因为函数()()()F x f x f x =-+是偶函数,(0)0F ≠,所以零点成对出现,依题意,方程有两个不同的正根,又当0x >时,()e 2x mf x mx -=-+,所以方程可以化为: e e e 02x x x m mx x -++-=,即1e ()2x x m x =-,记()e x g x x =,()e (1)x g x x '=+,设直1()2y m x =-与()g x 图像相切时的切点为(,e )tt t ,则切线方程为e e (1)()tty t t x t -=+-,过点1(,0)2,所以1e e (1)()12t t t t t t -=+-⇒=或12-(舍弃),所以切线的斜率为2e ,由图像可以得2e m >. 二、填空题13.5(2)(1)a b c --的展开式中,32a b c 的系数是. 答案:40-解答:【评析】本题考查二项式定理,突显了数学运算的考查.解答本题首先要将5(2)(1)a b c --化成55(2)(2)a b c a b ---,并注意到5(2)a b -的展开式中不会出现32a b c ,最后用二项式定理求5(2)c a b -⋅-中32a b c 的系数,从而得解.依题意,只需求5(2)c a b -⋅-中32a b c 的系数,是225(2)40C -⋅-=-.14. 已知ABC ∆是等腰直角三角形,||||1AC BC ==,()(R,0)CP CA CB λλλ=+∈>,4AP BP ⋅=,则λ等于.2解答:【评析】本题考查向量的运算、坐标法,考查方程思想,突显直观想象的考查.解答本题首先需要依据直观想象,根据条件建立直角坐标系,将向量的几何运算转化为坐标运算,其次需要根据条件建立关于实数的方程,通过解方程得到解.以,CA CB 所在直线分别为x 轴,y 轴,建立直角坐标系,则(1,0),(0,1),(0,0),(,)A B C P λλ,所以(1,),(,1)AP BP λλλλ=-=-, 所以2(1)4λλ-=,解得2λ=或1-(舍去).15. 如图,已知四棱锥P ABCD -底面是边长为4的正方形,侧面PBC 是一个等腰直角三角形,PB PC =,平面PBC ⊥平面ABCD ,四棱锥P ABCD -外接球的表面积是.答案:32π解答:【评析】本题考查两平面垂直的性质、球的性质及表面积公式,考查空间想象能力,突显了直观想象的考查.解答本题首先要理解到外接球球心与各面中心连线垂直该面,从而通过找两个面的中心,并依据面面垂直的性质过中心作垂线,找到外接球的球心,然后确定外接球的半径,并计算球的表面积得到解.DCBAP过PBC ∆的外心即BC 的中点E 作平面PBC 的垂线,该垂线过正方形的中心O ,所以点O 为该四棱锥外接球的球心,其半径R OA ==2432S R ππ==.16. 已知等比数列{}n a 的前n 项和为n S ,满足12,a =-2S 是34,S S 的等差中项.设m 是整数,若存在N n +∈,使得等式3(1)402n n n S a m a m ++⋅+=成立,则m 的最大值是. 答案:16解答:【评析】本题考查等差中项、等比数列的通项公式及前n 项和公式,考查函数思想.突显了数学运算、数学建模的考查.解答本题首先需要依据条件求出等比数列的通项公式及前n 项和公式,然后要利用函数思想,为了求m 的最值,需要把m 表示成n 的函数,最后根据,m n 是整数确定这个函数的定义域,从而找到这个函数值域,得到m 的最大值. 因为2S 是34,S S 的等差中项,所以34243234322222S S S S S S S a a q +=⇒-=-⇒=-⇒=-,所以(2)nn a =-,12(2)3n n S +---=,等式3(1)402n n n S a m a m ++⋅+=,化为:2(2)[(2)4]0n n m -+-+=, OE DCB AP因此2(2)16(2)4(2)4(2)4n nn n m --==--+-+-+,因为m 为整数,所以|(2)4|161,2,3nn -+≤⇒=,当1n =时,2482m m -=--+⇒=-, 当2n =时,164428m m -=-+⇒=-, 当3n =时,1684164m m -=--+⇒=-. 三、解答题17.如图,点,A B 分别是圆心在原点,半径为1和2的圆上的动点.动点A 从初始位置0(cos,sin )33A ππ开始,按逆时针方向以角速度s /rad 2作圆周运动,同时点B 从初始位置)0,2(0B 开始,按顺时针方向以角速度s /rad 2作圆周运动.记t 时刻,点B A ,的纵坐标分别为12,y y .(Ⅰ)求4t π=时刻,,A B 两点间的距离;(Ⅱ)求12yy y =+关于时间(0)t t >的函数关系式,并求当(0,]2t π∈时,这个函数的值域.答案:(Ⅰ)7;(Ⅱ)[2.解答:【评析】考查余弦定理、三角函数的定义、两角和与差的三角函数公式、三角函数的图像,考查函数思想、数形结合思想,突显了数学建模的考查.解答本题第一问首先要确定π4t=时刻,A B两点的坐标及,OA OB的长度、夹角,再利用两点距离公式或余弦定理求解;解答本题第二问,需要根据三角函数的定义先确定12,y y与t的函数关系式,从而得到所求函数关系式,再利用两角和与差的三角函数公式将函数关系式化成sin()y A x k(或cos()y A x k)的形式,最后根据三角函数图像确定值域.(Ⅰ)4tπ=时,,232xOA xOBπππ∠=+∠=,所以23AOBπ∠=,…… 2分又||1,||2OA OB==,所以2222||12212cos73ABπ=+-⨯⨯=,即,A B两点间的距离为7. ………………6分(Ⅱ)依题意,1sin(2)3y tπ=+,ty2sin22-=,………………8分所以3sin(2)2sin22sin2)323y t t t t tππ=+-=-=+,即函数关系为)(0)3y t tπ=+>,………………10分当(0,]2tπ∈时,2(,]333tπππ4+∈,所以1cos(2)[1,)32tπ+∈-,[2y∈.…12分18.已知四棱锥ABCD P -的底面ABCD 是等腰梯形,CD AB //,ACBD O =,AC PB ⊥,222====CD AB PB PA ,3=AC .(Ⅰ)证明:平面⊥PBD 平面ABCD ;(Ⅱ)点E 是棱PC 上一点,且//OE 平面PAD ,求二面角A OB E --的余弦值. 答案: (Ⅰ)见解析;(Ⅱ)2-. 解答:【评析】本题考查线面、面面垂直关系的判定,考查线面平行的性质,考查空间向量的应用,考查二面角的计算,考查转化与化归思想,考查空间想象能力,突显了直观想象、数学运算的考查.解答本题第一问首先需要在面ABCD 内发现垂直关系,再利用判定定理转化为线面垂直,从而得到面面垂直;解答本题第二问首先要通过垂直关系的判定正确建立空间直角坐标系找好,,A B P 的坐标,然后将线面平行即//OE 平面PAD 转化为线线平行PA OE //,从而确定平面的法向量,最后根据法向量求出二面角的余弦.本题特色是通过平行关系的转化避开了计算点E 的坐标,简化了求法向量的运算,本题要特别注意的是所求二面角是钝角,其余弦值为负.(Ⅰ)证明:等腰梯形ABCD 中,OAB ∆∽OCD ∆,所以2OA ABOC CD==,又3AC =,所以2OA =,所以2=OB . 所以222OA OB AB +=,所以OB OA ⊥,即BD AC ⊥,………………3分 又因为AC PB ⊥,且BDPB 于点B ,所以⊥AC 平面PBD ,又因为AC ⊂平面ABCD ,因此平面⊥PBD 平面ABCD . …6分 (Ⅱ)连接PO ,由(Ⅰ)知,⊥AC 平面PBD ,所以PO AC ⊥,所以222=-=OA PA PO ,所以222PO OB PB +=,即OB PO ⊥,………………7分 如图以,,OA OB OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则(2,0,0),(0,2,0),(0,0,2)A B P ,平面AOB 的法向量(0,0,1)m =, 因为//OE 平面PAD ,⊂OE 平面PAC , 平面PAC平面PA PAD =,所以PA OE //,………………9分设平面EOB 的法向量为(,,)n x y z =,则n OB ⊥,即0=y ,(,,)(2,0,2)0n OE n AP x y z x z ⊥⇒⊥⇒⋅-=⇒=,令1x =,则(1,0,1)n =,……11分所以cos ,2m n <>==,所以所求二面角的余弦值是2-.……………12分19.某公司生产某种产品,一条流水线年产量为10000件,该生产线分为两段,流水线第一段生产的半成品的质量指标会影响第二段生产成品的等级,具体见下表:从第一道生产工序抽样调查了100件,得到频率分布直方图如图:若生产一件一等品、二等品、三等品的利润分别是100元、60元、100 元.(Ⅰ)以各组的中间值估计为该组半成品的质量指标,估算流水线第一段生产的半成品质量指标的平均值;(Ⅱ)将频率估计为概率,试估算一条流水线一年能为该公司创造的利润;(Ⅲ)现在市面上有一种设备可以安装到流水线第一段,价格是20万元,使用寿命是1年,安装这种设备后,流水线第一段半成品的质量指标服从正态分布2(80,2)N ,且不影响产量.请你帮该公司作出决策,是否要购买该设备?说明理由.(参考数据:()0.6826P X μσμσ-<≤+=,(22)0.9548P X μσμσ-<≤+=,(33)0.9974P X μσμσ-<≤+=)答案: (Ⅰ)80.2; (Ⅱ)30万元; (Ⅲ)见解析. 解答:【评析】本题考查频率分布直方图、样本平均数的估算、独立事件的概率、随机变量的分布列及数学期望、正态分布,突显了数学建模、数据分析的考查.解答本题第一问首先要根据频率分布直方图确定各组的频率及中间值,再根据样本平均数的计算公式计算得到平均数;解答本题第二问首先要确定随机变量X 的所有可能取值,再根据独立事件的概率公式求出分布列,最后利用数学期望公式求X 的数学期望;本题第三问首先要根据正态分布的性质确定好,2μσμσ--等,然后类似第二问求出随机变量Y 的分布列及数学期望,最后根据随机变量,X Y 的数学期望的大小决策.本题特色综合考察概率统计的几个主要模型、体现概率统计在实际中的主要应用:用于决策. (Ⅰ)平均值为:720.1760.25800.3840.2880.1580.2⨯+⨯+⨯+⨯+⨯=.…3分 (Ⅱ)由频率直方图,第一段生产半成品质量指标(74P x ≤或86)x >0.25=,(7478P x <≤或8286)x <≤0.45=,(7882)0.3P x <≤=,………………4分设生产一件产品的利润为X 元,则(100)P X ==0.20.250.40.450.60.30.41⨯+⨯+⨯=, (60)0.30.250.30.450.30.30.3P X ==⨯+⨯+⨯=,(100)0.50.250.30.450.10.30.29P X =-=⨯+⨯+⨯=,………………7分所以生产一件成品的平均利润是1000.41600.31000.2930⨯+⨯-⨯=元,所以一条流水线一年能为该公司带来利润的估计值是30万元. ………………8分 (Ⅲ)374,78,82,386μσμσμσμσ-=-=+=+=,………………9分 设引入该设备后生产一件成品利润为Y 元,则(100)0.00260.20.31480.40.68260.60.536P Y ==⨯+⨯+⨯=, (60)0.00260.30.31480.30.68260.30.3P Y ==⨯+⨯+⨯=,(100)0.00260.50.31480.30.68260.10.164P Y =-=⨯+⨯+⨯=,………………11分所以引入该设备后生产一件成品平均利润为1000.536600.31000.16455.2EY =⨯+⨯-⨯=元,所以引入该设备后一条流水线一年能为该公司带来利润的估计值是55.2万元, 增加收入55.23020 5.2--=万元, 综上,应该引入该设备.………………12分20.已知椭圆2222:1(0)x y C a b a b +=>>的左右焦点分别为12(1,0),(1,0)F F -,点000(,)(0)P x y y >是椭圆C 上的一个动点,当直线OP的斜率等于2时,2PF x ⊥轴. (Ⅰ)求椭圆C 的方程;(Ⅱ)过点P 且斜率为02x y -的直线1l 与直线2:2l x =相交于点Q ,试判断以PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,说明理由. 答案:(Ⅰ)2212x y +=; (Ⅱ)见解析. 解答:【评析】本题考查椭圆的标准方程与几何性质、直线方程,考查数形结合思想、特殊与一般思想,突显了直观想象、数学运算、逻辑推理的考查.解答本题第一问首先要根据题设给的点P 的特殊位置,建立关于,,a b c 的等式,再通过解方程求出,,a b c ,从而得到所求标准方程;解答本题第二问首先要根据条件利用直线方程的点斜式得到直线1l 的方程,并能利用椭圆方程整理化简方程,然后求出点Q 的坐标,再根据圆的知识转化成向量垂直,待定出定点坐标.本题特色是回避了直线与椭圆方程联立,利用韦达定理求解.(Ⅰ)依题意22b a ac =⇒=,………………2分又因为221a b -=,所以2a =2=a .所以椭圆C 的方程为2212x y +=. ………………5分(Ⅱ)直线1l 的方程:0000()2x y y x x y -=--即22000022y y x x x y =-++,………………6分依题意,有220012x y +=,即220022x y +=,所以1l 的方程为0022x x y y +=,所以点01(2,)x Q y -,………………8分 设定点(,0)M m ,由000010()(2)0x MP MQ x m m y y -⋅=⇒--+⋅=,………………10分 即20(1)(1)0m x m -+-=,所以1m =,综上,存在定点(1,0)M 符合条件.………………12分 21.已知函数x xax a x f e )(e )(2-+=(e 为自然对数的底,a 为常数,a R ∈)有两个极值点21,x x ,且210x x <<.(Ⅰ)求a 的取值范围;(Ⅱ)若0)(2121<++x x m x x 恒成立,求实数m 的取值范围. 答案:(Ⅰ)(2e,)+∞;(Ⅱ)]21,(--∞.解答: 【评析】本题考查导数运算、导数的应用,考查函数与方程思想、转化与化归思想、数形结合思想、分类与整合思想,突显了数学抽象、数学建模、逻辑推理的考查.解答本题第一问首先要通过导数运算将极值点问题转化为方程解的问题,从而转化成两个函数图像交点问题,再根据导数的应用确定函数的极值点、单调性,从而画出简图,判断出所求范围;解答本题第二问首先要灵活根据隐含条件消元,将不等式转化为关于12x x 的不等式,从而构造函数,建立函数模型,再通过分类讨论该函数的单调性,确定实数m 的取值范围.(Ⅰ)xxax x f e e 2)(2-=',由0)(='x f 得xa xe 2=,………………2分依题意,该方程有两个不同正实数根,记x x h x e 2)(=,则2)1(e 2)(x x x h x -=',当01x <<时,()0h x '<;当1>x 时,()0h x '>,所以函数()h x 在1x =处取得最小值(1)2e h =,所以a 的取值范围是(2e,)+∞.…………5分(Ⅱ)由(Ⅰ)得:21(1,)x x ∈+∞,且112e xax =,所以112ln ln ln x x a +=+,222ln ln ln x x a +=+,所以1212ln ln x x x x -=-,………………6分因此0)(2121<++x x m x x 恒成立,即22122121(ln ln )()0x x x x m x x -+-<恒成立,即22221112ln 0x x x m x x x -+<,设21x t x =,即1ln ()0t m t t +-<在(1,)t ∈+∞上恒成立,从而0m <,记1()ln ()g t t m t t =+-,(1)0g =,211()(1)g t m t t'=++22(1)m t tt ++=,…8分 ① 当12m ≤-时,t t 212>+,所以t t m -<+)1(2,从而()0g t '<, 则()g t 在区间[1,)+∞上单调递减,所以当1t >时,()(1)0g t g <=恒成立;……………10分② 102m -<<时,()0g t '>等价于2110t t m ++<,2140m∆=->, 所以2110t t m ++=有两根21,t t ,且121211,0t t t t m=+=->,可以不妨设2110t t <<<, ()0g t '>在),1(2t t ∈时成立,所以()g t 在区间),1(2t 上单调递增,当),1(2t t ∈时,()(1)0g t g >=,即1ln ()0t m t t+-<在(1,)t ∈+∞上不恒成立,综上,m 的取值范围是]21,(--∞.………………12分四、选做题(2选1)22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为4cos (0)ρθρ=>.M 为曲线1C 上的动点,点P 在射线OM 上,且满足||||20OM OP ⋅=. (Ⅰ)求点P 的轨迹2C 的直角坐标方程;(Ⅱ)设2C 与x 轴交于点D ,过点D 且倾斜角为56π的直线l 与1C 相交于,A B 两点,求||||DA DB ⋅的值.答案: (Ⅰ)5x =; (Ⅱ)5. 解答:【评析】本题考查直线与圆的极坐标方程、极坐标方程与直角坐标方程的互化、直线参数方程的应用,突显了直观想象的考查.解答本题第一问首先要依据动点,P M 的极坐标的关系找到点P 的极坐标方程,再化为直角坐标方程;解答本题第二问首先要根据条件确定直线l 的参数方程,依据参数t 的几何意义,结合解方程,利用韦达定理得到解.(Ⅰ)设P 的极坐标为)0)(,(>ρθρ,M 的极坐标为)0)(,(11>ρθρ,由题设知1,4cos OP OM ρρθ===.所以20cos 4=θρ,………………2分即2C 的极坐标方程cos 5(0)ρθρ=>,所以2C 的直角坐标方程为5x =.………………5分(Ⅱ)交点)0,5(D ,所以直线l的参数方程为5,212x t y t ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数), 曲线1C 的直角坐标方程)0(0422≠=-+x x y x , 代入得:05332=+-t t ,70∆=>,………………8分设方程两根为12,t t ,则12,t t 分别是,A B 对应的参数, 所以5||||||21==⋅t t DB DA .………………10分 23.选修4-5:不等式选讲 已知函数|1|||)(-++=x a x x f .(Ⅰ)当1=a 时,求不等式4)(+≥x x f 的解集;(Ⅱ)若不等式1)(2-≥a x f 恒成立,求实数a 的取值范围.答案:(Ⅰ)4{|3x x ≤-或4}x ≥; (Ⅱ)[1,2]-. 解答:【评析】本题考查绝对值不等式的解法、绝对值不等式定理,考查转化与化归思想、分类与整合思想,突显了数学运算、逻辑推理的考查.解答本题第一问首先要通过对绝对值内式子符号的讨论,将不等式转化为一元一次不等式组,再分别解各不等式组,最后求各不等式组解集的并集,得到所求不等式的解集;解答本题第二问首先要利用绝对值不等式定理得到函数()f x 的最小值,将不等式恒成立问题转化为关于a 的不等式解的问题,再通过对绝对值内式子符号的讨论,转化为不含绝对值的不等式组,最后求解不等式组.(Ⅰ)不等式为4|1||1|+≥-++x x x ,可以转化为:1,114x x x x ≤-⎧⎨---+≥+⎩或11,114x x x x -<<⎧⎨+-+≥+⎩或1,114x x x x ≥⎧⎨++-≥+⎩,………………2分 解得43x ≤-或4x ≥,所以原不等式的解集是4{|3x x ≤-或4}x ≥. ………………5分 (Ⅱ)|1||)1()(|)(min +=--+=a x a x x f ,所以1|1|2-≥+a a ⎩⎨⎧-≥---<⇔11,12a a a 或2111a a a ≥-⎧⎨+≥-⎩,………………8分 解得a ∈∅或21≤≤-a .所以实数a 的取值范围是[1,2]-.………………10分。
高2019届学业质量调研抽测(第一次)理科数学参考答案及评分意见一、选择题:1-5 DABDB 6-10 CADCD 11-12 CD二、填空题: 13.3i +, 14.-84 , 15. 16.]21,2[--. 三、解答题:17.解:(I) 当2≥n 时,利用公式1--=n n n S S a ,可得nn a 2=,.................4分验证当1=n 时是适合的,即)(*2N n a n n ∈=;..........................5分(II)n n b b b b T ++++=...321 23225282...(31)2nn =⨯+⨯+⨯++-, ①2n T = 234+1225282...(31)2n n ⨯+⨯+⨯++-, ②......................7分①-②得:23143232...32(31)2n n n T n +-=+⨯+⨯++⨯-- ...........9分114(12)43(31)212n n n -+-=+⨯---18(34)2n n +=---,18(34)2n n T n +∴=+-............................................12分18. 解:(I )由题意得,(0.02+0.032+a +0.018)×10=1,解得a =0.03;........2分由最高矩形中点的横坐标为20,可估计该镇居民10月份用水量的众数约为20吨;.......................................................4分 50户居民10月份用水量的平均值为:x =0.2×10+0.32×20+0.3×30+0.18×40=24.6(吨),故估计该镇居民10月份每户用水量的平均值约为24.6吨...............6分(Ⅱ)利用样本估计总体,该镇居民10月份用水量在[5,15]内的概率为0.2,则X ~B (3,51),X =0,1,2,3; )0=X P (=30354)(C =12564;)1=X P (=5154213)(C =12548; )2=X P (=2235154)(C =12512;)3=X P (=33351)(C =1251..............10分 ∴X 的分布列为:1253125212511250=⨯+⨯+⨯+⨯=∴)(X E . .................12分19. 解:(Ⅰ)在ABO V 中,Θ390OA OB AOB ==?o,,∴60OAB?o,.................................................2分在OAM V 中,由余弦定理得:2222cos 7OM AO AM AO AM A =+-?,∴OM = ..................................................5分(Ⅱ),060AOMq q ?<<o o ,在OAM V 中,由sin sin OM OAOAB OMA =行,得2sin(60)OM q =+o ,在OAN V 中,由sin sin ON OAOAB ONA =行,得2sin(90)2cos ON θθ==+o, ..................................................................8分∴11sin 22OMN S OM ON MON =仔=?V 2sin(60)θ⋅+o12=2716sin(60)cos θθ+o60θ<<o.......................11分 当26090θ+=o o,即15θ=o∴应设计15AOM?o ,可使OMN V 的面积最小...................12分20.解:(I )Θ|1AF |、|21F F|、|2AF |构成等差数列, ∴2a =|1AF |+|2AF |=2|21F F|=8,∴a =4.....2分 又因为c =2,所以2b =12,.....................3分∴椭圆C 的方程为1121622=+y x ................4分 (II )假设存在直线AB ,使得21S S =,显然直线AB 不能与x ,y 轴垂直.设AB 方程为)2(+=x k y ,..................................................5分将其代入1121622=+y x ,整理得 0481616342222=-+++k x k x k )(,....6分 设A ),11y x (,B ),22y x (,∴22214316kk x x +-=+, ∴点G 的横坐标为22214382k k x x +-=+,∴G )436438222k kk k ++-,(........ 8分 Θ DG ⊥AB ,∴1438436222-=⨯-+-+k x kk k kD,解得22D 432k k x +-=,即D (22432k k +-,0), ∵Rt △1GDF 和Rt △ODE 相似,∴若21S S =,则|GD |=|OD |,..........10分∴ 222222222432)436()432438k k k k k k k k +-=+++--+-(,整理得 8k 2+9=0. Θ方程8k 2+9=0无解,∴不存在直线AB ,使得 21S S =...............12分21.解:(I )Θa x x x f +-+=211)(',..................................1分 ∴函数)(x f 在),2[+∞上为减函数,即0211)('≤+-+=a x x x f 在),2[+∞上恒成立,也即112+-≤x x a 在),2[+∞上恒成立,.................................3分令112)(+-=x x x h ,则)(x h 在),2[+∞上为增函数,min )(x h =)2(h =113,∴113a ≤;........................................................5分(II )设211x x ≤<-,令)()()()221221x f m x f m x m x m f x F --+=(,],12x x -∈(, 则0)2=x F (,)(')(')'12211x f m x m x m f m x F -+=()()(')('2211x f x m x m f m -+=,0)()1(22222221221≥-=+-=+-=-+x x m x m x m x m m x x x m x m Θ,x x m x m ≥+∴221,..................................................7分又a x x x f +-+=211)('Θ,02)1(1)(''2<-+-=x x f ,)('x f ∴在),1(+∞-上是减函数,)(')('221x f x m x m f ≤+∴,0)(')('2211≤-+∴)(x f x m x m f m ,即0)'≤x F (,......................9分 )x F (∴在],12x -(上是减函数,0)()2=≥∴x F x F (,0)≥∴x F (,0)()()(221221≥--+∴x f m x f m x m x m f ,...........................11分],12x x -∈∴(,有)()()(221221x f m x f m x m x m f +≥+,又211x x ≤<-Θ,)()()(22112211x f m x f m x m x m f +≥+∴.................................12分22.解:(I )由1(4x tt y at=+⎧⎨=+⎩为参数)得,直线l 的直角坐标方程为:4(1)y a x -=-,..2分由P 的极坐标为()1π,得:P 的直角坐标为()1-,0,............................3分又点P 在直线上,代入得2a =,...............................................4分 ∴直线l 的直角坐标方程为:22y x =+ .......................................5分(II )由24sin 50ρρθ--=得曲线C 的直角坐标方程为:22450x y y +--=,即:22(2)9x y +-=...........................................................6分∴曲线C 的圆心为(0,2)M ,半径3r =..............................................7分 ∵直线l :4(1)y a x -=-过定点N (1,4),且该点在圆C 内,..........................8分 ∴直线l 与圆C 交于,A B 两点,当AB 最小时,有l MN ⊥,1l MN k k ∴⋅=-,...............9分101422l k -∴=-=--,直线l 的直角坐标方程14(1)2y x -=--,化为极坐标方程为:cos 2sin 90ρθρθ+-=.....................................10分 23. 解:(I )原函数可化为:13(23()1(22)213(22)2)x x f x x x x x ⎧--⎪⎪⎪=+-≤≤⎨⎪⎪+>⎩<-⎪ ,..................................................3分函数()f x 的图象与x 轴所围成的三角形三顶点坐标分别为:2(6,0),(2,2),(,0)3----,∴此三角形面积1216(6)2233S =⨯-+⨯=...................................5分 (II )由(I )知函数()f x 的最小值M =(2)2f -=-,.................................6分⸫关于x 的不等式22x x m M +-≤有实数解即222x x m +-≤-有实数解,即222m x x ≥++有实数解, .................................................8分令2()2h x x x =++,当12x =-时,2min 117()()2224h x =--+=,72,4m ∴≥ 即7.8m ≥........................................................10分。
一、选择题1.已知集合3{(,)|}A x y y x ==,{(,)|}B x y y x ==,则A B 的元素个数是( )A. 0B. 1C. 2D. 3 答案: D 解答:【评析】本题考查集合的表示、交集的运算,考查幂函数的图像.凸显了直观想象考查.解答本题首先要能理解集合,A B 表示的是点集,表示的是两个幂函数的图像上所有点组成的集合,其次需要熟悉常见幂函数的图像,最后要理解集合A B 的元素个数就是这两个函数图像交点的个数.由幂函数3,y x y x ==的图像可以知道,它们有三个交点(1,1),(0,0),(1,1)--,所以集合A B有三个元素.2.已知在复平面内,复数12,z z 对应的点分别是12(2,1),(1,1)Z Z -,则复数12z z 对应的点在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 答案: D 解答:【评析】本题考查复数的几何意义、复数运算,突显数学运算、直观想象的考查.解答本题首先 要理解复平面内点与复数的对应关系,其次要能熟练进行复数的四则运算.122i (2i)(1i)13i1i 22z z ----===+,对应的点的坐标是13(,)22-,在第四象限. 3.已知{}n a 是等差数列,且12343,6a a a a +=-+=-,则{}n a 的前10项和等于( )A. 15-B. 25-C. 45-D. 60- 答案: C 解答:【评析】本题考查等差数列的判定、通项公式、前n 项和公式,考查方程思想.突显了数学建模的考查.解答本题首先要知道{}n a 是等差数列,则212{}n n a a -+也是等差数列,建立等差数列模型,其次是要找好新等差数列的首项123a a +=-及公差3412'()()d a a a a =+-+,最后需要理解到{}n a 的前10项和即为数列212{}n n a a -+的前5项和.解答本题也可以首先根据条件列出两个关于1,a d 的方程,从而求出1,a d ,再利用前n 项和公式求解.101234910()()()3(12345)45S a a a a a a =++++++=-⨯++++=-.4. 已知向量(1,0),(3,4)a b ==-的夹角为θ,则cos θ2等于( )A. 725-B.725C. 2425-D.2425答案: A 解答:【评析】本题考查向量的坐标运算、二倍角公式,突显了数学抽象的考查.解答本题首先要根据 向量夹角公式和坐标运算公式求出cos q ,再利用二倍角的余弦公式求解.33cos 155θ-==-⨯,所以27cos 22cos 125θθ=-=-. 5.已知00(,)A x y 是抛物线24y x =上的点,点F 的坐标为(1,0),则“0[1,3]x ∈”是 “||[3,4]AF ∈”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 答案: B 解答:【评析】本题考查抛物线的定义、标准方程、充要条件的判定,突显了逻辑推理的考查.解答本题首先要根据抛物线的标准方程和定义找到||AF 与0x 的关系,从而发现||[3,4]AF Î的等价条件,其次要正确理解条件与结论的关系,准确作出判断.||[3,4]AF ∈001[3,4][2,3]x x ⇔+∈⇔∈,因为[2,3][1,3]⊂≠,所以选B .6.下图是相关变量,x y 的散点图,现对这两个变量进行线性相关分析,方案一:根据图中所有数据,得到线性回归方程11y b x a =+,相关系数为1r ;方案二:剔除点(10,21),根据剩下数据得到线性回归方程:22y b x a =+,相关系数为2r .则( )A. 1201r r <<<B. 2101r r <<<C. 1210r r -<<<D. 2110r r -<<< 答案: D 解答:【评析】本题考查线性回归分析,重点考查散点图、相关系数,突显了数据分析、直观想象的考查.解答本题首先要能理解散点图,其次需要理解相关系数与正负相关的关系,最后还需要理解相关系数的意义:其绝对值越接近1,说明两个变量越具有线性相关性.负相关,所以12,0r r <,因为剔除点(10,21)后,剩下点数据更具有线性相关性,||r 更接近1,所以2110r r -<<<.7. 设23342,log 15,log 20a b c ===,则,,a b c 的大小关系是( ) A. a b c << B. a c b <<C. b c a <<D. c b a << 答案: B 解答:【评析】本题考查对数运算,考查指数、对数函数的性质,考查不等式的性质,考查函数与方程思想,突显了数学运算、数学建模的考查.解答本题首先需要根据对数运算将,b c 化简,然后建立指数函数、对数函数模型,根据指数函数、对数函数的性质判断,,a b c 与2的大小关系,最后还需要根据换底公式、不等式性质等判断出,b c 的大小关系.122a <=,3log 92b >=,4log 162c >=,所以a 最小,341log 5,1log 5b c =+=+,因为11lg5lg50lg3lg 4lg3lg 4lg3lg 4b c <<⇒>⇒>⇒>. 8. 执行如图所示程序框图,输出的结果是( )A. 5B. 6C. 7D. 8 答案: B 解答:【评析】本题考查程序框图、等比数列的判定、等比数列的前n 项和公式,突显了数学运算、数学建模的考查.解答本题首先要根据程序框图正确得到等比数列模型,再根据等比数列前n 项和公式求解.该题易错点是B 是数列1{2}n -的前1n +项和,而不是数列{2}n的前n 项和. 如图所示i n =时,B 是等比数列1{2}n -的前1n +项和,即21122221n n B +=++++=-,由1100210117n B n +≥⇒≥⇒+≥,所以输出的是6.9.过两点(4,0),(4,0)A B -分别作斜率不为0且与圆226290(0)x y x my m +--+=≠相切的直线,AC BC ,当m 变化时,交点C 的轨迹方程是( )A.221(3)97x y x -=> B. 221(4)169x y x -=>C. 212(0)y x x =>D. 216(0)y x x => 答案: A 解答:【评析】本题考查圆的方程、双曲线的定义及其标准方程.突显了直观想象、逻辑推理的考查.解答本题首先要正确根据圆的方程找到圆心和半径,然后根据圆的切线性质发现动点C 满足的几何条件,从而判断出动点C 的轨迹,再根据双曲线的标准方程找出轨迹方程.圆方程为222(3)()x y m m -+-=与x 轴相切于点(3,0)M ,设,AC BC 与圆的切点分别为,N P ,则||||||||||||6AC BC AN BP AM BM -=-=-=,所以点C 的轨迹是以,A B 为焦点且实轴长为6的双曲线的右支,所以选A .10. 在解三角形的问题中,其中一个比较困难的问题是如何由三角形的三边,,a b c 直接求三角形的面积,据说这个问题最早是由古希腊数学家阿基米德解决的,他得到了海伦公式即()()()S p p a p b p c =---,其中1()2p a b c =++.我国南宋著名数学家秦九韶(约1202-1261)也在《数书九章》里面给出了一个等价解法,这个解法写成公式就是2221()4S c a =-∆,这个公式中的∆应该是( ) A. 2()2a cb ++ B.2a c b+- C. 2222c a b +-D.2a b c++ 答案:C 解答:【评析】本题考查余弦定理、三角形面积公式、同角三角函数关系式,弘扬中国古代数学文化,突显了数学抽象的考查.解答本题首先要注意观察、联想三角形面积公式1sin 2S ca B=,从而发现∆应该等于|cos |ca B ,再根据余弦定理得到答案.因为222cos 2c a b ac B +-=,1sin 2ac B S ==.11.如图,1111ABCD A BC D -是棱长为4的正方体,P QRH -是棱长为4的正四面体,底面ABCD ,QRH 在同一个平面内,QH BC //,则正方体中过AD 且与平面PHQ 平行的截面面积是( )A.B.C.D. 答案: C 解答:【评析】本题考查正棱锥的平行关系、等角定理,考查空间想象能力,突显了直观想象的考查.解答本题首先要根据面面平行的性质定理确定截面的形状,再根据正四面体的性质、等角定理等确定点,E F 的具体位置、AE 的长度,从而求出截面面积.设截面与1111,A B D C 分别相交于点,E F 则//EF AD ,过点P 作平面QRH 的垂线,垂足为O ,则O 是底面Q R H 的中心.设ORHQ G =,则EAB PGO ∠=∠,又因为2RG RO OG ===,3PO =,所以sin sin 3PO EAB PGO PG ∠=∠==,所以4EA EA =⇒=,所以四边形AEFD的面积4S =⨯=12.已知函数e ,0,()2e (1),0xx m mx x f x x x -⎧++<⎪=⎨⎪-≥⎩(e 为自然对数的底),若方程()()0f x f x -+=有且仅有四个不同的解,则实数m 的取值范围是( ) A. (0,e) B. (e,+)∞ C. (0,2e) D. (2e,)+∞ 答案: D 解答:【评析】本题考查函数的奇偶性、函数零点、导数的几何意义,考查函数与方程思想、数形结合思想、转化与化归思想,突显了直观想象、数学抽象、逻辑推理的考查.解答本题首先需要根据方程特点构造函数()()()F x f x f x =+-,将方程根的问题转化为函数零点问题,并根据函数的奇偶性判断出函数()F x 在(0,)+?上的零点个数,再转化成方程1e ()2xx m x =-解的问题,最后利用数形结合思想,构造两个函数,转化成求切线斜率问题,从而根据斜率的几何意义得到解. 因为函数()()()F x f x f x =-+是偶函数,(0)0F ≠,所以零点成对出现,依题意,方程有两个不同的正根,又当0x >时,()e 2xmf x mx -=-+,所以方程可以化为:e e e 02x x x m mx x -++-=,即1e ()2x x m x =-,记()e x g x x =,()e (1)x g x x '=+,设直1()2y m x =-与()g x 图像相切时的切点为(,e )t t t ,则切线方程为e e (1)()t t y t t x t -=+-,过点1(,0)2,所以1e e (1)()12t tt t t t -=+-⇒=或12-(舍弃),所以切线的斜率为2e ,由图像可以得2e m >.二、填空题13.5(2)(1)a b c --的展开式中,32a b c 的系数是 . 答案:40-解答:【评析】本题考查二项式定理,突显了数学运算的考查.解答本题首先要将5(2)(1)a b c --化成55(2)(2)a b c a b ---,并注意到5(2)a b -的展开式中不会出现32a b c ,最后用二项式定理求5(2)c a b -⋅-中32a b c 的系数,从而得解.依题意,只需求5(2)c a b -⋅-中32a b c 的系数,是225(2)40C -⋅-=-.14. 已知ABC ∆是等腰直角三角形,||||1AC BC ==,()(R,0)CP CA CB λλλ=+∈>u u r u u r u u r,4AP BP ⋅=uu u r uu r,则λ等于 .答案:2解答:【评析】本题考查向量的运算、坐标法,考查方程思想,突显直观想象的考查.解答本题首先需要依据直观想象,根据条件建立直角坐标系,将向量的几何运算转化为坐标运算,其次需要根据条件建立关于实数l 的方程,通过解方程得到解.以,CA CB 所在直线分别为x 轴,y 轴,建立直角坐标系,则(1,0),(0,1),(0,0),(,)A B C P λλ,所以(1,),(,1)AP BP λλλλ=-=-u u u r u u r,所以2(1)4λλ-=,解得2λ=或1-(舍去).15. 如图,已知四棱锥P ABCD -底面是边长为4的正方形,侧面PBC 是一个等腰直角三角形,PB PC =,平面PBC ⊥平面ABCD ,四棱锥P ABCD -外接球的表面积是 .答案:32π解答:【评析】本题考查两平面垂直的性质、球的性质及表面积公式,考查空间想象能力,突显了直观想象的考查.解答本题首先要理解到外接球球心与各面中心连线垂直该面,从而通过找两个面的中心,并依据面面垂直的性质过中心作垂线,找到外接球的球心,然后确定外接球的半径,并计算球的表面积得到解.过PBC ∆的外心即BC 的中点E 作平面PBC 的垂线,该垂线过正方形的中心O ,所以点O 为该四棱锥外接球的球心,其半径R OA ==,所以外接球的表面积是2432S R ππ==.16. 已知等比数列{}n a 的前n 项和为n S ,满足12,a =-2S 是34,S S 的等差中项.设m 是整数,若存在N n +∈,使得等式3(1)402n n n S a m a m ++⋅+=成立,则m 的最大值是 . 答案:DCBAPOE DCB AP16解答:【评析】本题考查等差中项、等比数列的通项公式及前n 项和公式,考查函数思想.突显了数学运算、数学建模的考查.解答本题首先需要依据条件求出等比数列的通项公式及前n 项和公式,然后要利用函数思想,为了求m 的最值,需要把m 表示成n 的函数,最后根据,m n 是整数确定这个函数的定义域,从而找到这个函数值域,得到m 的最大值. 因为2S 是34,S S 的等差中项,所以34243234322222S S S S S S S a a q +=⇒-=-⇒=-⇒=-,所以(2)nn a =-,12(2)3n n S +---=,等式3(1)402n n n S a m a m ++⋅+=,化为:2(2)[(2)4]0n n m -+-+=, 因此2(2)16(2)4(2)4(2)4n nn n m --==--+-+-+, 因为m 为整数,所以|(2)4|161,2,3n n -+≤⇒=, 当1n =时,2482m m -=--+⇒=-, 当2n =时,164428m m -=-+⇒=-, 当3n =时,1684164m m -=--+⇒=-. 三、解答题17.如图,点,A B 分别是圆心在原点,半径为1和2的圆上的动点.动点A 从初始位置0(cos,sin )33A ππ开始,按逆时针方向以角速度s /rad 2作圆周运动,同时点B 从初始位置)0,2(0B 开始,按顺时针方向以角速度s /rad 2作圆周运动.记t 时刻,点B A ,的纵坐标分别为12,y y .(Ⅰ)求4t π=时刻,,A B 两点间的距离;(Ⅱ)求12y y y =+关于时间(0)t t >的函数关系式,并求当(0,]2t π∈时,这个函数的值域.答案:(Ⅰ)7;(Ⅱ)[2. 解答:【评析】考查余弦定理、三角函数的定义、两角和与差的三角函数公式、三角函数的图像,考查函数思想、数形结合思想,突显了数学建模的考查.解答本题第一问首先要确定π4t =时刻,A B 两点的坐标及,OA OB 的长度、夹角,再利用两点距离公式或余弦定理求解;解答本题第二问,需要根据三角函数的定义先确定12,y y 与t 的函数关系式,从而得到所求函数关系式,再利用两角和与差的三角函数公式将函数关系式化成sin()y A x k w j =++(或cos()y A x k w j =++)的形式,最后根据三角函数图像确定值域. (Ⅰ)4t π=时,,232xOA xOB πππ∠=+∠=,所以23AOB π∠=, …… 2分 又||1,||2OA OB ==,所以2222||12212cos73AB π=+-⨯⨯=, 即,A B 两点间的距离为7. ………………6分(Ⅱ)依题意,1sin(2)3y t π=+,t y 2sin 22-=, ………………8分所以3sin(2)2sin 22sin 2)3223y t t t t t ππ=+-=-=+,即函数关系为)(0)3y t t π=+>, ………………10分当(0,]2t π∈时,2(,]333t πππ4+∈,所以1cos(2)[1,)32t π+∈-,[y ∈.…12分18.已知四棱锥ABCD P -的底面ABCD 是等腰梯形,CD AB //,AC BD O =I ,AC PB ⊥,222====CD AB PB PA ,3=AC .(Ⅰ)证明:平面⊥PBD 平面ABCD ;(Ⅱ)点E 是棱PC 上一点,且//OE 平面PAD ,求二面角A OB E --的余弦值. 答案: (Ⅰ)见解析;(Ⅱ)2-. 解答:【评析】本题考查线面、面面垂直关系的判定,考查线面平行的性质,考查空间向量的应用,考查二面角的计算,考查转化与化归思想,考查空间想象能力,突显了直观想象、数学运算的考查.解答本题第一问首先需要在面ABCD 内发现垂直关系,再利用判定定理转化为线面垂直,从而得到面面垂直;解答本题第二问首先要通过垂直关系的判定正确建立空间直角坐标系找好,,A B P 的坐标,然后将线面平行即//OE 平面PAD 转化为线线平行PA OE //,从而确定平面的法向量,最后根据法向量求出二面角的余弦.本题特色是通过平行关系的转化避开了计算点E 的坐标,简化了求法向量的运算,本题要特别注意的是所求二面角是钝角,其余弦值为负. (Ⅰ)证明:等腰梯形ABCD 中,OAB ∆∽OCD ∆,所以2OA ABOC CD==,又3AC =,所以2OA =,所以2=OB . 所以222OA OB AB +=,所以OB OA ⊥,即BD AC ⊥, ………………3分 又因为AC PB ⊥,且BD PB I 于点B ,所以⊥AC 平面PBD ,又因为AC ⊂平面ABCD ,因此平面⊥PBD 平面ABCD . …6分 (Ⅱ)连接PO ,由(Ⅰ)知,⊥AC 平面PBD ,所以PO AC ⊥,所以222=-=OA PA PO ,所以222PO OB PB +=,即OB PO ⊥, ………………7分如图以,,OA OB OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则(2,0,0),(0,2,0),(0,0,2)A B P ,平面AOB 的法向量(0,0,1)m =u r,因为//OE 平面PAD ,⊂OE 平面PAC ,平面PAC I 平面PA PAD =,所以PA OE //, ………………9分设平面EOB 的法向量为(,,)n x y z =r ,则n OB ⊥r u u u r,即0=y ,(,,)(2,0,2)0n OE n AP x y z x z ⊥⇒⊥⇒⋅-=⇒=r u u u r r u u u r ,令1x =,则(1,0,1)n =r,……11分所以cos ,2m n <>==u r r,所以所求二面角的余弦值是2-.……………12分19.某公司生产某种产品,一条流水线年产量为10000件,该生产线分为两段,流水线第一段生产的半成品的质量指标会影响第二段生产成品的等级,具体见下表:从第一道生产工序抽样调查了100件,得到频率分布直方图如图:若生产一件一等品、二等品、三等品的利润分别是100元、60元、100-元.(Ⅰ)以各组的中间值估计为该组半成品的质量指标,估算流水线第一段生产的半成品质量指标的平均值;(Ⅱ)将频率估计为概率,试估算一条流水线一年能为该公司创造的利润;(Ⅲ)现在市面上有一种设备可以安装到流水线第一段,价格是20万元,使用寿命是1年,安装这种设备后,流水线第一段半成品的质量指标服从正态分布2(80,2)N ,且不影响产量.请你帮该公司作出决策,是否要购买该设备?说明理由.(参考数据:()0.6826P X μσμσ-<≤+=,(22)0.9548P X μσμσ-<≤+=,(33)0.9974P X μσμσ-<≤+=)答案: (Ⅰ)80.2; (Ⅱ)30万元; (Ⅲ)见解析. 解答:【评析】本题考查频率分布直方图、样本平均数的估算、独立事件的概率、随机变量的分布列及数学期望、正态分布,突显了数学建模、数据分析的考查.解答本题第一问首先要根据频率分布直方图确定各组的频率及中间值,再根据样本平均数的计算公式计算得到平均数;解答本题第二问首先要确定随机变量X 的所有可能取值,再根据独立事件的概率公式求出分布列,最后利用数学期望公式求X 的数学期望;本题第三问首先要根据正态分布的性质确定好,2μσμσ--等,然后类似第二问求出随机变量Y 的分布列及数学期望,最后根据随机变量,X Y 的数学期望的大小决策.本题特色综合考察概率统计的几个主要模型、体现概率统计在实际中的主要应用:用于决策. (Ⅰ)平均值为:720.1760.25800.3840.2880.1580.2⨯+⨯+⨯+⨯+⨯= . …3分 (Ⅱ)由频率直方图,第一段生产半成品质量指标(74P x ≤或86)x >0.25=,(7478P x <≤或8286)x <≤0.45=,(7882)0.3P x <≤=, ………………4分设生产一件产品的利润为X 元,则(100)P X ==0.20.250.40.450.60.30.41⨯+⨯+⨯=, (60)0.30.250.30.450.30.30.3P X ==⨯+⨯+⨯=,(100)0.50.250.30.450.10.30.29P X =-=⨯+⨯+⨯=, ………………7分所以生产一件成品的平均利润是1000.41600.31000.2930⨯+⨯-⨯=元,所以一条流水线一年能为该公司带来利润的估计值是30万元. ………………8分 (Ⅲ)374,78,82,386μσμσμσμσ-=-=+=+=, ………………9分 设引入该设备后生产一件成品利润为Y 元,则(100)0.00260.20.31480.40.68260.60.536P Y ==⨯+⨯+⨯=,(60)0.00260.30.31480.30.68260.30.3P Y ==⨯+⨯+⨯=,(100)0.00260.50.31480.30.68260.10.164P Y =-=⨯+⨯+⨯=, ………………11分所以引入该设备后生产一件成品平均利润为1000.536600.31000.16455.2EY =⨯+⨯-⨯=元,所以引入该设备后一条流水线一年能为该公司带来利润的估计值是55.2万元, 增加收入55.23020 5.2--=万元,综上,应该引入该设备. ………………12分20.已知椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12(1,0),(1,0)F F -,点000(,)(0)P x y y >是椭圆C 上的一个动点,当直线OP 的斜率等于2时,2PF x ⊥轴.(Ⅰ)求椭圆C 的方程; (Ⅱ)过点P 且斜率为02x y -的直线1l 与直线2:2l x =相交于点Q ,试判断以PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,说明理由.答案:(Ⅰ)2212x y +=; (Ⅱ)见解析. 解答:【评析】本题考查椭圆的标准方程与几何性质、直线方程,考查数形结合思想、特殊与一般思想,突显了直观想象、数学运算、逻辑推理的考查.解答本题第一问首先要根据题设给的点P 的特殊位置,建立关于,,a b c 的等式,再通过解方程求出,,a b c ,从而得到所求标准方程;解答本题第二问首先要根据条件利用直线方程的点斜式得到直线1l 的方程,并能利用椭圆方程整理化简方程,然后求出点Q 的坐标,再根据圆的知识转化成向量垂直,待定出定点坐标.本题特色是回避了直线与椭圆方程联立,利用韦达定理求解.(Ⅰ)依题意22b a ac =⇒=, ………………2分又因为221a b -=, 所以2a =解得2=a .所以椭圆C 的方程为2212x y +=. ………………5分(Ⅱ)直线1l 的方程:0000()2x y y x x y -=--即22000022y y x x x y =-++,………………6分 依题意,有220012x y +=,即220022x y +=, 所以1l 的方程为0022x x y y +=,所以点01(2,)x Q y -, ………………8分 设定点(,0)M m ,由000010()(2)0x MP MQ x m m y y -⋅=⇒--+⋅=uuu r uuu r , ………………10分即20(1)(1)0m x m -+-=,所以1m =,综上,存在定点(1,0)M 符合条件. ………………12分 21.已知函数x xax a x f e )(e )(2-+=(e 为自然对数的底,a 为常数,a R ∈)有两个极值点21,x x ,且210x x <<.(Ⅰ)求a 的取值范围;(Ⅱ)若0)(2121<++x x m x x 恒成立,求实数m 的取值范围. 答案:(Ⅰ)(2e,)+∞; (Ⅱ)]21,(--∞. 解答:【评析】本题考查导数运算、导数的应用,考查函数与方程思想、转化与化归思想、数形结合思想、分类与整合思想,突显了数学抽象、数学建模、逻辑推理的考查.解答本题第一问首先要通过导数运算将极值点问题转化为方程解的问题,从而转化成两个函数图像交点问题,再根据导数的应用确定函数的极值点、单调性,从而画出简图,判断出所求范围;解答本题第二问首先要灵活根据隐含条件消元,将不等式转化为关于12x x 的不等式,从而构造函数,建立函数模型,再通过分类讨论该函数的单调性,确定实数m 的取值范围.(Ⅰ)xxax x f e e 2)(2-=',由0)(='x f 得xa xe 2=, ………………2分依题意,该方程有两个不同正实数根,记x x h x e 2)(=,则2)1(e 2)(x x x h x -=',当01x <<时,()0h x '<;当1>x 时,()0h x '>,所以函数()h x 在1x =处取得最小值(1)2e h =,所以a 的取值范围是(2e,)+∞. …………5分(Ⅱ)由(Ⅰ)得:21(1,)x x ∈+∞,且112e x ax =,所以112ln ln ln x x a +=+,222ln ln ln x x a +=+,所以1212ln ln x x x x -=-, ………………6分 因此0)(2121<++x x m x x 恒成立,即22122121(ln ln )()0x x x x m x x -+-<恒成立,即22221112ln 0x x x m x x x -+<,设21x t x =,即1ln ()0t m t t +-<在(1,)t ∈+∞上恒成立,从而0m <,记1()ln ()g t t m t t =+-,(1)0g =,211()(1)g t m t t '=++22(1)m t tt++=,…8分 ① 当12m ≤-时,t t 212>+,所以t t m -<+)1(2,从而()0g t '<, 则()g t 在区间[1,)+∞上单调递减,所以当1t >时,()(1)0g t g <=恒成立; ……………10分② 102m -<<时,()0g t '>等价于2110t t m ++<,2140m∆=->, 所以2110t t m ++=有两根21,t t ,且121211,0t t t t m=+=->,可以不妨设2110t t <<<,()0g t '>在),1(2t t ∈时成立,所以()g t 在区间),1(2t 上单调递增,当),1(2t t ∈时,()(1)0g t g >=,即1ln ()0t m t t+-<在(1,)t ∈+∞上不恒成立,综上,m 的取值范围是]21,(--∞. ………………12分 四、选做题(2选1)22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为4cos (0)ρθρ=>.M 为曲线1C 上的动点,点P 在射线OM 上,且满足||||20OM OP ⋅=. (Ⅰ)求点P 的轨迹2C 的直角坐标方程;(Ⅱ)设2C 与x 轴交于点D ,过点D 且倾斜角为56π的直线l 与1C 相交于,A B 两点,求||||DA DB ⋅的值.答案: (Ⅰ)5x =; (Ⅱ)5. 解答:【评析】本题考查直线与圆的极坐标方程、极坐标方程与直角坐标方程的互化、直线参数方程的应用,突显了直观想象的考查.解答本题第一问首先要依据动点,P M 的极坐标的关系找到点P 的极坐标方程,再化为直角坐标方程;解答本题第二问首先要根据条件确定直线l 的参数方程,依据参数t 的几何意义,结合解方程,利用韦达定理得到解.(Ⅰ)设P 的极坐标为)0)(,(>ρθρ,M 的极坐标为)0)(,(11>ρθρ,由题设知1,4cos OP OM ρρθ===.所以20cos 4=θρ, ………………2分 即2C 的极坐标方程cos 5(0)ρθρ=>,所以2C 的直角坐标方程为5x =. ………………5分(Ⅱ)交点)0,5(D ,所以直线l的参数方程为5,12x y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 曲线1C 的直角坐标方程)0(0422≠=-+x x y x ,代入得:05332=+-t t ,70∆=>, ………………8分 设方程两根为12,t t ,则12,t t 分别是,A B 对应的参数,所以5||||||21==⋅t t DB DA . ………………10分23.选修4-5:不等式选讲已知函数|1|||)(-++=x a x x f .(Ⅰ)当1=a 时,求不等式4)(+≥x x f 的解集;(Ⅱ)若不等式1)(2-≥a x f 恒成立,求实数a 的取值范围.答案:(Ⅰ)4{|3x x ≤-或4}x ≥; (Ⅱ)[1,2]-.解答:【评析】本题考查绝对值不等式的解法、绝对值不等式定理,考查转化与化归思想、分类与整合思想,突显了数学运算、逻辑推理的考查.解答本题第一问首先要通过对绝对值内式子符号的讨论,将不等式转化为一元一次不等式组,再分别解各不等式组,最后求各不等式组解集的并集,得到所求不等式的解集;解答本题第二问首先要利用绝对值不等式定理得到函数()f x 的最小值,将不等式恒成立问题转化为关于a 的不等式解的问题,再通过对绝对值内式子符号的讨论,转化为不含绝对值的不等式组,最后求解不等式组.(Ⅰ)不等式为4|1||1|+≥-++x x x ,可以转化为:1,114x x x x ≤-⎧⎨---+≥+⎩或11,114x x x x -<<⎧⎨+-+≥+⎩或1,114x x x x ≥⎧⎨++-≥+⎩, ………………2分 解得43x ≤-或4x ≥,所以原不等式的解集是4{|3x x ≤-或4}x ≥. ………………5分 (Ⅱ)|1||)1()(|)(min +=--+=a x a x x f ,所以1|1|2-≥+a a ⎩⎨⎧-≥---<⇔11,12a a a 或2111a a a ≥-⎧⎨+≥-⎩, ………………8分 解得a ∈∅或21≤≤-a .所以实数a 的取值范围是[1,2]-. ………………10分。
福州市2019届高三普通高中毕业班第一次调研理科数学(满分:150分 时间:120分钟) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)温馨提示:1.答题前,考生先将自己的姓名、班级、座号填写在答题卡上。
2.考生作答时,将答案写在答题卡上。
请按照题号在各题的答题区域内作答.在草稿纸、试题卷上答题无效。
3.考生不能使用计算器答题第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的. 把答案填写在答题卷相应位置上. 1.已知集合{|A x y ==,A B ⋂=∅,则集合B 不可能是A .{|1}x x <-B .{(,)|1}x y y x =-C .2{|}y y x =- D .{|1}x x ≥- 2.已知tan 43α=,则sin2α的值为 A. 2425- B. 2425 C. 725- D. 7253.下列判断错误的是A .“||||am bm <”是“||||a b <”的充分不必要条件B .命题“,0x R ax b ∀∈+≤”的否定是“00,0x R ax b ∃∈+>”C .若()p q ⌝∧为真命题,则,p q 均为假命题D .命题“若p ,则q ⌝”为真命题,则“若q ,则p ⌝”也为真命题4. 在平面直角坐标系xOy 中,四边形ABCD 是平行四边形,()2,1-=AB ,()1,2=AD , 则AC AD ⋅等于A. 5B. 4C. 3D. 2 5.已知函数()x f ax =的图像过点()2,4,令()()n f n f a n ++=11,*∈N n 。
记数列{}n a 的前n 项和为n S ,则2017S 等于A.12016-B.12017-C.12018-D.12018+6.若直线y x =上存在点(,)x y 满足约束条件40230x y x y x m+-≤⎧⎪⎪--≤⎨⎪≥⎪⎩, 则实数m 的最大值 A.-1 B .1 C .32D .27.将函数x x f 2sin )(=的图像保持纵坐标不变,先将横坐标缩短为原来的21,再向右平移6π个单位长度后得到)(x g ,则)(x g 的解析式为A.)6sin()(π-=x x g B.)6sin()(π+=x x g C.)324sin()(π-=x x g D.)64sin()(π-=x x g 8. 已知,,A B C 三点都在以O 为球心的球面上, ,,OA OB OC 两两垂直,三棱锥O ABC -的体积为43,则球O 的表面积为 A.316π B.16π C.323π D.32π9.在△ABC 中,内角C B A ,,所对的边分别为c b a ,,,满足bc a c b =-+222,0>⋅BC AB ,23=a ,则cb +的取值范围是 A.⎪⎭⎫ ⎝⎛23,1 B.⎪⎪⎭⎫ ⎝⎛23,23 C.⎪⎭⎫ ⎝⎛23,21 D.⎥⎦⎤ ⎝⎛23,21 10. 某四面体的三视图如图所示,正视图、俯视图都是腰长为2的 等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四 个面中最大面积为A. 32B. 4C. 22D. 6211.已知()3f x x =,若[]1,2x ∈时,()()210f x ax f x -+-≤,则a 的取值范围是A.1a ≤B.1a ≥C.32a ≥D.32a ≤ 12.ABC ∆中,32AB AC =,点G 是ABC ∆的重心,若BG CG λ=,则λ的取值范围是A.1(4B.2(3C.27(,)38D.17(,)48第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在答题卷相应位置上 13.直线10x -=的倾斜角为 .14.设函数()f x x ax m=+的导函数'()21f x x =+,则21()f x dx -⎰的值等于 .15.如图,在四棱柱1111D C B A ABCD -中,底面ABCD 是正方形,侧棱1AA ⊥底面ABCD . 已知3,11==AA AB ,E 为AB 上一个动点,则CE E D +1的最小值为 .16.已知函数||()e cos πx f x x -=+,给出下列命题:①()f x 的最大值为2; ②()f x 在(10,10)-内的零点之和为0; ③()f x 的任何一个极大值都大于1.其中所有正确命题的序号是____ ____.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知1cos 23A =-,3c =,sin 6sin A C =.(Ⅰ)求a 的值;(Ⅱ)若角A 为锐角,求b 的值及△ABC 的面积.18.(本小题满分12分)已知等比数列{}n a 是递增数列,它的前n 项和为n S ,38a =,且10是24,a a 的等差中项. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列1{}nn a +的前n 项和n T . 19.(本小题满分13分)如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,3PA =,4AD =,23AC =,60ADC ∠=,E 为线段PC 上一点,且PE PC λ=.(Ⅰ)求证:CD AE ⊥;(Ⅱ)若平面PAB ⊥平面PAD ,直线AE 与平面PBC 33,求λ的值.EDCBAP20.(本小题满分12分)已知圆M 过两点(1,1),(1,1)C D --,且圆心M 在20x y +-=上. (Ⅰ) 求圆M 的方程;(Ⅱ) 设P 是直线3480x y ++=上的动点,,PA PB 是圆M 的两条切线,,A B 为切点,求四边形PAMB 面积的最小值. 21.(本小题满分12分)已知函数()ln ,f x x mx m m R =-+∈. (Ⅰ)求函数()f x 的单调区间.(Ⅱ)若()0f x ≤在(0,)x ∈+∞上恒成立,求实数m 的取值范围. (Ⅲ)在(Ⅱ)的条件下,任意的0a b <<,求证:()()1(1)f b f a b a a a -<-+.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的方程为41,532,5x t y t ⎧=-+⎪⎪⎨⎪=+⎪⎩(t 为参数),在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线G 的方程为)4sin(22πθρ+=,正方形OABC 内接于曲线G ,且C B A O ,,,依逆时针方向排列,A 在极轴上.(Ⅰ)将直线l 和曲线G 的方程分别化为普通方程和直角坐标方程;(Ⅱ)若点P 为直线l 上任意一点,求2222PC PB PA PO +++的最小值.23.(本小题满分10分)选修4-5:不等式选讲已知函数122121)(++-=x x x f . (Ⅰ)求函数)(x f 的最小值m ;(Ⅱ)若正实数b a ,满足m ba =+21,且b a x f 2)(+≤对任意的正实数b a ,恒成立,求x 的取值范围.福州市2019届高三普通高中毕业班第一次调研理科数学参考答案1-5 DBCAC 6-10 DCBBA 11-12 CD 13.6π 14. 5615.10 16. ①②③ 12.选D ;设()2,30AB t AC t t ==>。
课时达标检测(三十六)空间几何体的三视图、直观图、表面积与体积1.下列结论正确的是( )A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D A错误,如图①是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B错误,如图②,若△ABC不是直角三角形,或△ABC是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.2.如图是一个空间几何体的三视图,其中正视图、侧视图都是由边长为4和6的矩形以及直径等于4的圆组成,俯视图是直径等于4的圆,该几何体的体积是( )A.41π3B.62π3C.83π3D.104π3解析:选D 由题意得,此几何体为球与圆柱的组合体,其体积V =43π×23+π×22×6=104π3.3.某空间几何体的三视图如图所示,则该几何体的表面积为( )A .12+4 2B .18+8 2C .28D .20+8 2解析:选D 由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图.则该几何体的表面积为S =2×12×2×2+4×2×2+22×4=20+82,故选D.4.《九章算数》中,将底面是直角三角形的直三棱柱称为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的侧面积为( )A.2 B.4+2 2C.4+4 2 D.6+4 2解析:选C 由题可知,该几何体的底面为等腰直角三角形,等腰直角三角形的斜边长为2,腰长为2,棱柱的高为2.所以其侧面积S=2×2+22×2=4+42,故选C.5.已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析:设正方体棱长为a,球半径为R,则43πR3=9π2,∴R=32,∴3a=3,∴a= 3.答案: 3一、选择题1.已知圆锥的表面积为a,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )A.a2B.3πa3πC.23πa3πD.23a3π解析:选C 设圆锥的底面半径为r,母线长为l,由题意知2πr=πl,∴l=2r,则圆锥的表面积S表=πr2+12π(2r)2=a,∴r2=a3π,∴2r =23πa 3π.2.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D .2π解析:选C 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C. 3.一个几何体的三视图如图所示,则该几何体的体积为( )A.163 B.203 C.152D.132解析:选D 该几何体可视为正方体截去两个三棱锥所得,如图所示,所以其体积为23-13×12×2×2×2-13×12×1×1×1=132.故选D. 4.已知正四面体的棱长为2,则其外接球的表面积为( ) A .8π B .12π C.32π D .3π解析:选D 如图所示,过顶点A 作AO ⊥底面BCD ,垂足为O ,则O 为正三角形BCD 的中心,连接DO 并延长交BC 于E ,又正四面体的棱长为2,所以DE =62,OD =23DE =63,所以在直角三角形AOD 中,AO =AD 2-OD 2=233.设正四面体外接球的球心为P ,半径为R ,连接PD ,则在直角三角形POD 中,PD 2=PO 2+OD2,即R 2=⎝ ⎛⎭⎪⎪⎫233-R 2+⎝ ⎛⎭⎪⎪⎫632,解得R =32,所以外接球的表面积S =4πR 2=3π.5.(2018·郑州质检)如图所示是一个几何体的三视图,则这个几何体外接球的表面积为( )A .8πB .16πC .32πD .64π 解析:选C 还原三视图可知该几何体为一个四棱锥,将该四棱锥补成一个长、宽、高分别为22,22,4的长方体,则该长方体外接球的半径r =22+22+422=22,则所求外接球的表面积为4πr 2=32π.6.已知四棱锥P ABCD 的三视图如图所示,则四棱锥P ABCD 的四个侧面中面积的最大值是( )A .6B .8C .2 5D .3 解析:选A 四棱锥如图所示,作PN ⊥平面ABCD ,交DC 于点N ,PC =PD =3,DN =2,则PN =32-22=5,AB =4,BC =2,BC ⊥CD ,故BC ⊥平面PDC ,即BC ⊥PC ,同理AD ⊥PD .设M 为AB 的中点,连接PM ,MN ,则PM =3,S △PDC =12×4×5=25,S △PBC =S △PAD =12×2×3=3,S △PAB =12×4×3=6,所以四棱锥P ABCD 的四个侧面中面积的最大值是6.二、填空题7.在棱长为3的正方体ABCD A 1B 1C 1D 1中,P 在线段BD 1上,且BPPD 1=12,M 为线段B 1C 1上的动点,则三棱锥M PBC 的体积为________. 解析:∵BP PD 1=12,∴点P 到平面BC 1的距离是D 1到平面BC 1距离的13,即三棱锥P MBC 的高h =D 1C 13=1.M 为线段B 1C 1上的点,∴S △MBC =12×3×3=92,∴V M PBC =V P MBC =13×92×1=32.答案:328.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.解析:由三视图可得该几何体是组合体,上面是底面圆的半径为2 m 、高为2 m 的圆锥,下面是底面圆的半径为1 m 、高为4 m 的圆柱,所以该几何体的体积是13×4π×2+4π=20π3(m 3).答案:20π39.如图,正方形O ′A ′B ′C ′的边长为a ,它是一个水平放置的平面图形的直观图,则原图形OABC 的周长是________.解析:由斜二测画法的规则可知,原图形OABC 是一个平行四边形.在原图形OABC 中OB =22a ,OA =a ,且OA ⊥OB ,∴AB =3a ,∴原图形OABC 的周长为2(a +3a )=8a . 答案:8a10.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)解析:由题意知,圆台中截面圆的半径为十寸,圆台内水的体积为V =13πh (r 2中+r 2下+r 中r 下)=π3×9×(102+62+10×6)=588π(立方寸),降雨量为V142π=588π196π=3(寸).答案:3 三、解答题11.已知球的半径为R ,在球内作一个内接圆柱,这个圆柱的底面半径与高为何值时,它的侧面积最大?侧面积的最大值是多少?解:如图为其轴截面,令圆柱的高为h ,底面半径为r ,侧面积为S ,则⎝ ⎛⎭⎪⎫h 22+r 2=R 2, 即h =2R 2-r 2.因为S =2πrh =4πr ·R 2-r 2= 4πr 2R 2-r 2≤4πr 2+R 2-r 224=2πR 2,当且仅当r2=R2-r2,即r=22R时,取等号,即当内接圆柱底面半径为22R,高为2R时,其侧面积的值最大,最大值为2πR2.12.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为3、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.解:(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为 3.所以V=1×1×3= 3.(2)由三视图可知,该平行六面体中,A1D⊥平面ABCD,CD⊥平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形.S=2×(1×1+1×3+1×2)=6+2 3.。