6导体和电介质
- 格式:ppt
- 大小:5.29 MB
- 文档页数:106
电介质和导体的物理特性电介质和导体是电学的基本概念,它们是电路中最重要的两种材料。
电介质和导体各自具有独特的物理特性,它们在电路中的作用也有所不同。
本文将介绍电介质和导体的物理特性及其在电路中的应用。
一、导体导体是一种能够传递电荷的物质。
通常情况下,所有金属都是导体,但并不是所有的导体都是金属。
导体材料最主要的特点是能够将电子传递给其他原子,使其处于高电势状态。
这些高电势原子又可以将电子传递给其他原子,从而使电子在导体内自由流动。
在导体中,电子的运动是自由的,它们可以自由地从一个原子跳跃到另一个原子。
这种自由运动的结果就是导体具有极低的电阻。
因为电子在导体内自由运动,所以导体可以被用作电线和电缆等电路元件。
导体在电路中的应用非常广泛。
电路中的铜线、铝线都是典型的导体。
导体具有良好的电导性,对电路的通电和电流传输起到了重要的作用。
此外,导体还可以作为各种电器设备的连接线路,如电子元器件、家电等。
二、电介质电介质是指那些不能很好地传导电荷的物质,比如空气、玻璃等。
电介质中的电子不能自由地在其中运动,这是由于电介质中的原子束缚电子的力比较大。
当电场通过电介质时,它会把原子拉伸并使电介质中的电子向一个方向暂时借助,从而形成一个致密电荷区,这个区域称为电介质中的电荷分布。
电介质在电路中的应用也有很多,它们主要是用于电容器、绝缘材料等。
电介质本身并不能导电,但在电场的作用下会形成电荷分布,进而形成电容器。
电容器的作用是能够储存电荷,在电路中用来过滤和平滑电压和电流。
电介质也常用作绝缘材料。
绝缘材料的主要作用是隔离电路中的导体,避免电流流失和短路。
电机、变压器、电缆、电线等电器中都需要使用大量绝缘材料。
这些材料不仅需要具备很好的绝缘性能,而且还需要耐高温、耐腐蚀和机械强度等特点,以保障电器设备的正常运行。
三、导体与电介质的对比导体和电介质是两种截然不同的材料,它们在电路中的作用也大相径庭。
导体具有优良的导电性能,它们能够传递电荷并将电压和电流传输到电路中的各个位置。
电是否就具有静电能?为回答这个问题,让我们把带电体的带电过程作下述理解:物体所带电量是由众多电荷元聚集而成的,原先这些电荷元处于彼此远离的状态,使物体带电的过程就是外界把它们从无限远聚集到现在这个物体上来.在外界把众多电荷元由无限远离状态聚集成一个带电体系的过程中,必须作功.据功能原理,外界所作的总功必定等于带电体系电势能的增加.若取众多电荷元处于彼此无限远离状态的电势能为零,带电体系电势能的增加就是它所具有的电势能.所以,一个带电体系所具有的静电能就是该体系所具有的电势能,它等于把各电荷元从无限远离的状态聚集成该带电体系的过程中,外界所作的功.带电体系具有静电能.那么带电体系所具有的静电能是由电荷所携带,还是由电荷激发的电场所携带?即,能量是定域于电荷还是定域于电场?对此,在静电学范围内无法回答,这是因为在一切静电现象中,静电场与静电荷是相互依存,无法分离的.随时间变化的电场和磁场形成电磁波,电磁波则可以脱离激发它的电荷和电流而独立传播并携带能量.太阳光就是一种电磁波,它给大地带来了巨大的能量.可见,静电能是定域于静电场中的.既然静电能是定域于电场中的,那么我们就可以用场量来量度和表示它所具有的能量.下面从平行板电容器两极板间的电场能量推出电场能量的一般表达式.电容器充电过程可以理解为,不断的把微量电dq从一个极板移到另一个极板,最后使两极板分别带有电量+Q和-Q.当两极板的电量分别达到+q和- q 时,两极板间的电势差为,若继续将电量dq从正极板移到负极板,外力所作的元功为式中C是电容器的电容.电容器所带电量从零增加到Q的过程中,外力所作的功为外力所作的功A等于电容器这个带电体系电势能的增加,所增加的这部分能量,储存在电容器极板之间的电场中,因极板原不带电,无电场能,所以极板间电场的能量,在数值上等于外力所作的功A,即(6.31)其中是电容器带电量Q时两极板间的电势差.上式即为电容器极板间电场能量的三种表达式.设电容器极板上所带自由电荷的面密度为σ,极板间充有电容率为ε的电介质,极板面积为S,两极板间的距离为d ,则将其代入(6.31)式便可得其中V=Sd是平行板电容器中电场所占的体积,由此可以求得电容器中静电场能量密度为(6.32)式(6.32)虽然是从平行板电容器极板间的电场这一特殊情况下推出的,但可以证明这个公式是普遍适用的.它适用于匀强电场,也适用于非匀强电场;适用于静电场,也适用于变化的电场.对于非均匀电场,空间各点的电场强度是不同的,但在体积元dV内可视为恒量,所以在体元dV 内的电场能量为对整个电场所在空间积分便可得总的电场能量为(6.33)在各向异性介质中,一般情况下D和E的方向一般不同,这时电场能量密度和总的电场能量应分别为(6.32 ' )(6.33' )例题6.3 把半径为R,总电量为Q的原子核看成密度均匀分布的带电球体,试求它的静电能. 解:原子核可看成处在真空中,利用高斯定理可得原子核内外的场强分布为利用式(6.33)得原子核的静电能为作业(P142):6.20。
第六章 静电场中的导体与电介质§6-1 导体和电介质【基本内容】一、导体周围的电场导体的电结构:导体内部存在可以自由移动的电荷,即自由电子。
静电平衡状态:导体表面和内部没有电荷定向移动的状态。
1、导体的静电平衡条件(1)导体内部场强处处为零0E =v内; (2)导体表面的场强和导体表面垂直。
2、静电平衡推论(1) 静电平衡时,导体内部(宏观体积元内)无净电荷存在; (2) 静电平衡时,导体是一个等势体,其表面是一个等势面。
3、静电平衡时导体表面外侧附近的场强E σε=4、静电平衡时导体上的电荷分布(1) 实心导体:电荷只分布在导体表面。
(2)空腔导体(腔内无电荷):内表面不带电,电荷只分布在导体外表面。
(3)空腔导体(腔内电荷代数和为q ):内表面带电q -,导体外表面的电荷由电荷的守恒定律决定。
5、静电屏蔽 封闭金属壳可屏蔽外电场对内部影响,接地的金属壳可屏蔽内电场对外部的影响。
二、电介质与电场 1、电介质的极化(1)电介质的极化:在外电场作用下,电介质表面和内部出现束缚电荷的现象。
(2)极化的微观机制电介质的分类:(1)无极分子电介质——分子的正、负电荷中心重合的电介质;(2)有极分子电介质——分子的正、负电荷中心不重合的电介质。
极化的微观机制:在外电场作用下,(1)无极分子正、负电荷中心发生相对位移,形成电偶极子,产生位移极化;(2)有极分子因有电偶矩沿外电场取向,形成取向极化。
2、电介质中的电场(1)电位移矢量 D E ε=v v其中ε——电介质的介电常数,0r εεε=,r ε——电介质的相对介电常数。
(2)有电介质时的高斯定理0SD dS q ⋅=∑⎰vv Ñ,式中0q ∑指高斯面内自由电荷代数和。
【典型例题】【例6-1】 三个平行金属板A 、B 和C ,面积都是200cm 2,A 、B 相距4.0mm ,A 、C 相距2.0mm ,B 、C 两板都接地,如图所示。
第6章 静电场中的导体和电介质一、选择题1. 一个不带电的导体球壳半径为r , 球心处放一点电荷, 可测得球壳内外的电场. 此后将该点电荷移至距球心r /2处, 重新测量电场.试问电荷的移动对电场的影响为下列哪一种情况?[ ] (A) 对球壳内外电场无影响(B) 球壳内外电场均改变 (C) 球壳内电场改变, 球壳外电场不变 (D) 球壳内电场不变, 球壳外电场改变2. 当一个导体带电时, 下列陈述中正确的是[ ] (A) 表面上电荷密度较大处电势较高 (B) 表面上曲率较大处电势较高 (C) 表面上每点的电势均相等 (D) 导体内有电力线穿过3. 关于带电导体球中的场强和电势, 下列叙述中正确的是 [ ] (A) 导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零(C) 导体内的电势与导体表面的电势相等(D) 导体内的场强大小和电势均是不为零的常数4. 当一个带电导体达到静电平衡时[ ] (A) 导体内任一点与其表面上任一点的电势差为零 (B) 表面曲率较大处电势较高(C) 导体内部的电势比导体表面的电势高 (D) 表面上电荷密度较大处电势较高5. 一点电荷q 放在一无限大导体平面附近, 相距d , 若无限大导体平面与地相连, 则导体平面上的总电量是 [ ] (A)2q (B) 2q- (C) q (D) q -6. 在一个绝缘的导体球壳的中心放一点电荷q , 则球壳内、外表面上电荷均匀分布.若使q 偏离球心, 则表面电荷分布情况为[ ] (A) 内、外表面仍均匀分布 (B) 内表面均匀分布, 外表面不均匀分布 (C) 内、外表面都不均匀分布 (D) 内表面不均匀分布, 外表面均匀分布7. 带电量不相等的两个球形导体相隔很远, 现用一根细导线将它们连接起来. 若大球半径为m , 小球半径为n , 当静电平衡后, 两球表面的电荷密度之比 σ m /σ n 为[ ] (A) n m (B) mn(C) 22n m (D) 22m n8. 真空中有两块面积相同的金属板, 甲板带电q , 乙板带电Q .现将两板相距很近地平行放置, 并使乙板接地, 则乙板所带的电量为 [ ] (A) 0 (B) -q (C) 2Q q +- (D) 2Qq +T6-1-1图T6-1-5图T6-1-8图9. 在带电量为+q 的金属球的电场中, 为测量某点的电场强度E, 现在该点放一带电量为(+q /3)的试验电荷, 电荷受力为F, 则该点的电场强度满足 [ ] (A) q F E 6> (B) q FE 3> (C) qF E 3< (D) qFE 3=10. 在一个带电量为Q 的大导体附近的P 点, 置一试验电荷q , 实验测得它所受力为F .若考虑到q 不是足够小, 则此时F/q 比P 点未放q时的场强[ ] (A) 小 (B) 大(C) 相等 (D) 大小不能确定11. 有一负电荷靠近一个不带电的孤立导体, 则导体内场强大小将[ ] (A) 不变 (B) 增大 (C) 减小 (D) 其变化不能确定12. 一个带正电的小球放入一个带等量异号电荷、半径为R 的球壳中.在距球心为r (R r <)处的电场与放入小球前相比将 [ ] (A) 放入前后场强相同 (B) 放入小球后场强增加 (C) 因两者电荷异号, 故场强减小(D) 无法判定13. 真空中有一组带电导体, 其中某一导体表面处电荷面密度为σ, 该表面附近的场强大小0/εσ=E , 其中E 是[ ] (A) 该处无穷小面元上电荷产生的场 (B) 该导体上全部电荷在该处产生的场 (C) 这一组导体的所有电荷在该处产生的场 (D) 以上说法都不对14. 设无穷远处电势为零, 半径为R 的导体球带电后其电势为U , 则球外离球心距离为r 处的电场强度大小为[ ] (A) 32r U R (B) r U (C) 2r RU(D) R U15. 一平行板电容器始终与一端电压恒定的电源相连.当此电容器两极间为真空时,其场强为0E , 电位移为0D; 而当两极间充满相对介电常数为εr 的各向同性均匀电介质时,其间场强为E , 电位移为D, 则有关系[ ] (A) 00,/D D E E r==ε(B) 00,D D E E ==(C) r r D D E E εε/,/00==(D) 00,D D E E rε==T6-1-9图 3q qT6-1-10图QqPT6-1-12图 q -q R T6-1-15图16. 一空气平行板电容器接上电源后, 在不断开电源的情况下浸入媒油中, 则极板间的电场强度大小E 和电位移大小D 的变化情况为[ ] (A) E 和D 均减小 (B) E 和D 均增大 (C) E 不变, D 减小 (D) E 不变, D 增大17. 把一个带正电的导体B 靠近一个不带电的绝缘导体A 时, 导体A 的电势将[ ] (A) 升高 (B) 降低 (C) 不变 (D) 变化与否不能确定18. 有两个大小不等的金属球, 其大球半径是小球半径的两倍, 小球带有正电荷.当用金属细线连接两金属球后[ ] (A) 大球电势是小球电势的两倍 (B) 大球电势是小球电势的一半 (C) 所有电荷流向大球 (D) 两球电势相等19. 在无穷大的平板A 上均匀分布正电荷, 面电荷密度为σ,不带净电荷的大导体平板B , 则A 板与B 板间的电势差是 [] (A) 02εσd(B)0εσd(C) 03εσd(D)σεd20. 导体壳内有点电荷q , 壳外有点电荷Q , 导体壳不接地.当Q 值改变时, 下列关于壳内任意一点的电势和任意两点的电势差的说法中正确的是 [ ] (A) 电势改变, 电势差不变(B) 电势不变, 电势差改变(C) 电势和电势差都不变 (D) 电势和电势差都改变21. 两绝缘导体A 、B 带等量异号电荷.现将第三个不带电的导体C 插入A 、B 之间, 但不与A 、B 接触, 则A 、B 间的电势差将[ ] (A) 增大 (B) 减小(C) 不变 (D) 如何变化不能确定22. 两个薄金属同心球壳, 半径分别为R 和r (R >r ), 若分别带上电量为Q 和q 的电荷, 此时二者的电势分别为U 和V .现用导线将二球壳连起来, 则它们的电势为[ ] (A) U (B) V (C) U +V (D))(21V U +23. 就有极分子电介质和无极分子电介质的极化现象而论 [ ] (A) 两类电介质极化的微观过程不同, 宏观结果也不同 (B) 两类电介质极化的微观过程相同, 宏观结果也相同 (C) 两类电介质极化的微观过程相同, 宏观结果不同 (D) 两类电介质极化的微观过程不同, 宏观结果相同T6-1-19图T6-1-20图T6-1-21图T6-1-22图24. 一平行板电容器中充满相对电容率为r ε的各向同性均匀电介质.已知电介质表面极化电荷面密度为±σ', 则极化电荷在电容器中产生的电场强度大小为[ ] (A) 0εσ'(B) 02εσ'(C) rεεσ0'(D) rεσ'25. 一导体球外充满相对电容率为r ε的均匀电介质, 若测得导体表面附近场强为E , 则导体球面上的自由电荷面密度σ为[ ] (A) E 0ε (B) E r εε0 (C) E r ε (D) E r r )(0εεε-27. 在一点电荷产生的电场中, 以点电荷处为球心作一球形封闭高斯面, 电场中有一块对球心不对称的电介质, 则 [ ] (A) 高斯定理成立,并可用其求出封闭面上各点的场强(B) 即使电介质对称分布, 高斯定理也不成立 (C) 高斯定理成立, 但不能用其求出封闭面上各点的电场强度 (D) 高斯定理不成立28. 在某静电场中作一封闭曲面S .若有⎰⎰=⋅sS D 0d, 则S 面内必定[ ] (A) 没有自由电荷 (B) 既无自由电荷, 也无束缚电荷(C) 自由电荷的代数和为零 (D) 自由电荷和束缚电荷的代数和为零29. 关于介质中的高斯定理⎰⎰∑=⋅sq S D 0d, 下列说法中正确的是[ ] (A) 高斯面的D通量仅与面内的自由电荷的代数和有关(B) 高斯面上处处D为零, 则高斯面内必不存在自由电荷(C) 高斯面的D通量由面内的自由电荷和束缚电荷共同决定(D) 高斯面内不包围自由电荷时, 高斯面上各点电位移矢量D为零30. 关于静电场中的电位移线, 下列说法中正确的是 [ ] (A) 起自正电荷, 止于负电荷, 不形成闭合线, 不中断 (B) 任何两条电位移线互相平行 (C) 电位移线只出现在有电介质的空间(D) 起自正自由电荷, 止于负自由电荷, 任何两条电位移线不相交31. 两个半径相同的金属球, 一个为空心, 另一个为实心.把两者各自孤立时的电容值加以比较, 有[ ] (A) 空心球电容值大 (B) 实心球电容值大 (C) 两球容值相等 (D) 大小关系无法确定32. 有一空气球形电容器, 当使其内球半径增大到两球面间的距离为原来的一半时, 此电容器的电容为[ ] (A) 原来的两倍 (B) 原来的一半 (C) 与原来的相同 (D) 以上答案都不对T6-1-24图T6-1-26图33. n 只具有相同电容的电容器, 并联后接在电压为∆U 的电源上充电.去掉电源后通过开关使之接法改为串联.则串联后电容器组两端的电压V 和系统的电场能W [ ] (A) U n V ∆=,W 增大 (B) U n V ∆=,W 不变 (C) U n V ∆=,W 减小 (D) U nV ∆=1,W 不变34. 把一充电的电容器与一未充电的电容器并联.如果两电容器的电容一样, 则总电能将[ ] (A) 增加 (B) 不变 (C) 减小 (D) 如何变化不能确定35. 平行板电容器的极板面积为S , 两极板间的间距为d , 极板间介质电容率为ε. 现对极板充电Q , 则两极间的电势差为 [ ] (A) 0 (B)S Qd ε (C) S Qd ε2 (D) SQdε436. 一平行板电容器充电后与电源断开, 再将两极板拉开, 则电容器上的[ ] (A) 电荷增加 (B) 电荷减少 (C) 电容增加 (D) 电压增加37. 将接在电源上的平行板电容器的极板间距拉大, 将会发生什么样的变化? [ ] (A) 极板上的电荷增加 (B) 电容器的电容增大(C) 两极间的场强减小 (D) 电容器储存的能量不变38. 真空中带电的导体球面和带电的导体球体, 若它们的半径和所带的电量都相等, 则球面的静电能W 1与球体的静电能W 2之间的关系为[ ] (A) W 1>W 2 (B) W 1=W 2 (C) W 1<W 2 (D) 不能确定39. 如果某带电体电荷分布的体密度ρ增大为原来的两倍, 则其电场的能量变为原来的[ ] (A) 2倍 (B)21倍 (C) 4倍 (D) 21倍 40. 一空气平板电容器, 充电后把电源断开, 这时电容器中储存的能量为0W .然后在两极板间充满相对电容率为r ε的各向同性均匀电介质, 则该电容器中储存的能量W 为[ ] (A) 0W W r ε= (B) rWW ε0=(C) 0)1(W W r +=ε (D) 0W W =41. 一平行板电容器, 两板间距为d , 与一电池联接时, 相互作用力为F.若将电池断开, 极间距离增大到3d , 则其相互作用力变为[ ] (A) 3F (B)F 3 (C) 9F(D) 不变42. 金属圆锥体带正电时, 其圆锥表面[ ] (A) 顶点处电势最高 (B) 顶点处场强最大 (C) 顶点处电势最低(D) 表面附近场强处处相等T6-1-40图+-r ε0WT6-1-42图43. 平板电容器与电源相连, 现把两板间距拉大, 则 [ ] (A) 电容量增大 (B) 电场强度增大 (C) 带电量增大(D) 电容量、带电量及两板间场强都减小44. 空气平行板电容器接通电源后, 将电容率为ε的厚度与极板间距相等的介质板插入电容器的两极板之间.则插入前后, 电容C 、场强E和极板上的电荷面密度σ的变化情况为[ ] (A) C 不变, E不变, σ不变 (B) C 增大, E不变, σ增大 (C) C 不变, E增大, σ不变 (D) C 增大,E增大, σ增大45. 空气平板电容器与电源相连接.现将极板间充满油液, 比较充油前后电容器的电容C 、电压U 和电场能量W 的变化为 [ ] (A) C 增大, U 减小, W 减小 (B) C 增大, U 不变, W 增大 (C) C 减小, U 不变, W 减小 (D) C 减小, U 减小, W 减小46. 一空气平行板电容器充电后与电源断开, 然后在两极间充满某种各向同性均匀电介质.比较充入电介质前后的情形, 以下四个物理量的变化情况为 [ ] (A) E增大, C 增大, ∆U 增大, W 增大 (B) E减小, C 增大, ∆U 减小, W 减小 (C) E减小, C 增大, ∆U 增大, W 减小 (D)E增大, C 减小, ∆U 减小, W 增大47. 平行板电容器两极板(可看作无限大平板)间的相互作用力F 与两极板间电压∆U 的关系是:[ ] (A) U F ∆∝ (B) U F ∆∝1 (C) 2U F ∆∝ (D) 21U F ∆∝48. 在中性导体球壳内、外分别放置点电荷q 和Q , 当q 在壳内空间任意移动时, Q 所受合力的大小[ ] (A) 不变 (B) 减小(C) 增大 (D) 与q 、Q 距离有关49. 在水平干燥的玻璃板上, 放两个大小不同的小钢球, 且小球上带的电量比大球上电量多.发现两球被静电作用力排开时, 小球跑得较快, 这是由于 [ ] (A) 小球受到的斥力较大 (B) 大球受到的斥力较大(C) 两球受到的斥力大小相等, 但大球惯性大 (D) 以上说法都不对T6-1-43图T6-1-44图T6-1-49图50. 一带电导体球壳, 内部没有其它电荷, 则 [ ] (A) 球内、内球面、外球面电势相等(B) 球内、内球面、外球面电场强度大小相等 (C) 球壳内电场强度为零,球心处场强不为零 (D) 球壳为等势体, 球心处电势为零51. 如果在平行板电容器的两极板间平行地插入一块与极板面积相等的电介质板, 则由于电介质的插入及其相对于极板所放置的不同, 对电容器电容的影响为 [ ] (A) 使电容减小, 但与电介质板的位置无关 (B) 使电容减小, 且与电介质板的位置有关 (C) 使电容增大, 但与电介质板的位置无关(D) 使电容增大, 且与电介质板的位置有关52. 一均匀带电Q 的球体外, 罩一个内、外半径分别为r 和R 的同心金属球壳. 若以无限远处为电势零点, 则在金属球壳r <R '<R 的区域内 [ ] (A) E =0, U =0 (B) E =0, U ≠0 (C) E ≠0, U ≠0 (D) E ≠0, U =0 53. 把A 、B 两块不带电的导体放在一带正电导体的电场中,如T6-1-53图所示,设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则 [ ] (A) U B > U A ≠0 (B) U B > U A = 0(C) U B = U A (D) U B < U A二、填空题1. 两金属球壳A 和B 中心相距l ,原来都不带电.现在两球壳中分别放置点电荷q 和Q ,则电荷Q 作用在q 上的电力大小为F = .如果去掉金属壳A ,此时,电荷Q 作用在q 上的电力大小是 .2. 在T6-2-2图所示的导体腔C 中,放置两个导体A 和B ,最初它们均不带电.现设法使导体A 带上正电,则这三个导体电势的大小关系为 .3. 半径为r 的导体球原来不带电.在离球心为R (r R >)的地方放一个点电荷q , 则该导体球的电势等于 .4. 金属球壳的内外半径分别r 和R , 其中心置一点电荷q , 则金属球壳的电势为 .T6-2-4图rRqT6-1-51图T6-1-52图r RQT6-2-1图 T6-2-2图ABCABQqlA B++++++++++T6-1-53图5. 一个未带电的空腔导体球壳内半径为R .在腔内离球心的距离为d 处 (d < R ) 固定一电量为+q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心O 处的电势为 .6. T6-2-6图所示的11张金属箔片平行排列,奇数箔联在一起作为电容器的一极,偶数箔联在一起作为电容器的另一极.如果每张箔片的面积都是S ,相邻两箔片间的距离为d ,箔片间都是空气.忽略边缘效应,此电容器的电容为C = .7. T6-2-7图中所示电容器的电容321C C C 、、已知,4C 的值可调.当4C 的值调节到A 、B 两点的电势相等时,=4C .8. 位于边长为l 的正三角形三个顶点上的点电荷电荷量分别为q 、q 2和q 4-,这个系统的静电能为 .9. 有一半径为R 的均匀带电球体, 若球体内、外电介质的电容率相等, 此时球内的静电能与球外的静电能之比为 .10. 电荷q 均匀分布在内外半径分别为1R 和2R 的球壳体内,这个电荷体系的电势能为 , 电场能为 .11. 一平行板空气电容器, 极板面积为S , 间距为d , 接在电源上并保持电压恒定为U . 若将极板距离拉开一倍, 则电容器中的静电能改变量为 . 12. 有一半径为R 的均匀带电球体, 若球体内、外电介质的电容率相等, 此时球内的静电能与球外的静电能之比为 .三、计算题1. 真空中一导体球A 原来不带电.现将一点电荷q 移到距导体球A 的中心距离为r 处,此时,导体球的电势是多少?2. 真空中一带电的导体球A 半径为R .现将一点电荷q 移到距导体球A 的中心距离为r 处,测得此时导体球的电势为零.求此导体球所带的电荷量.T6-3-1图qT6-2-6图 T6-2-7图T6-2-5图3. 一盖革-米勒计数管,由半径为0.1mm 的长直金属丝和套在它外面的同轴金属圆筒构成,圆筒的半径为10mm .金属丝与圆筒之间充以氩气和乙醇蒸汽,其电场强度最大值为6103.4⨯V ⋅m -1. 忽略边缘效应,试问金属丝与圆筒间的电压最大不能超过多少?4. 设有一电荷面密度为0(0)σ>放置一块原来不带电,有一定厚度的金属板,不计边缘效应, (1)板两面的电荷分布;(2) 把金属板接地,金属板两面的电荷又将如何分布6. 一平行板电容器两极板的面积都是S ,其间充有N 它们的电容率分别为N εεεε 、、、321,厚度分别为N d d d d 、、、321.忽略边缘效应,求此电容器的电容.7. 如T6-3-7图所示,一球形电容器由半径为R 1的导体球和与它同心的半径为R 2的导体球壳组成.导体球与球壳之间一半是空气,另一半充有电容率为ε的均匀介质.求此电容器的电容. 8. 静电天平的原理如T6-3-8图所示:面积为S 、相距x 的空气平行板电容器下板固定,上板接到天平的一端.电容器不充电时,天平恰好处于平衡.欲称某物体的质量,可将待称物放入天平另一端,再在电容器极板上加上电压,使天平再次达到平衡.如果某次测量测得其极板上的电压值为U , 问此物的质量是多少?9. 两块面积相同的大金属平板A 、B, 平行放置,板面积为S ,相距d , d 远小于平板的线度.今在A ,B 板之间插入另外一面积相同,厚度为l 的金属板,三板平行.求 A 、B 之间的电容.10. 真空中两个同心的金属薄球壳,内外球壳的半径分别为R 1和R 2,(1) 试求它们所构成的电容器的电容;(2) 如果令内球壳接地,它们之间的电容又是多大?11. 已知一均匀带电球体(非导体)的半径为R ,带电量为q .如果球体内外介质的电容率均近似为ε,在半径为多大的球面空间内的电场能量为其总能量的一半?12. 半径为R 的雨点带有电量q .现将其打破,在保持总体积不变的情况下分成完全相同的两点,并拉开到“无限远”.此系统的电能改变量是多少? 解释出现这个结果的原因.13. 一面积为S 、间隔为d 的平板电容器,最初极板间为空气,在对其充电±q 以后与T6-3-6图 T6-3-8图T6-3-4图电源断开,再充以电容率为ε的电介质; 求此过程中该电容器的静电能减少量.试问减少的能量到哪儿去了?14. 一种利用电容器控制绝缘油液面的装置示意如T6-3-14图,平行板电容器的极板插入油中,极板与电源以及测量用电子仪器相连.当液面高度变化时,电容器的电容值发生改变,使电容器产生充放电,从而控制电路工作.已知极板的高度为a ,油的相对电容率为εr ,试求此电容器等效相对电容率与液面高度h 的关系.15. 如T6-3-15图所示,在场强为E的均匀电场中,静止地放入一电矩为p 、转动惯量为J 的电偶极子.若电矩p与场强E 之间的夹角θ 很小,试分析电偶极子将作什么运动,并计算电偶极子从静止出发运动到p与E 方向一致时所经历的最短时间.T6-3-14图T6-3-15图。
第6章 静电场中的导体与电介质一、基本要求1.掌握导体静电平衡的条件和静电平衡条件下导体的性质,并能利用静电平衡条件解决有关问题。
2.理解电容的定义,掌握典型电容器电容的计算方法。
3.了解电介质极化的微观机制,理解电介质对静电场的影响。
掌握介质中静电场的基本规律,掌握应用介质中的高斯定理求解介质中静电场的电位移矢量和电场强度的计算方法。
4.理解静电场能量的概念,能计算一些对称情况下的电场能量。
二、知识框架三、知识要点 1.重点 (2)电介质中的高斯定理及其应用。
1C ++n C ++d 0L =⎰E l 保守场Sd q ⋅=∑⎰⎰D S 静电场能量密度:1四、基本概念及规律1.导体的静电平衡条件及其性质(1)导体的静电平衡条件 导体内部电场强度处处为零,即 0=内E (2)导体处于静电平衡时的性质 ① 导体是等势体,导体表面是等势面。
② 导体表面的场强处处与导体表面垂直,导体表面附近的场强大小与该处导体表面的面密度σ成正比,即0 E e nσε=表面 ③ 电荷只分布在导体外表面。
(3)静电屏蔽 在静电平衡条件下,空腔导体内部电场不受外部电场的影响,接地空腔导体内部与外部电场互不影响,这种现象称为静电屏蔽。
2.电容C(1)孤立导体的电容 Vq C =电容的物理意义:使导体每升高单位电势所需的电量。
(2)电容器的电容 BA V V qC -=(3)电容器两极板间充满电介质后的电容 0C C r ε= 其中C 0是两极板间为真空时的电容,r ε是电介质的相对介电常数。
(4)几种常见电容器的电容① 平行板电容器 dSC r εε0=② 同心球形电容器 AB BA rR R R R C -=επε04 (R B >R A )③ 同轴圆柱形电容器 AB rR R lC ln 20επε= (R B >R A ) (5)电容器的串并联① 电容器串联后的总电容3211111C C C C ++=+…+nC 1② 电容器并联后的总电容 C = C 1+ C 2 + C 3+ … + C n 3.电介质中的静电场(1)电极化强度 电介质中任一点的电极化强度等于单位体积中所有分子的电偶极矩的矢量和,即 iV∆∑P P =① 对于各向同性的电介质 00(1)r e εεχε-=P =E E 其中1-=r e εχ称为电介质的极化率。
§6.4 电介质及其极化一、电介质的电结构电介质是通常所说的绝缘体,其主要特征是它的分子中电子被原子核束缚的很紧,介质内几乎没有自由电子,其导电性能很差,故称为绝缘体.它与导体的明显区别是,在外电场作用下达静电平衡时,电介质内部的场强不为零.电介质中每个分子都是一个复杂的带电体系,它们分布在线度为10-10m数量级的体积内.在考虑介质分子受外电场作用或介质分子在远处产生电场时,都可认为其中的正电荷集中于一点,称为正电荷中心,而负电荷集中于另一点,称为负电荷中心,它们可看成电偶极子.据介质中正、负电荷中心在正常情况下是否重合将电介质分为两类:有极分子电介质和无极分子电介质.像氢(H2)、氦(He)等,在正常情况下,它们内部的电荷分布具有对称性,它们分子的正、负电荷中心重合,其固有电矩为零,这类分子称为无极分子;象氯化氢(HCl)、水(H2O)等,在正常情况下,它们内部的电荷分布不对称,因而分子的正、负电荷中心不重合,存在固有电矩,这类分子称为有极分子.但由于分子热运动的无规则性,在物理小体积内的平均电偶极矩仍为零,因而也没有宏观电偶极矩分布(对外不显电性).二、电介质的极化当无极分子电介质处在外电场中时,由于分子中的正负电荷受到相反方向的电场力的作用,因而正负电荷中心将发生微小的相对位移,从而形成电偶极子,其电偶极矩沿外电场方向排列起来,使∑p i≠0,见图 6.6(a).这时,沿外电场方向电介质的前后两侧面将分别出现正负电荷.但这些电荷不能在介质内自由移动,也不能离开电介质表面,称其为束缚电荷.这种在外电场作用下,使介质呈现束缚电荷的现象,称为电介质的极化现象.无极分子的上述极化则称为位移极化.当有极分子电介质放在外电场中时,各分子的电偶极子受到外电场力偶矩的作用,都要转向外电场的方向排列起来,也使∑p i≠0.但由于分子的热运动,这种分子电偶极子的排列不可能十分整齐.然而从总体上看,这种转向排列的结果,使电介质沿电场方向前后两个侧面也分别出现正负电荷,见图 6.6(b).这也是一种电介质的极化现象,称为有极分子电介质的取向极化.当然,有极分子也存在位移极化,只是有极分子的取向极化起主导作用.综上所述,不论是无极分子电介质,还是有极分子电介质,在外电场中都会出现极化现象,产生束缚电荷.三、电极化强度矢量为了描述电介质的极化程度,引入电极化强度矢量P ,其定义为Vp V P i ∆→∆=∑ϖϖ0lim (6.22) 即电极化强度矢量P 是单位体积内分子电矩矢量和.当外电场越强时,极化现象越显著,单位体积内的分子电矩矢量和就越大,极化强度P 就越大.反之,外电场越弱,极化现象不显著,单位体积内的分子电矩矢量和就越小.可见,电极化强度矢量P 可以用来描述电介质的极化程度.式(6.22)给出的极化强度是点的函数,一般来说,介质中不同点的电极化强度矢量P 不同.但对于均匀的无极分子电介质处在均匀的外电场中,np P = ,其中n 是介质单位体积内的分子数, p 是极化后电介质每个分子的电矩矢量.在国际单位制中,电极化强度矢量P 的单位为库仑/米2(C/m 2)§6. 5 电位移矢量 有介质时的高斯定理一、极化强度与束缚电荷的关系由于束缚电荷是电介质极化的结果,所以束缚电荷与电极化强度之间一定存在某种定量关系.为方便讨论,现以无极分子电介质为例来讨论,考虑电介质内某一小面元 dS ,设其电场E 的方向(因而P 的方向)与dS 的法线方向成θ角(如图6.7所示),由于E 的作用,分子的正负电荷中心将沿电场方向拉开距离l .为简化分析,假定负电荷不动,而正电荷沿E 的方向发生位移 l .在面元dS 后侧取一斜高为l ,底面积为dS 的体元dV .由于电场E 的作用,此体元内所有分子的正电荷中心将穿过dS 面到前侧去.以q 表示每个分子的正电荷量,则由于电极化而越过dS 面元的总电荷为S d P qnldS qndV dq ϖϖ⋅=θ==cos ' (6.23)式中n 是单位体积的分子数.那么由于极化穿过有限面积S 的电荷为 ⎰⎰⋅=SS d P q ϖϖ'若S 是封闭曲面,则穿过整个封闭曲面的电荷 ⎰⎰⋅=Sout S d P q ϖϖ'因为电介质是电中性的,据电荷守恒定律,则得由电介质极化而在封闭面内净余的束缚电荷为).('int 246⎰⎰⋅-=-=S out Sd P q q ϖϖ (6.24)若在(6.23)式中,dS 是电介质的表面,而n e ϖ是其外法向单位矢,则(6.23)式就给出了在介质表面由于电介质极化而出现的面束缚电荷σ'为n n P e P P dSdq =⋅=θ==σϖϖcos '' (6.25) 式(6.24)和式(6.25)就是由于介质极化而产生的束缚电荷与电极化强度的关系.从(6.24)可以看出,在均匀外电场中,均匀电介质内部的任何体元内都不会有净余束缚电荷,束缚电荷只能出现在均匀电介质的表面,但对非均匀电介质,电介质内部也有束缚电荷分布.二、电介质中的高斯定理 电位移矢量D有电荷就会激发电场,所以电介质中某点的总电场E 应等于自由电荷和束缚电荷分别在该点激发的场强'E E ϖϖ和0的矢量和,即'E E E ϖϖϖ+=0 (6.26)考虑了由于电介质的极化而出现的束缚电荷,介质也可以看成真空.现我们把真空中电场的高斯定理推广到电介质的电场中,则有)'(int q q S d E S+ε=⋅⎰⎰01ϖϖ 其中q 是闭面S 内的自由电荷代数和, int 'q 是闭面S 内的束缚电荷代数和.由于介质中的束缚电荷难以测定,为此把上式中的束缚电荷int 'q 用可测的物理量P 来表示,把(6.24)式代入上式并运算得 q S d P E S=⋅+ε⎰⎰ϖϖϖ)(0定义电位移矢量P E D ϖϖϖ+ε=0 (6.27)在国际单位制中D 的单位同于P 的单位为C/m 2 .引入电位移矢量后高斯定理便为 q S d D S=⋅⎰⎰ϖϖ (6.28)这便是电介质中的高斯定理.它是静电场的基本定理之一.它表明,电位移矢量D 的闭面通量等于闭面内的自由电荷代数和,与束缚电荷无关.同于E 的高斯定理,当电荷具有某种对称性时,选择适当的高斯面,可很容易求出电位移矢量D ,进而便可求出电场强度E 的分布.电位移矢量D 的定义式(6.27)给出了电位移矢量D 与电场强度E 及电极化强度P 的关系,这一关系称为介质的性能方程.对于各向同性线性电介质,实验指出,介质中每一点的极化强度P 与该点的总电场强度E 成正比且方向相同,即E P ϖϖ0χε= (6.29)式中χ为电极化率,它只与电介质中各点的性质有关,对于均匀介质χ便是常量,此时电位移矢量E E E D r ϖϖϖϖε=εε=χ+ε=001)( (6.30)其中r ε称为相对介电常数,ε称为绝对介电常数(也叫电容率)可见,对于各向同性均匀电介质,D 与E 有简单的正比关系,当0ε=ε时,就回到了真空情形.所以在上章介绍的好些关系中,将0ε换为ε就可将其推广到各向同性均匀电介质中来.比如库仑定律在无穷大各向同性均匀电介质中的形式为r r q q F ϖϖ32141πε= 再如,两极板间是介电常数为ε的平行板电容器的电容为dS C ε= 例6.3如图6.8所示,半径为R 的球型导体,带电量为Q,相对电容率为r ε、厚度为R 的电介质球壳同心的包围着导体球,求电场、电势在空间的分布规律.解:由于带电系统的球对称性,E 将是球心O 至场点的距离r 及各区间介质的相对电容率的函数,应用电介质中的高斯定理式(6.28)易得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>πε<<επε<=)()()()(R r r Q R r R rQ R r r E r 242402020ϖ E 的方向沿径向.由结果可知,由于电介质极化而出现的束缚电荷所激发的电场E' 削弱了原来的电场E 0,因而介质中的总场强E 比没有电介质时的场强E 0 为小.由电势与场强的关系可得电势的分布当r>2R 时, rQ dr r Q V r 020144πε=πε=⎰∞当R<r<2R 时, )(R R r Q dr r Q dr r Q V r r R Rrr 2121144402202202+ε-επε=πε+επε=⎰⎰∞ 当 r<R(即导体内) 时,其电势等于导体球面的电势)(11803+επε=rR Q V 作业(P142):6.16。