2011中央电大最新经济数学基础形成性考核册答案全解
- 格式:doc
- 大小:938.50 KB
- 文档页数:17
电大经济数学基础形成性考核册答案Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT电大经济数学基础形成性考核册及参考答案(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f .答案:2π-(二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( D )A .),1()1,(+∞⋃-∞B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( B )A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设yx =lg2,则d y =(B ).A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的. A .函数f (x )在点x 0处有定义 B .A x f x x =→)(lim,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( C ).A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x(2)218665lim 222=+-+-→x x x x x 原式=4)-2)(x -(x 3)-2)(x -(x lim2x →(3)2111lim-=--→x x x原式=)11()11)(11(lim+-+---→x x x x x=111lim+--→x x=21-(4)3142353lim22=+++-∞→x x x x x 原式=22433531xx x x +++-=31 (5)535sin 3sin lim0=→x x x原式=xxx x x 55sin 33sin lim530→ =53 (6)4)2sin(4lim22=--→x x x 原式=2)2sin(2lim2+++→x x x x=2)2sin(lim )2(lim 22--+→→x x x x x = 42.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在(2)当b a ,为何值时,)(x f 在0=x 处连续.解:(1)1)(lim ,)(lim 00==+-→→x f b x f x x当 1f(0)f(x)lim 10x ====→有时,b a(2). 1f(0)f(x)lim 1b a 0x ====→有时,当函数f(x)在x=0处连续. 3.计算下列函数的导数或微分: (1)2222log 2-++=x x y x ,求y '答案:2ln 12ln 22x x y x ++='(2)dcx bax y ++=,求y '答案:22)()()()(d cx bcad d cx b ax c d cx a y +-=++-+='(3)531-=x y ,求y '答案:23)53(23---='x y(4)x x x y e -=,求y '答案:)(21x x xe e xy +-='=x x xe e x--21(5)bx y ax sin e =,求y d答案:∵)cos (sin cos sin )(sin (sin )(bx b bx e bx be bx ae bx e bx e y ax ax ax ax ax +=+='+'='∴dxbx b bx a edy ax)cos sin (+=(6)x x y x+=1e ,求y d答案:∵x e x y x23112+-=' ∴dx e xx dy x )123(12-= (7)2ecos x x y --=,求y d答案:∵)()(sin 22'-⋅-'⋅-='-x e x x y x=222sin xxe xx-+-∴dx xe xxdy x )22sin (2-+-=(8)nx x y n sin sin +=,求y '答案:nx n x x n y n cos cos sin 1+⋅='-(9))1ln(2x x y ++=,求y '答案:)1(1122'++⋅++='x x x x y =)11(1122xx xx ++⋅++=2221111xx x xx +++⋅++ =211x+(10)xxx y x212321cot -++=,求y '答案:531cos 261211cos61211sin 2ln 21)2()1(cos 2ln 2x x x x x x xy x x+-⋅⋅-='-++'⋅⋅='-4.下列各方程中y 是x 的隐函数,试求y '或y d(1) 方程两边对x 求导:所以 dx xy x y dy ---=232(2) 方程两边对x 求导:所以 xyxyxe y x ye y x y ++-+-=')cos()cos(45.求下列函数的二阶导数: (1))1ln(2x y +=,求y ''答案: (1)212x x y +='(2)212321212121)(-----='-='x x x xy作业(二)(一)填空题 1.若c x x x f x++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x2.⎰='x x d )sin (________.答案:c x +sin3. 若c x F x x f +=⎰)(d )(,则⎰=-x x xf d )1(2 .答案:c x F +--)1(212 4.设函数___________d )1ln(d d e12=+⎰x x x .答案:0 5. 若t tx P xd 11)(02⎰+=,则__________)(='x P .答案:211x+-(二)单项选择题1. 下列函数中,( D )是x sin x 2的原函数. A .21cos x 2 B .2cos x 2 C .-2cos x 2 D .-21cos x 2 2. 下列等式成立的是( C ). A .)d(cos d sin x xx = B .)1d(d ln x x x =C .)d(22ln 1d 2x xx =D .x x xd d 1=3. 下列不定积分中,常用分部积分法计算的是( C ). A .⎰+x x c 1)d os(2, B .⎰-x x x d 12C .⎰x x x d 2sinD .⎰+x xxd 124. 下列定积分计算正确的是( D ).A .2d 211=⎰-x x B .15d 161=⎰-xC .0)d (32=+⎰-x x x ππD .0d sin =⎰-x x ππ5. 下列无穷积分中收敛的是( B ). A .⎰∞+1d 1x x B .⎰∞+12d 1x xC .⎰∞+0d e x xD .⎰∞+1d sin x x (三)解答题1.计算下列不定积分(1)⎰x x x d e 3原式=⎰dx ex )3( =c e c ee x x x +-=+)13(ln 33ln )3( (2)⎰+x xx d )1(2答案:原式=⎰++-dx x x x)2(2321=c x x x +++25232152342(3)⎰+-x x x d 242答案:原式=⎰+-=-c x x dx x 221)2(2 (4)⎰-x x d 211答案:原式=c x x x d +--=---⎰21ln 2121)21(21 (5)⎰+x x x d 22答案:原式=⎰++)2(22122x d x =c x ++232)2(31(6)⎰x xx d sin 答案:原式=⎰+-=c x x d x cos 2sin 2(7)⎰x xx d 2sin答案:∵(+) x 2sinx(-) 1 (+) 0 2sin4x -∴原式=c xx x ++-2sin 42cos 2 (8)⎰+x x 1)d ln(答案:∵ (+) )1ln(+x 1(-) 11+-x x ∴ 原式=⎰+-+dx x xx x 1)1ln(=⎰+--+dx x x x )111()1ln( =c x x x x +++-+)1ln()1ln(2.计算下列定积分 (1)x x d 121⎰--答案:原式=⎰⎰-+--2111)1()1(dx x dx x =29252)21(2212=+=-+x x (2)x x xd e 2121⎰答案:原式=⎰-212211)(xd x xe x=21211e e e x -=-(3)x xx d ln 113e 1⎰+答案:原式=⎰++31)ln 1(ln 1e x d xx x=21ln 123=+e x(4)x x x d 2cos 2⎰π答案:∵ (+)x(+)02cos 1- ∴ 原式=20)2cos 412sin 21(πx x x +=214141-=--(5)x x x d ln e1⎰答案:∵ (+) x ln x(-) x122x∴ 原式=⎰-e exdx x x 11221ln 21 =)1(414122122+=-e x e e(6)x x x d )e 1(4⎰-+答案:∵原式=⎰-+44dx xe x又∵ (+)x xe- (-)1 -xe - (+)0 xe -∴⎰-----=44)(x x x e xe dx xe=154+--e故:原式=455--e作业三 (一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:32.设B A ,均为3阶矩阵,且3-==B A ,则T AB 2-=________. 答案:72-3. 设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是 .答案:BA AB =4. 设B A ,均为n 阶矩阵,)(B I-可逆,则矩阵X BX A =+的解______________=X .答案:A B I 1)(--5. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题1. 以下结论或等式正确的是( C ). A .若B A ,均为零矩阵,则有B A = B .若AC AB =,且O A ≠,则C B =C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则TC 为( A )矩阵.A .42⨯B .24⨯C .53⨯D .35⨯3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( C ). `A .111)(---+=+B A B A , B .111)(---⋅=⋅B A B AC .BA AB = D .BA AB =4. 下列矩阵可逆的是( A ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101C .⎥⎦⎤⎢⎣⎡0011 D .⎥⎦⎤⎢⎣⎡22115. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( B ). A .0 B .1 C .2 D .3 三、解答题1.计算 (1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321 (2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000(3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。
电大经济数学基础形成性考核册及参考答案(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:13.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( D ) A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( B )A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =l g 2,则d y =( B ). A .12d x x B .1d x x ln10 C .ln 10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( B )是错误的.A .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.当0→x 时,下列变量是无穷小量的是( C ).A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)21123lim 221-=-+-→x x x x 2112lim)1)(1()2)(1(lim11-=+-=+---=→→x x x x x x x x 原式 (2)218665lim 222=+-+-→x x x x x原式=4)-2)(x -(x 3)-2)(x -(x lim2x →2143lim2=--=→x x x (3)2111lim-=--→x x x 原式=)11()11)(11(lim 0+-+---→x x x x x=111lim+--→x x=21-(4)3142353lim22=+++-∞→x x x x x 原式=22433531xx x x +++-=31(5)535sin 3sin lim0=→x x x原式=xx x x x 55sin 33sin lim530→ =53(6)4)2sin(4lim 22=--→x x x原式=2)2sin(2lim2+++→x x x x=2)2sin(lim )2(lim 22--+→→x x x x x = 42.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续. 解:(1)1)(lim ,)(lim 00==+-→→x f b x f x x当 1f (0)f (x )lim 10x ====→有时,b a(2).1f(0)f(x)lim 1b a 0x ====→有时,当函数f(x)在x=0处连续.3.计算下列函数的导数或微分: (1)2222log 2-++=x x y x,求y '答案:2ln 12ln 22x x y x++=' (2)dcx bax y ++=,求y '答案:22)()()()(d cx bcad d cx b ax c d cx a y +-=++-+=' (3)531-=x y ,求y '答案:23)53(23---='x y(4)x x x y e -=,求y '答案:)(21x x xe e xy +-='=x x xe e x--21(5)bx y axsin e =,求y d答案:∵)cos (sin cos sin )(sin (sin )(bx b bx e bx be bx ae bx e bx e y ax ax ax ax ax +=+='+'=' ∴dx bx b bx a e dyax )cos sin (+=(6)x x y x+=1e ,求y d答案:∵x e x y x 23112+-=' ∴dx e xx dy x )123(12-= (7)2ecos x x y --=,求y d答案:∵)()(sin 22'-⋅-'⋅-='-x e x x y x=222sin x xe xx-+-∴dx xe xxdy x )22sin (2-+-= (8)nx x y nsin sin +=,求y '答案:nx n x x n y n cos cos sin1+⋅='-(9))1ln(2x x y ++=,求y '答案:)1(1122'++⋅++='x x x x y =)11(1122xx xx ++⋅++=2221111xx x xx +++⋅++ =211x+(10)xxx y x212321cot -++=,求y '答案:531cos 261211cos61211sin 2ln 21)2()1(cos 2ln 2x x x x x x xy x x+-⋅⋅-='-++'⋅⋅='- 4.下列各方程中y 是x 的隐函数,试求y '或y d(1) 方程两边对x 求导: 0322=+'--'⋅+y x y y y x32)2(--='-x y y x y所以 dx xy x y dy---=232(2) 方程两边对x 求导: 4)()1)(cos(='+⋅+'++y x y e y y x xyxy xy ye y x y xe y x -+-='++)cos(4])[cos(所以 xyxyxey x ye y x y ++-+-=')cos()cos(4 5.求下列函数的二阶导数: (1))1ln(2x y +=,求y '' 答案: (1) 212x xy +='222222)1(22)1(22)1(2x x x x x x y +-=+⋅-+='' (2) 212321212121)(-----='-='x x x xy23254143--+=''x x y14143)1(=+='y作业(二)(一)填空题 1.若c x x x f x ++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x2.⎰='x x d )sin (________.答案:c x +sin 3. 若c x F x x f +=⎰)(d )(,则⎰=-x x xf d )1(2 .答案:c x F +--)1(212 4.设函数___________d )1ln(d d e12=+⎰x x x .答案:0 5. 若t tx P xd 11)(02⎰+=,则__________)(='x P .答案:211x+-(二)单项选择题1. 下列函数中,( D )是x sin x 2的原函数. A .21cos x 2 B .2cos x 2 C .-2cos x 2 D .-21cos x 2 2. 下列等式成立的是( C ).A .)d(cos d sin x x x =B .)1d(d ln xx x =C .)d(22ln 1d 2x x x =D .x x xd d 1=3. 下列不定积分中,常用分部积分法计算的是( C ).A .⎰+x x c 1)d os(2,B .⎰-x x x d 12C .⎰x x x d 2sin D .⎰+x x xd 124. 下列定积分计算正确的是( D ). A .2d 211=⎰-x x B .15d 161=⎰-xC .0)d (32=+⎰-x x xππ D .0d sin =⎰-x x ππ5. 下列无穷积分中收敛的是( B ). A .⎰∞+1d 1x x B .⎰∞+12d 1x x C .⎰∞+0de x xD .⎰∞+1d sin x x(三)解答题1.计算下列不定积分(1)⎰x x x d e 3原式=⎰dx e x )3( =c e c ee x xx +-=+)13(ln 33ln )3( (2)⎰+x xx d )1(2答案:原式=⎰++-dx x x x)2(2321=c x x x +++25232152342(3)⎰+-x x x d 242答案:原式=⎰+-=-c x x dx x 221)2(2 (4)⎰-x x d 211答案:原式=c x x x d +--=---⎰21ln 2121)21(21 (5)⎰+x x x d 22答案:原式=⎰++)2(22122x d x =c x ++232)2(31(6)⎰x xx d sin 答案:原式=⎰+-=c x x d x cos 2sin 2(7)⎰x xx d 2sin答案:∵(+) x 2sinx (-) 1 2cos2x - (+) 0 2sin4x - ∴原式=c x x x ++-2sin 42cos2 (8)⎰+x x 1)d ln(答案:∵ (+) )1ln(+x 1(-) 11+-x x ∴ 原式=⎰+-+dx x xx x 1)1ln( =⎰+--+dx x x x )111()1ln( =c x x x x +++-+)1ln()1ln( 2.计算下列定积分 (1)x x d 121⎰--答案:原式=⎰⎰-+--2111)1()1(dx x dx x =29252)21(2212=+=-+x x (2)x xxd e2121⎰答案:原式=⎰-212211)(xd x xe x=21211e e e x -=- (3)x xx d ln 113e 1⎰+答案:原式=⎰++31)ln 1(ln 1e x d x x x=21ln 123=+e x(4)x x x d 2cos 20⎰π答案:∵ (+)x x (+)0 cos 1-∴ 原式=20)2cos 412sin 21(πx x x +=214141-=-- (5)x x x d ln e1⎰答案:∵ (+) x ln x(-) x122x∴ 原式=⎰-e exdx x x 11221ln 21 =)1(414122122+=-e x e e(6)x x x d )e 1(4⎰-+答案:∵原式=⎰-+44dx xe x又∵ (+)x xe- (-)1 -xe - (+)0 xe -∴⎰-----=440)(x x x e xe dx xe =154+--e故:原式=455--e作业三(一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:3 2.设B A ,均为3阶矩阵,且3-==B A ,则TAB 2-=________. 答案:72-3. 设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是 .答案:BA AB =4. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵X BX A =+的解______________=X .答案:A B I 1)(--5. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题1. 以下结论或等式正确的是( C ).A .若B A ,均为零矩阵,则有B A = B .若AC AB =,且O A ≠,则C B = C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵T ACB 有意义,则TC 为( A )矩阵. A .42⨯ B .24⨯ C .53⨯D .35⨯3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( C ). ` A .111)(---+=+B A B A , B .111)(---⋅=⋅B A B AC .BA AB =D .BA AB = 4. 下列矩阵可逆的是( A ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101 C .⎥⎦⎤⎢⎣⎡0011 D .⎥⎦⎤⎢⎣⎡2211 5. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( B ). A .0 B .1 C .2 D .3三、解答题1.计算 (1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321 (2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000 (3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。
《经济数学基础12》形成性考核册及参考答案作业(一)(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( )答案:D A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设,则( ).答案:BA .B .C .D .4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)2112lim )1)(1()1)(2(lim 123lim 11221-=+-=+---=-+-→→→x x x x x x x x x x x x(2)2143lim )4)(2()3)(2(lim 8665lim 22222=--=----=+-+-→→→x x x x x x x x x x x x x(3)21111lim )11(lim )11()11)(11(lim 11lim0000-=+--=+--=+-+---=--→→→→x x x x x x x x x x x x x x(4)31423531lim 42353lim 2222=+++-=+++-∞→∞→xx x x x x x x x x (5)535cos 53cos 3lim 5sin 3sin lim00==→→x x x x x x (6)42)2)(2(lim )2sin(4lim 222=-+-=--→→x x x x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在?01sin)(lim )()(lim 20=∆∆+∆+=∆-∆+→→-xx x x x xx f x x f x x0sin )sin(lim )()(lim 20=∆-∆+∆+=∆-∆+→→+xx xx x x x x x f x x f x x 所以:a=0,b=0(2)当b a ,为何值时,)(x f 在0=x 处连续.)0(1sin lim 0f a b a b xx x =-=-+-→ )0(1sin lim 0f xxx ==+→ 答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
2011最新经济数学基础形成性考核册答案全解作业(一)(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( )答案:D A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =lg2,则d y =( ).答案:B A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x2 B .xxsin C .)1ln(x + D .x cos(三)解答题 1.计算极限(1)=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = )1(2lim 1+-→x x x = 21-(2)8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim 2----→x x x x x = )4(3lim 2--→x x x = 21(3)x x x 11lim--→=)11()11)(11(lim 0+-+---→x x x x x =)11(lim+--→x x x x =21)11(1lim 0-=+--→x x(4)=+++-∞→42353lim22x x x x x 31423531lim 22=+++-∞→xx x x x (5)=→x xx 5sin 3sin lim0535sin 33sin 5lim 0x x x x x →=53 (6)=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
电大经济数学基础形成性查核册及参照答案(一)填空题 1. limx sin x__________ _________ .答案: 0x 0x2. 设 f ( x)x 2 1, x0 0 处连续,则 k________ .答案: 1k,x,在 x3. 曲线 yx 在 (1,1) 的切线方程是 . 答案: y 1 x1224. 设函数 f ( x 1) x22 x 5,则f ( x) __________ __ .答案: 2x5. 设 f ( x)x sin x ,则 f ( π__________ . 答案:π ) 22(二)单项选择题1. 函数 yx 1 的连续区间是(D )x2x 2A . ( ,1) (1, )B . ( , 2) ( 2, )C . (, 2)( 2,1) (1,) D . ( , 2) ( 2, )或( ,1) (1, )2. 以下极限计算正确的选项是(B )A. limx 1 B. limx x1 x 0xxC. lim x sin11D. limsin x1xxxx3. 设 ylg2 x,则d y( B ).A .1dx B . 1 dx C . ln10dx D .2x x ln10 x4. 若函数 f (x)在点 x 0处可导,则( B) 是错误的.1d x xA .函数 f (x) 在点 x 0处有定义B .lim f ( x)A,但A f ( x 0 )x x 0C .函数 f ( x)在点 x 0 处连续D .函数 f ( x)在点 x 0 处可微5.当 x 0 时,以下变量是无量小量的是( C ).A . 2xB . sin xC . ln(1x)D . cos xx( 三)解答题 1.计算极限x 2 3x 21 ( 1) limx2 12x1原式 lim(x1)( x 2)x1 ( x 1)( x 1)limx2 x 1x 112( 2) lim x25x 6 1 x 2x26x82原式 = lim(x - 2)(x - 3) x 2(x - 2)(x - 4)limx3x 2 x412( 3)lim1 x 11x2x 0原式 =lim( 1 x1)( 1 x 1)x 0x( 1 x 1)1= limx 01 x 11 =2( 4)limx2 3x 5 1 2x3x2x 4 31 351xx 2原式 ==34 33x x 2( 5) limsin 3x3 xsin 5x53lim sin 3x原式 =3x = 3 5 x 0 sin 5x 55x ( 6)limx 244原式 = limx22)x 2 sin( xx2lim ( x2)x 2= 4 =sin( x2)limx2x 2xsin 1b,x0 x2.设函数f (x)a,x0,sin xx0x问:( 1)当a,b为什么值时,f (x) 在x0处有极限存在?(2)当a, b为什么值时, f ( x) 在 x0处连续 .解: (1) lim f(x)b, lim f()1x0x0x当 a b1时,有lim f(x)f(0)1x0(2).当a b时,有lim f(x)f(0) 1x0函数 f(x) 在 x=0 处连续 .3.计算以下函数的导数或微分:( 1)y x 22x log 2 x22,求 y答案:y2x 2 x ln 21ax b x ln 2( 2)ycx,求 y d答案:y a(cx d)c( ax b)ad bc (cx d ) 2(cx d ) 2( 3)y1,求 y3x53(3x3答案: y5) 22( 4)y x xe x,求y答案:y1x (e x xe x ) =1e x xe x22x ( 5)y e ax sin bx ,求dyy (e ax ) (sin bxe ax (sin bx)答案:∵axaxae sin bx be cosbxe ax (sin bx b cosbx)∴ dye ax (asinbx bcosbx)dx1( 6) ye x x x ,求 dy1 1 3答案:∵ ye x x x 2231 1∴ dy( x e x )dx 2x 2( 7)y cos xe x 2,求 dy答案:∵ysin x ( x ) e x 2( x 2 )= sin x 2xe x 22 x∴dy ( sin x2xe x 2 )dx2 x( 8) ysin n x sin nx ,求 y答案: y n sin n 1 x cosxn cosnx( 9)yln( x1 x2 ) ,求 y答案: y1 ( x1x 2 )=1(1x )x 1 x 2x 1 x 21 x 2=11 x 2x=1x1 x 21 x 21 x 211 3x 22 x( 10)y2cotx,求 yx1 ln2 (cos 1)11ycos( x2x62)2x答案:x121sin111cos2 x ln 2 26xxx 3 x 54.以下各方程中y 是 x 的隐函数,试求 y或 dy(1) 方程两边对 x 求导:2x 2y y y xy 3 0 (2 yx) y y 2x 3因此dyy2x 3dx2y x(2) 方程两边对 x 求导:cos(x y)(1 y ) e xy ( y xy ) 4[cos(xy) xe xy ] y 4 cos(x y) ye xy4 cos(x y)ye xy 因此ycos(x y)xe xy5.求以下函数的二阶导数:(1) y ln(1 x 2) ,求 y2x答案: (1) yx 212(1x 2 ) 2x 2x 2 2x 2y(1 x 2 )2(1 x 2 ) 21 13(2)y(x2x 2)1x2253y3 x 2 1 x 2441 x21 2y (1)3 1 144作业(二)(一)填空题1. 若 f (x)dx2 x 2x c ,则 f ( x) __________ _________ .答案: 2x ln 2 22.(sin x) dx ________ .答案: sin x c3. 若 f (x)dxF ( x) c ,则 xf (1x 2)dx .答案:1F(1 x 2 ) cd2ex 2)dx___________ .答案: 04. 设函数ln(1dx15. 若 P( x)0 1dt ,则 P (x)__________ .答案:11 x 2xt 211. 以下函数中,( D )是 xsinx 2的原函数.A .1 cosx 2B . 2cosx2 C .- 2cosx 2D . - 1 cosx 22 22. 以下等式建立的是( C ). A . sinxdx d(cosx) B . ln xdxd( 1)xC . 2 x dx1d(2 x)D .1dx dxln 2x3. 以下不定积分中,常用分部积分法计算的是( C ).A . cos(2 x1)dx ,B . x 1x 2 dx C .x sin 2xdx D .x 2 dx1 x4. 以下定积分计算正确的选项是( D ).11615A . 2xdx2 B .dx1 1C .( x 2 x 3 )dx 0 D . sin xdx 05. 以下无量积分中收敛的是(B ).A .11dx B .1 1 dx C . 0 e x dxD .sinxdxxx 21( 三)解答题1.计算以下不定积分3x( 1) 3xdx 原式 =3 xdx = (e )ce x3xce x(e )ln 3(ln 3 1)e(1 x) 213( 2)dx 答案:原式 =(x22 xx 2 )dxx135= 2x 24x 22x 2 c3 5( 3)x 2 4(x2)dx1x 22x cxdx 答案:原式 =22( 4)1dx 答案:原式 =1 d(1 2x)112 xc121 2xln2x2113x2x 2d (2 x 2) = (2 x 2) 2 c( 5)2 x 2dx 答案:原式 =23( 6)sinxdx 答案:原式 = 2 sin xdx2cos x cx( 7)xsin xdx2答案:∵ (+)(-) 1(+) 0∴原式 =x sinx22 cosx24sinx22x cosx4sinxc2 2(8) ln( x 1)dx答案:∵ (+)ln( x 1)1(-)1 xx 1∴原式= x ln( x1)x dxx 1=x ln( x 1) (11 )dxx 1 =x ln( x 1) x ln(x1) c2.计算以下定积分2xdx ( 1)111x)dx21)dx = 2 ( 1x 2x)122 5 9答案:原式 =(1 (x1122 212e x(2)1 x2dx1112exx 2 )d112答案:原式 = 2 (=exe e 21xxe 31dx( 3)1x 1 ln xe 3答案:原式 =1x e 3 d(1 ln x) = 2 1 ln x2x 1 ln x1( 4)2x cos2xdx答案:∵ (+) x cos 2 x(-)11sin 2x2(+)01cos2x4∴ 原式 = ( 1x sin 2x1cos2x) 0224=1 11442e( 5)x ln xdx 1答案:∵ (+)ln x x(-)1x 2x21 2e1 e∴ 原式=x ln x12xdx21=e 2 1 x 2 1e 1(e 2 1)244( 6)4xxx(1e)d答案:∵原式 = 44xexdx又∵ (+) x ex(-)1 -e x(+)0e x4 xx x 4 0 xe dx(xee)0∴=5e 4 1故:原式 =55e 4作业三 (一)填空题10451.设矩阵 A323 2 ,则 A 的元素a23__________________ .答案:321612.设A,B均为3阶矩阵,且A B3,则 2 AB T= ________ . 答案:723. 设A, B均为n阶矩阵,则等式( A B) 2A22AB B2建立的充足必需条件是.答案:AB BA4.设 A, B 均为n阶矩阵, (I B) 可逆,则矩阵A BX X的解 X______________ .答案:(I B)1A1001005.设矩阵A020,则A1__________.答案: A01000321 003(二)单项选择题1.以下结论或等式正确的选项是( C ).A .若A, B均为零矩阵,则有AB B.若 AB AC,且 A O,则B CC.对角矩阵是对称矩阵D.若A O,B O,则 AB O2.设A为3 4 矩阵, B 为 5 2 矩阵,且乘积矩阵ACB T存心义,则 C T为(A)矩阵.A.2 4B.4 2C.3 5D.5 33. 设A, B均为n阶可逆矩阵,则以下等式建立的是( C ).`A.(A B)1 A 1 B 1,B.(A B) 1A1B1C.AB BA D.AB BA4.以下矩阵可逆的是( A).123101A .023B .10100312311D.11C.0222225.矩阵A333的秩是( B ).444A.0 B.1 C.2 D .3三、解答题1.计算2 1 0 1 1 2( 1)3 1 0 =553( 2)( 3)0 21 10 0 03 0 00 031 2 5 40 = 01212 3 1 2 4 2 4 5 2.计算1221 4 3 6 1 0 13 2 2 3132 712 3 1 2 4 2 4 5 7 19 7 2 4 5解1 2 21 4 36 17 12 0 6 1 013 22 31 32 74732 7515 2 =1 113 2 142 3 11 2 3 3.设矩阵 A1 1 1 , B1 12 ,求 AB 。
经济数学基础形成性考核册及参考答案作业(一)(三)解答题 1.计算极限(1)=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = )1(2lim 1+-→x x x = 21- (2)8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim 2----→x x x x x = )4(3lim 2--→x x x = 21(3)x x x 11lim 0--→=)11()11)(11(lim 0+-+---→x x x x x =)11(lim+--→x x x x =21)11(1lim 0-=+--→x x(4)=+++-∞→42353lim 22x x x x x 31423531lim 22=+++-∞→xx x x x (5)=→x x x 5sin 3sin lim0535sin 33sin 5lim0x x x x x →=53(6)=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
3.计算下列函数的导数或微分: (1)2222log 2-++=x x y x ,求y ' 答案:2ln 12ln 22x x y x++='(2)dcx bax y ++=,求y '答案:y '=2)()()(d cx b ax c d cx a ++-+2)(d cx cbad +-= (3)531-=x y ,求y '答案:531-=x y =21)53(--x 3)53(23--='x y(4)x x x y e -=,求y '答案:x x xy e )1(21+-='(5)bx y axsin e =,求y d答案:)(sin e sin )e ('+'='bx bx y axaxb bx bx a ax ax ⋅+=cos e sin e)cos sin (e bx b bx a ax +=dx bx b bx a dy ax )cos sin (e +=(6)x x y x+=1e ,求y d答案:y d x xx x d e )123(12-=(7)2e cos x x y --=,求y d 答案:y d x xx x x d )2sin e 2(2-=-(8)nx x y nsin sin +=,求y ' 答案:y '=x x n n cos sin1-+nxn cos =)cos cos (sin 1nx x x n n +-(9))1ln(2x x y ++=,求y ' 答案:y ')1(1122'++++=x x x x )2)1(211(112122x x x x -++++=)11(1122x x x x ++++=211x +=(10)xxx y x212321cot-++=,求y '答案:652321cot61211sin2ln 2--+-='x x xx y x4.下列各方程中y 是x 的隐函数,试求y '或y d (1)1322=+-+x xy y x ,求y d 答案:解:方程两边关于X 求导:0322=+'--'+y x y y y x32)2(--='-x y y x y , x xy xy y d 223d ---=(2)x e y x xy 4)sin(=++,求y ' 答案:解:方程两边关于X 求导4)()1)(cos(='++'++y x y e y y x xy)cos(4))(cos(y x ye y x e y x xy xy +--='++)cos(e )cos(e 4y x x y x y y xyxy +++--=' 5.求下列函数的二阶导数: (1))1ln(2x y +=,求y ''答案:222)1(22x x y +-='' (2)xx y -=1,求y ''及)1(y ''答案:23254143--+=''x x y ,1)1(=''y作业(二)(三)解答题1.计算下列不定积分(1)⎰x x xd e3答案:⎰x x x d e 3=⎰x d )e 3x (=c x x +e3ln e 3(2)⎰+x xx d )1(2答案:⎰+x xx d 2)1(=⎰++x x x x d )21(2=⎰++-x )d x 2x (x 232121=c x x x +++252352342(3)⎰+-x x x d 242 答案:⎰+-x x x d 242=⎰x 2)d -(x =c x x +-2212 (4)⎰-x x d 211答案:⎰-x x d 211=)21121⎰--x x2-d(1=c x +--21ln 21 (5)⎰+x x x d 22答案:⎰+x x x d 22=)212⎰++x x d(222=c x ++232)2(31(6)⎰x xx d sin答案:⎰x xx d sin =⎰x d x sin 2=c x +-cos 2(7)⎰x xx d 2sin答案:⎰x xx d 2sin=⎰-x x xdco d 2s 2 =+-2cos2x x ⎰x x co d 2s 2=c xx x ++-2sin 42cos 2(8)⎰+x x 1)d ln( 答案:⎰+x x 1)d ln(=⎰++)1x x 1)d(ln(=-++)1ln()1(x x ⎰++1)1)dln((x x =c x x x +-++)1ln()1(2.计算下列定积分 (1)x x d 121⎰--答案:x x d 121⎰--=x x d ⎰--11)1(+x x d ⎰-21)1(=212112)21()21(x x x x -+--=25 (2)x x xd e2121⎰答案:x x xd e 2121⎰=x e x1211d ⎰-=211x e -=e e -(3)x xx d ln 113e 1⎰+答案:x xx d ln 113e 1⎰+=)ln 1131x xln d(1e ++⎰=2(3121)ln 1e x +=2(4)x x x d 2cos 20⎰π答案:x x x d 2cos 20⎰π=⎰202sin 21πx xd =⎰-20202sin 212sin 21ππxdx x x =21- (5)x x x d ln e1⎰答案:x x x d ln e1⎰=21ln 21x x d e ⎰=⎰-e 1212ln ln 21x d x x x e=)1e (412+ (6)x x x d )e 1(4⎰-+答案:x x xd )e 1(40⎰-+=⎰--4e 041xxd x =3x xex x d e 4⎰--+-04=4e 55-+作业三 三、解答题 1.计算 (1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321 (2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000(3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]02.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=110211321B 110111132,A ,求AB 。
2011最新经济数学基础形成性考核册答案全解作业(一)(一)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:13.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1. 函数212-+-=x x x y 的连续区间是( )答案:D A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xxx3. 设y x =lg2,则d y =( ).答案:B A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限(1)=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = )1(2lim 1+-→x x x = 21-(2)8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim 2----→x x x x x = )4(3lim 2--→x x x = 21(3)x x x 11lim--→=)11()11)(11(lim 0+-+---→x x x x x =)11(lim+--→x x x x =21)11(1lim 0-=+--→x x(4)=+++-∞→42353lim 22x x x x x 31423531lim 22=+++-∞→xx x x x (5)=→xxx 5sin 3sin lim0535sin 33sin 5lim 0x x x x x →=53 (6)=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
经济数学基础形成性考核册参考答案经济数学基础作业1一、填空题: 1、0; 2、1;3、x -2y +1=0;4、2x ;5、-2π;二、单项选择题: 1、D ; 2、B ; 3、B ; 4、B ; 5、B ; 三、解答题 1、计算极限(1)解:原式=1lim→x )1)(1()2)(1(+---x x x x=1lim→x 12+-x x=21(2)解:原式=2lim→x )4)(2()3)(2(----x x x x=2lim→x 43--x x=-21(3)解:原式=0lim→s xx x )11(11+---=lim →s 111+--x=-21(4)解:原式=∞→s lim 22423531xx x x +++-=21(5)解:∵x 0→时,xx sm x x sm 5~53~3∴0lim→x xsm xsm 53=0lim→x xx53=53(6)解:2lim→x )2sin(42--x x =2lim →x 242--x x=2lim→x (x+2)=4 2、设函数: 解:0lim →x f(x)=0lim →x (sin x1+b)=b+→0lim x f(x)=+→0lim x xxsin 1≤(1)要使f(x)在x=0处有极限,只要b=1, (2)要使f(x)在x=0处连续,则-→0lim x f(x)=+→0lim x =f(0)=a即a=b=1时,f(x)在x=0处连续 3、计算函数的导数或微分: (1)解:y '=2x +2xlog 2+2log1x(2)解:y '=2)()()(d cx cb ax d cx a ++-+=2)(d cx bc ad +-(3)解:y '=[)53(21--x ]'=-21)53(23--x ·(3x-5)' =-23)53(23--x(4)解:y '=x21-(e x+xe x)=x21-e x -xe x(5)解:∵y '=ae ax sinbx+be ax cosbx =e ax (asmbx+bcosbx) ∴dy=e ax (asmbx+bcosbx)dx(6)解: ∵y '=-21xe x1+23x 21∴dy=(-21xex1+23x)dx(7)解:∵y '=-x21+sin x +xex22-∴dy=(xex22--x21 sin x )dx(8)解:∵y '=nsin n -1x+ncosnx∴dy=n(nsin n -1+ cosnx)dx(9)解:∵y '=)1221(1122xx xx ++++=211x+∴dxxdy 211+=(10)解:xxxxxotxxxxy y 652321cot226121116121ln 1csc1222--+-⋅='-++=4、(1)解:方程两边对x 求导得 2x+2yy '-y-xy '+3=0 (2y-x)y '=y -2x -3 y '=xy x y ---232∴dy=dxxy x y ---232(2)解:方程两边对x 求导得:Cos(x+y )·(1+y ')+e xy (y+xy ')=4 [cos(x+y)+xe xy ]y '=4-cos(x+y)-ye xy y '=xyxey x yexy y x ++-+-)cos()cos(45.(1)解:∵y '=22212)1(11Xx x x+='+∙+2222)1(22)1(1)12(X XX X XX Y +∙-+='+=''=222)1()1(2X X +-(2)解:)()1(2121'-='-='-xxxx xy=x x21212123----)(212122'-=''---xx yx x41432325--+14143)1(=+=''y经济数学基础作业2一、填空题:1、2x ln 2+2 2、sinx+C3、-C x F +-)1(2124、ln(1+x 2)5、-211x+二、单项选择题: 1、D 2、C 3、C 4、D 5、B三、解答题:1、计算下列不定积分: (1)解:原式=⎰dx e x )3(= Cee x +3ln )3(=Cx e +-13ln )3((2)解:原式=dxXXXX X)21(2⎰++=Cxxx +++523422221(3)解:原式=⎰++-dxx x x 2)2)(2(=⎰-dx x )2( =Cx x+-222(4)解:原式=-⎰--)21(21121x d x=-x 21ln 21-+C (5)解原式=⎰+2212)2(21dxx=⎰++)2()2(212212x d x=C x ++232)2(31(6)解:原式=Z ⎰xd x sin=-2cos C x + (7)解:原式=-2⎰2cos x xd=-2xcos ⎰+dxx x 2cos 22 =-2xcos Cx smx ++242(8)解:原式=⎰++)1()1ln(x d x=(x+1)ln(x+1)-⎰++)1ln()1(x d x =(x+1)ln(x+1)-x+c2、计算下列积分 (1)解:原式=⎰⎰-+--dx x dx x )1(12)1(11=(x-12)2(11)222x xx-+-=2+21=25(2)解:原式=⎰-xde x 1121=121xe -=e e -(3)解:原式=⎰+x d xeln ln 1113=⎰++-)1(ln )ln 1(1213x d x e=1)ln 1(2321ex +=4-2 =2(4)解:原式=xxdsm 22102⎰π=⎰-xdxsm xxsm 2021022122ππ=02cos 412πx=21-(5)解:原式=⎰xx xde2ln 1=dxxx e e xx⎰--12211ln 22=⎰-dx xe e 2122=14222exe-=)414(222--ee=412+e(6)解:原式=⎰⎰-+dxxedx x404=4+⎰--x xde 04=⎰-----)(0444x d exexx=04444xee----=14444+----e e =455--e经济数学基础作业3一、填空题: 1. 3 2. -723. A 与B 可交换4. (I-B )-1A5. 3100210001-二、单项选择题:1.C2.A3.C4.A5.B三、解答题 1、解:原式=⎥⎦⎤⎢⎣⎡⨯+⨯⨯+⨯⨯+⨯-⨯+⨯-0315130501121102 =⎥⎦⎤⎢⎣⎡53212、解:原式=⎥⎦⎤⎢⎣⎡⨯-⨯⨯-⨯⨯+⨯⨯+⨯0310031002100210 =⎥⎦⎤⎢⎣⎡00003、解:原式=[]24)1(50231⨯+-⨯+⨯+⨯- =[]02、计算:解:原式=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--142301215427401277197=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-------7724300012675741927 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423012121553、设矩阵:解:222321013211023210132)2(21)1(110111132=--=--+---=A011211321==B0=∙=∴B A AB4、设矩阵:解:A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0110214742101112421λλ要使r (A )最小。
经济数学基础形成性考核册及参考答案作业(一)(一)填空题 1..答案:0 2.答案:1 3.答案:2121+=x y 4..答案:x 25.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (二)单项选择题 1.2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =l g 2,则d y =( ).答案:B A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x2 B .xxsin C .)1ln(x + D .x cos(三)解答题 1.计算极限(1)=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = )1(2lim 1+-→x x x = 21-(2)8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim 2----→x x x x x = )4(3lim 2--→x x x = 21(3)x x x 11lim--→=)11()11)(11(lim 0+-+---→x x x x x =)11(lim+--→x x x x =21)11(1lim 0-=+--→x x(4)=+++-∞→42353lim 22x x x x x 31423531lim 22=+++-∞→xx x x x (5)=→x x x 5sin 3sin lim 0535sin 33sin 5lim 0x x x x x →=53 (6)=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
经济数学根底形成性考核册及参考答案作业〔一〕〔一〕填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,那么________=k .答案:1 3.曲线x y =在)1,1(的切线方程是.答案:2121+=x y 4.设函数52)1(2++=+x x x f ,那么____________)(='x f .答案:x 2 5.设x x x f sin )(=,那么__________)2π(=''f .答案:2π- 〔二〕单项选择题 1. 函数212-+-=x x x y 的连续区间是〔 〕答案:D A .),1()1,(+∞⋃-∞ B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 以下极限计算正确的选项是〔 〕答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设y x =lg2,那么d y =〔 〕.答案:B A .12d x x B .1d x x ln10C .ln10x x d D .1d xx 4. 假设函数f (x )在点x 0处可导,那么( )是错误的.答案:B A .函数f (x )在点x 0处有定义 B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,以下变量是无穷小量的是〔 〕. 答案:C A .x2 B .xxsin C .)1ln(x + D .x cos (三)解答题 1.计算极限〔1〕=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = )1(2lim 1+-→x x x = 21-〔2〕8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim 2----→x x x x x = )4(3lim 2--→x x x = 21 〔3〕x x x 11lim--→=)11()11)(11(lim 0+-+---→x x x x x =)11(lim+--→x x x x =21)11(1lim 0-=+--→x x〔4〕=+++-∞→42353lim22x x x x x 31423531lim 22=+++-∞→xx x x x 〔5〕=→x x x 5sin 3sin lim0535sin 33sin 5lim 0x x x x x →=53〔6〕=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:〔1〕当b a ,为何值时,)(x f 在0=x 处有极限存在? 〔2〕当b a ,为何值时,)(x f 在0=x 处连续.答案:〔1〕当1=b ,a 任意时,)(x f 在0=x 处有极限存在; 〔2〕当1==b a 时,)(x f 在0=x 处连续。
经济数学基础形成性考核册及參考答案做业(—)(—)填空题 1.___________________sin lim=-→xxx x .答案:0 2.设 ⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:1 3.曲线x y =在)1,1(地切线方程是 .答案:2121+=x y 4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 2 5.设x x x f sin )(=,则__________)2π(=''f .答案:2π- (ニ)单项选择题 1. 函数212-+-=x x x y 地连续区间是( )答案:D А.),1()1,(+∞⋃-∞ Ь.),2()2,(+∞-⋃--∞С.),1()1,2()2,(+∞⋃-⋃--∞ D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 吓列极限计算正确地是( )答案:Ь А.1lim=→xx x Ь.1lim 0=+→xx xС.11sinlim 0=→x x x D.1sin lim =∞→xx x3. 设,则( ).答案:ЬА. Ь. С. D .4. 若函数f (ⅹ)在點ⅹ0处可导,则( )是错误地.答案:ЬА.函数f (ⅹ)在點ⅹ0处有定义 Ь.A x f x x =→)(lim 0,但)(0x f A ≠С.函数f (ⅹ)在點ⅹ0处连续 D .函数f (ⅹ)在點ⅹ0处可微 5.当0→x 时,吓列变量是无穷尐量地是( ). 答案:С А.x2 Ь.xxsin С.)1ln(x + D .x cos (弎)解答题 1.计算极限(1)=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = )1(2lim 1+-→x x x = 21- (2)8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim 2----→x x x x x = )4(3lim 2--→x x x = 21(3)x x x 11lim--→=)11()11)(11(lim 0+-+---→x x x x x =)11(lim+--→x x x x =21)11(1lim 0-=+--→x x(4)=+++-∞→42353lim22x x x x x 31423531lim 22=+++-∞→xx x x x (5)=→x xx 5sin 3sin lim0535sin 33sin 5lim 0x x x x x →=53 (6)=--→)2sin(4lim 22x x x 4)2sin()2)(2(lim 2=-+-→x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
经济数学基础第1题: 若数项级数和绝对收敛,则级数必绝对收敛(对)第2题: 数项级数收敛当且仅当对每个固定的满足条件(错)第3题: 若连续函数列的极限函数在区间I上不连续,则其函数列在区间I不一致收敛。
(对)第4题: 若在区间上一致收敛,则在上一致收敛.(对)第5题: 如果函数在具有任意阶导数,则存在,使得在可以展开成泰勒级数(错)第6题: 函数可导必连续,连续必可导(错)第7题: 极值点一定包含在区间内部驻点或导数不存在的点之中(对)第8题: 线性回归得出的估计方程为y=38+2x,此时若已知未来x 的值是30,那么我们可以预测y的估计值为( 98 )。
第9题: 下列关系是确定关系的是(正方形。
)第10题: 样本方差与随机变量数字特征中的方差的定义不同在于( …..减1 )第11题: 主要用于样本含量n≤30以下、未经分组资料平均数的计算的是(直接法)第12题: ( 盒形图)在投资实践中被演变成著名的K线图第13题: 设事件A与B同时发生时,事件C必发生,则正确的结论是( pc>=pa+pb-1 )第14题: 统计学以( )为理论基础,根据试验或者观察得到的数据来研究随机现象,对研究对象的客观规律性作出种种合理的估计和判断。
(概率论)第15题: 已知甲任意一次射击中靶的概率为0,5,甲连续射击3次,中靶两次的概率为( 0.375 )第16题: 下面哪一个可以用泊松分布来衡量(一段道路上碰到坑的次数)第17题: 线性回归方法是做出这样一条直线,使得它与坐标系中具有一定线性关系的各点的( 垂直距离的平方和)为最小第18题: 当两变量的相关系数接近相关系数的最小取值-1时,表示这两个随机变量之间( 近乎完全负相关)第19题: 关于概率,下列说法正确的是(度量某一事件…;值介于0-1之间;概率分布是…. )第20题: 下列哪些方面需要用到概率知识分析其不确定性( 不良贷款率预测;证券走势;外汇走势)第21题: 什么样的情况下,可以应用古典概率或先验概率方法( 具有等可能性;范围是已知的)第22题: 关于协方差,下列说法正确的有( cov…协方差…如果p=1…)第23题: 关于中位数,下列理解错误的有( 观察值为奇数。
2011最新经济数学基础形成性考核册答案全解作业(一)(一)填空题1.___________________sin lim 0=-→x x x x .答案:02.设⎝⎛=≠+=0,0,1)(2x k x x x f ,在0=x 处连续,则________=k .答案:13.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 25.设x x x f sin )(=,则__________)2π(=''f .答案:2π-(二)单项选择题1. 函数212-+-=x x x y 的连续区间是( )答案:DA .),1()1,(+∞⋃-∞B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1lim 0=+→xx xC.11sinlim 0=→xx x D.1sin lim=∞→xx x3. 设y x =lg 2,则d y =( ).答案:B A .12d xx B .1d x x ln 10C .ln 10xx d D .1d x x4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x2 B .xx sin C .)1ln(x + D .x cos(三)解答题 1.计算极限 (1)=-+-→123lim221x x x x )1)(1()1)(2(lim1+---→x x x x x = )1(2lim1+-→x x x = 21-(2)8665lim222+-+-→x x x x x =)4)(2()3)(2(lim2----→x x x x x = )4(3lim2--→x x x =21(3)xx x 11lim--→=)11()11)(11(lim+-+---→x x x x x=)11(lim+--→x x x x =21)11(1lim-=+--→x x(4)=+++-∞→42353lim22x x x x x 31423531lim22=+++-∞→xxx x x (5)=→xx x 5sin 3sin lim535sin 33sin 5limx x x x x →=53(6)=--→)2sin(4lim22x x x 4)2sin()2)(2(lim2=-+-→x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x x x a x b x x x f , 问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)当1==b a 时,)(x f 在0=x 处连续。
3.计算下列函数的导数或微分: (1)2222log2-++=x x y x,求y ' 答案:2ln 12ln 22x x y x++='(2)dcx b ax y ++=,求y '答案:y '=2)()()(d cx b ax c d cx a ++-+2)(d cx cb ad +-=(3)531-=x y ,求y '答案:531-=x y =21)53(--x 3)53(23--='x y(4)xx x y e -=,求y '答案:xx xy e )1(21+-='(5)bx y ax sin e =,求y d答案:)(sin e sin )e ('+'='bx bx y ax axb bx bx a axax⋅+=cos esin e)cos sin (e bx b bx a ax+= dx bx b bx a dy ax)cos sin (e+=(6)x x y x +=1e ,求y d 答案:y d x xx x d e )123(12-=(7)2ecos xx y --=,求y d答案:y d x xxx x d )2sin e 2(2-=-(8)nx x y nsin sin +=,求y '答案:y '=x x n n cos sin 1-+nxn cos =)cos cos (sin1nx x x n n +-(9))1ln(2x x y ++=,求y ' 答案:y ')1(1122'++++=x x xx )2)1(211(112122x x xx -++++=)11(1122xx xx ++++=211x+=(10)xxxy x212321cot-++=,求y '答案:652321cot61211sin2ln 2--+-='xxxx y x4.下列各方程中y 是x 的隐函数,试求y '或y d (1)1322=+-+x xy y x ,求y d答案:解:方程两边关于X 求导:0322=+'--'+y x y y y x32)2(--='-x y y x y , x xy x y y d 223d ---=(2)x e y x xy 4)sin(=++,求y '答案:解:方程两边关于X 求导4)()1)(cos(='++'++y x y e y y x xy)cos(4))(cos(y x yey x e y x xyxy +--='++)cos(e)cos(e 4y x x y x y y xyxy+++--='5.求下列函数的二阶导数: (1))1ln(2x y +=,求y ''答案:222)1(22x xy +-=''(2)xx y -=1,求y ''及)1(y ''答案:23254143--+=''xxy ,1)1(=''y作业(二)(一)填空题1.若c x x x f x++=⎰22d )(,则___________________)(=x f .答案:22ln 2+x2.⎰='x x d )sin (________.答案:c x +sin3. 若c x F x x f +=⎰)(d )(,则⎰=-x x xf d )1(2.答案:c x F +--)1(2124.设函数___________d )1ln(d d e 12=+⎰x x x.答案:05. 若t tx P xd 11)(02⎰+=,则__________)(='x P .答案:211x+-(二)单项选择题1. 下列函数中,( )是x sin x 2的原函数.A .21cos x 2B .2cos x 2C .-2cos x 2D .-21cos x 2答案:D2. 下列等式成立的是( ).A .)d(cos d sin x x x =B .)1d(d ln xx x =C .)d(22ln 1d 2xx x =D .x x xd d 1=答案:C3. 下列不定积分中,常用分部积分法计算的是( ). A .⎰+x x c 1)d os(2, B .⎰-x x x d 12C .⎰x x x d 2sinD .⎰+x xx d 12答案:C4. 下列定积分计算正确的是( ). A .2d 211=⎰-x x B .15d 161=⎰-xC .0)d (32=+⎰-x x x ππD .0d sin =⎰-x x ππ答案:D5. 下列无穷积分中收敛的是( ).A .⎰∞+1d 1x xB .⎰∞+12d 1x xC .⎰∞+0d e x xD .⎰∞+1d sin x x答案:B (三)解答题1.计算下列不定积分 (1)⎰x xx d e3答案:⎰x xx d e3=⎰x d )e3x(=c xx +e3lne 3(2)⎰+x xx d )1(2答案:⎰+x xx d 2)1(=⎰++x xx x d )21(2=⎰++-x )d x 2x(x232121=c x x x +++252352342(3)⎰+-x x x d 242答案:⎰+-x x x d 242=⎰x 2)d -(x =c x x +-2212(4)⎰-x xd 211答案:⎰-x xd 211=)21121⎰--x x2-d(1=c x +--21ln 21(5)⎰+x x x d 22答案:⎰+x x x d 22=)212⎰++x x d(222=c x ++232)2(31(6)⎰x x xd sin答案:⎰x x xd sin=⎰x d x sin2=c x +-cos 2(7)⎰x x x d 2sin 答案:⎰x x x d 2sin=⎰-x x xdco d 2s2=+-2cos2x x ⎰x x co d 2s2=c x x x ++-2sin42cos2(8)⎰+x x 1)d ln(答案:⎰+x x 1)d ln(=⎰++)1x x 1)d(ln( =-++)1ln()1(x x ⎰++1)1)dln((x x =c x x x +-++)1ln()1(2.计算下列定积分 (1)x x d 121⎰--答案:x x d 121⎰--=x x d ⎰--11)1(+x x d ⎰-21)1(=212112)21()21(x x x x -+--=25(2)x xx d e 2121⎰答案:x xx d e 2121⎰=xe x 1211d⎰-=211xe -=e e -(3)x xx d ln 113e 1⎰+答案:x xx d ln 113e 1⎰+=)ln 1131x xln d(1e ++⎰=2(3121)ln 1e x +=2(4)x x x d 2cos 20⎰π答案:x x x d 2cos 20⎰π=⎰202sin 21πx xd =⎰-2022sin 212sin 21ππxdx xx =21-(5)x x x d ln e1⎰答案:x x x d ln e1⎰=21ln 21x x d e ⎰=⎰-e 1212ln ln 21x d x xx e =)1e (412+(6)x x xd )e1(40⎰-+ 答案:x x xd )e 1(40⎰-+=⎰--4e41xxd x=3x xexx d e 4⎰--+-040=4e 55-+作业三(一)填空题1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=161223235401A ,则A 的元素__________________23=a .答案:3 2.设B A ,均为3阶矩阵,且3-==B A ,则TAB2-=________. 答案:72-3. 设B A ,均为n 阶矩阵,则等式2222)(B AB A B A +-=-成立的充分必要条件是 .答案:BA AB =4. 设B A ,均为n 阶矩阵,)(B I -可逆,则矩阵X BX A =+的解______________=X . 答案:A B I 1)(--5. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=30020001A ,则__________1=-A .答案:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=31000210001A (二)单项选择题1. 以下结论或等式正确的是( ).A .若B A ,均为零矩阵,则有B A =B .若AC AB =,且O A ≠,则C B =C .对角矩阵是对称矩阵D .若O B O A ≠≠,,则O AB ≠答案C2. 设A 为43⨯矩阵,B 为25⨯矩阵,且乘积矩阵TACB 有意义,则T C 为( )矩阵.A .42⨯B .24⨯C .53⨯D .35⨯ 答案A3. 设B A ,均为n 阶可逆矩阵,则下列等式成立的是( ). ` A .111)(---+=+B A B A , B .111)(---⋅=⋅B A B A C .BA AB = D .BA AB = 答案C4. 下列矩阵可逆的是( ).A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡30320321B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--321101101C .⎥⎦⎤⎢⎣⎡0011D .⎥⎦⎤⎢⎣⎡2211 答案A5. 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=444333222A 的秩是( ). A .0 B .1 C .2 D .3 答案B三、解答题 1.计算 (1)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-01103512=⎥⎦⎤⎢⎣⎡-5321(2)⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-00113020⎥⎦⎤⎢⎣⎡=0000(3)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--21034521=[]0 2.计算⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--723016542132341421231221321解 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--72301654274001277197723016542132341421231221321 =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---1423011121553.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=11211321B 11111132,A ,求AB 。