高中数学第四章《圆的一般方程》教案新人教A版必修2
- 格式:doc
- 大小:135.45 KB
- 文档页数:5
《4.1.2圆的一般方程》教学设计一、教材分析《圆的一般方程》安排在高中数学必修2第四章第一节第二课时.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的一般方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是思想方法上都有着深远的意义,所以本课内容在整个解析几何中起着承前启后的作用.二、目标分析知识与技能:(1).掌握圆的一般方程及一般方程的特点(2).能将圆的一般方程化成圆的标准方程,进而求出圆心和半径(3).能用待定系数法由已知条件求出圆的方程过程与方法:(1)进一步培养学生用代数方法研究几何问题的能力;(2)加深对数形结合思想的理解和加强对待定系数法的运用,认识研究问题中由简单到复杂,由特殊到一般的化归思想,充分了解分类思想在数学中的重要地位,强化学生的观察,思考能力。
(3)增强学生应用数学的意识.情感,态度与价值观:(1)培养学生主动探究知识、合作交流的意识;(2)培养学生勇于思考,探究问题的精神。
(3)在体验数学美的过程中激发学生的学习兴趣.教学重点: (1).圆的一般方程。
(2).待定系数法求圆的方程。
教学难点: (1).圆的一般方程的应用。
(2).待定系数法求圆的方程及选用合适的圆方程。
三、教学内容与过程一、复习引入圆的标准方程为:222()()x a y b r -+-=把圆的标准方程展开,并整理得220x y Dx Ey F ++++=思考:此方程都能表示圆么?二、课堂探究观察下列各式,先将它们分别配方,然后分析它们是否表示圆?(设计意图)通过对这两个问题的探究,.一方面引导学生22(1)2410+-++=x y x y 22(2)2460+--+=x y x y回顾了旧知,另一方面,抓住了学生的注意力,把学生的思维引到研究圆的方程上来,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移。
教案学生姓名性别年级学科授课教师上课时间年月日第()次课共()次课课时:2课时教学课题人教版必修2第四章圆与方程教学目标知识目标:明确圆的基本要素,能用定义推导圆的标准方程;正确理解圆的一般方程及其特点.理解直线与圆三种位置关系、掌握用圆心到直线的距离d与圆的半径r比较,以及通过方程组解的个数判断直线与圆位置关系的方法,能说出空间直角坐标系的构成,会自己画出空间直角坐标系、能够在空间直角坐标系下表示点。
教学重点与难点教学重点:1、圆的标准方程及一般方程的求法及其应用.2、会根据不同的已知条件,利用待定系数法求圆的标准方程及一般方程.3、比较直线到圆心距离与圆半径的大小关系,判定直线与圆的位置关系。
4、通过解直线与圆方程组成的方程,根据解的个数,判定直线与圆的位置关系。
5、空间直角坐标系的建立过程教学难点:1、学生体会和理解解析法解决几何问题的数学思想。
2、位置关系《=》大小关系式《=》解的个数3、根据弦长求直线方程4、空间任意点的坐标如何表示(一)圆的方程知识梳理1、圆的标准方程基本要素:当圆心的位置与半径的大小确定后,圆就唯一确定了,因此,确定一个圆的基本要素是_____和______标准方程: 圆心为C(a,b),半径为r的圆的标准方程是___________________图示:说明: 若点M(x,y)在圆C上,则点M的_______适合方程(x-a)2+(y-b)2=r2;反之,若点M(x,y)的坐标适合方程(x-a)2+(y-b)2=r2,则点M在_____ 上[拓展] 特殊位置圆的标准方程如下表所示.条件方程形式圆过原点(x-a)2+(y-b)2=a2+b2(a2+b2≠0)圆心在x轴上(x-a)2+y2=r2(r≠0)圆心在y轴上x2+(y-b)2=r2(r≠0)圆心在原点x2+y2=r2(r≠0)2.点与圆的位置关系圆C:(x-a)2+(y-b)2=r2(r>0),其圆心为(a,b),半径为r,点P(x0,y0),设d=|PC|=(x0-a)2+(y0-b)2.位置关系d与r的大小图示点P的坐标的特点点在圆外d____r (x0-a)2+(y0-b)2>r2点在圆上d____r (x0-a)2+(y0-b)2=r2点在圆内d____r (x0-a)2+(y0-b)2<r22、圆的一般方程(1)方程:当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0叫做圆的一般方程,其中圆心为______________,半径为r=________________.(2)说明:方程x2+y2+Dx+Ey+F=0不一定表示圆.当且仅当______________时,表示圆:当D2+E2-4F=0时,表示一个点____________;当D2+E2-4F<0时,不表示任何图形.(3)用“待定系数法”求圆的方程的大致步骤:①根据题意,选择__________或__________;②根据条件列出关于a,b,r或D,E,F的__________;③解出a,b,r或D,E,F,代入标准方程或一般方程.[疑点]若一个二元方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆,应满足的条件是:①A=C≠0;②B=0;③D2+E2-4F>0[拓展]1.圆的标准方程和一般方程的对比(1)由圆的标准方程(x-a)2+(y-b)2=r2,可以直接看出圆心坐标(a,b)和半径r,圆的几何特征明显.(2)由圆的一般方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0),知道圆的方程是一种特殊的二元二次方程,圆的代数特征明显.(3)相互转化,如图所示.2.由圆的一般方程判断点与圆的位置关系剖析:已知点M(x0,y0)和圆的方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0),则其位置关系如下表:位置关系代数关系点M在圆外x20+y20+Dx0+Ey0+F>0点M在圆上x20+y20+Dx0+Ey0+F=0点M在圆内x20+y20+Dx0+Ey0+F<03.轨迹方程点M的坐标(x,y)满足的_________称为点M的轨迹方程.[拓展]当动点M的变化是由点P的变化引起的,并且点P在某一曲线C上运动时,常用中间量法(又称为相关点法)来求动点M的轨迹方程,其步骤是:(1)设动点M(x,y);(2)用点M的坐标来表示点P的坐标;(3)将所得点P的坐标代入曲线C的方程,即得动点M的轨迹方程.例题精讲【题型一、求圆的标准方程】【例1】写出下列各圆的方程:(1)圆心在原点,半径是3;(2)圆心在点C(3,4)处,半径是5;(3)经过点P(5,1),圆心在点C(8,-3)处.【方法技巧】对于圆的标准方程的几点认识:【例6】等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点C的轨迹方程,并说明它的轨迹是什么.【方法技巧】求轨迹方程的常用方法:(1)直接法:能直接根据题目提供的条件列出方程.步骤如下:说明:因为除个别情况外,化简过程都是同解变形过程,所以证明时步骤可以不写,如果有特殊情况,可适当予以说明.(2)代入法(也称相关点代入法):找到所求动点与已知动点的关系,代入已知动点的所在的方程.具体步骤如下:①设所求轨迹上任意一点Q(x,y),与点Q相关的动点P(x0,y0);②根据条件列出x,y与x0,y0的关系式,求得x0,y0(即用x,y表示出来);③将x0,y0代入已知曲线的方程,从而得到点Q(x,y)满足的关系式即为所求的轨迹方程.巩固训练1.方程(x-a)2+(y-b)2=0表示的图形是( )A.以(a,b)为圆心的圆 B.以(-a,-b)为圆心的圆C.点(a,b) D.点(-a,-b)2.下面各点在圆(x-1)2+(y-1)2=2上的是( )A.(1,1) B.(2,1)C.(0,0) D.(2,2)【方法技巧】1、直线与圆有两个公共点⇔直线与圆相交;直线与圆只有一个公共点⇔直线与圆相切;直线与圆没有公共点⇔直线与圆相离.2、解决此类问题的关键是搞清直线与圆的位置和直线与圆的公共点的个数间的等价关系.在处理直线与圆的位置关系时,常用几何法,即比较圆心到直线的距离和半径长的大小,而不用联立方程.【题型二、弦长问题】【例2】求直线l :3x +y -6=0被圆C :x 2+y 2-2y -4=0截得的弦长.【方法技巧】 1、思路1:联立直线与圆的方程→求出交点坐标→利用两点间的距离公式求解思路2:利用“半径长、弦心距、弦长的一半构成的直角三角形”列式→直接求解2、设直线l 的方程为ax +by +c =0,圆O 的方程为(x -x 0)2+(y -y 0)2=r 2,求弦长的方法有以下三种: ①几何法:由圆的性质知,过圆心O 作l 的垂线,垂足C 为线段AB 的中点.如图所示,在Rt △OCB 中,|BC |2=r 2-d 2,则弦长|AB |=2|BC |,即|AB |=2r 2-d 2.②代数法:解方程组⎩⎪⎨⎪⎧ax +by +c =0,(x -x 0)2+(y -y 0)2=r 2,消元后可得关于x 1+x 2,x 1·x 2或y 1+y 2,y 1·y 2的关系式, 则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+1k2)[(y 1+y 2)2-4y 1y 2].注:上述公式通常称为弦长公式.③联立直线与圆方程,求出两交点坐标,再由两点间的距离公式求弦长.三种方法各有特点,解题时可以根据题目特点选用不同的方法,但前两种方法比较常用. 3、已知弦长,求其他问题时,也需利用以上思想方法【方法技巧】1、思路1:求圆C1,圆C2的半径r1,r2→求|C1C2|→比较|C1C2|与|r1-r2|,r1+r2的大小→得出结论思路2:联立圆C1,圆C2的方程→整理成关于x或y的一元二次方程→判断判别式的符号→得出结论2、利用几何法判断两圆的位置关系,直观,容易理解,但不能求出交点坐标;利用代数法判断两圆的位置关系,不能准确地判断位置关系(如Δ=0仅能说明两圆只有一个公共点,但确定不了是内切还是外切;Δ<0仅能说明两圆没有公共点,但确定不了是外离还是内含,所以必须借助于图形).【题型五、圆与圆的公共弦问题】【例5】已知两圆x2+y2-2x+10y-24=0和x2+y2+2x+2y-8=0.(1)试判断两圆的位置关系;(2)求公共弦所在的直线方程;(3)求公共弦的长度.【方法总结】1、(1)将两圆的化成标准形式.(2)(3)思路1:求交点.思路2:利用弦长公式求解.2、(1)两圆的公共弦所在直线方程及长度求解步骤①两圆的方程作差,求出公共弦所在直线方程;②求出其中一个圆的圆心到公共弦的距离;③利用勾股定理求出半弦长,即得公共弦长.(2)两圆圆心的连线垂直平分两圆的公共弦.(3)两圆的公共弦长的求解转化为其中一个圆的弦长的求解.(三)空间直角坐标系知识梳理1.空间直角坐标系定义:以空间中两两_______且相交于一点O的三条直线分别为x轴、y轴、z轴,这时就说建立了空间直角坐标系Oxyz,其中点O叫做坐标_______,x轴、y轴、z轴叫做__________.通过每两个坐标轴的平面叫做__________,分别称为xOy平面、yOz平面、________平面画法:在平面上画空间直角坐标系Oxyz时,一般使∠xOy=__________,∠yOz=90°图示:说明:本书建立的坐标系都是右手直角坐标系,即在空间直角坐标系中,让右手拇指指向____轴的正方向,食指指向____轴的正方向,如果中指指向_____轴的正方向,则称这个坐标系为右手直角坐标系.[疑点] 将空间直角坐标系画在纸上时,①x轴与y轴成135°(或45°),x轴与z轴成135°(或45°);②y轴垂直于z轴,y轴和z轴的单位长相等,x轴上的单位长则等于y轴单位长的12.2.坐标如图所示,设点M为空间直角坐标系中的一个定点,过点M分别作垂直于x轴、y轴和z轴的_______,依次交x轴、y轴和z轴于点P,Q和R.设点P,Q和R在x轴,y轴和z轴上的坐标分别是x,y和z,那么点M就和有序实数组(x,y,z)是__________的关系,有序实数组__________ 叫做点M在此空间直角坐标系中的坐标,记作___________,其中x叫做点M的________,y叫做点M的________,z叫做点M的________.[拓展](1).空间中两点P1(x1,y1,z1),P2(x2,y2,z2),线段P1P2的中点为P0(x0,y0,z0),则⎩⎪⎨⎪⎧x0=x1+x22,y0=y1+y22,z0=z1+z22.这个公式称为空间直角坐标系中的中点坐标公式,是平面直角坐标系中中点坐标公式的拓展.(2).空间直角坐标系中特殊位置点的坐标【方法技巧】空间中点M坐标的确定方法:(1)由点M分别作垂直于x轴、y轴、z轴的平面,依次交三个坐标轴于点P,Q和R,设这三个点在三个轴上的坐标分别是x、y、z,则点M的坐标即为(x,y,z);(2)构造以OM为体对角线的长方体,由长方体的三个棱长结合点M的位置,可以确定点M的坐标;(3)若题中所给的图形中存在垂直于坐标轴的平面,或点M在坐标轴或坐标平面上,则利用这一条件,再作轴的垂线即可确定点M的坐标.【题型二、空间两点间距离公式】【例2】如右图所示,在长方体OABC-O1A1B1C1中,|OA|=2,|AB|=3,|AA1|=2,E是BC的中点,作OD ⊥AC于点D,求线段B1E的长度及顶点O1到点D的距离.【方法技巧】1.建立空间直角坐标系时应遵循以下原则:①让尽可能多的点落在坐标轴上或坐标平面内;②充分利用几何图形的对称性.2.求某点的坐标时,一般先找这一点在某一坐标平面上的射影,确定其两个坐标,再找出它在另一轴上的射影(或者通过它到这个坐标平面的距离加上正负号)确定第三个坐标.【题型三、空间点的坐标的求法】【例3】如右图所示,在底面是菱形的直四棱柱ABCD-A1B1C1D1中,底面的边长为a,且有一个角为120°,侧棱长为2a,在空间直角坐标系中确定点A1,D,C的坐标.【方法技巧】点的坐标是用点在各个坐标平面xOy,yOz,zOx的射影来确定.巩固训练1.下列点在x轴上的是( )A .(0.1,0.2,0.3)B .(0,0,0.001)C .(5,0,0)D .(0,0.01,0)2.在空间直角坐标系中,点M (-1,2,-4)关于x 轴的对称点的坐标是( ) A .(-1,-2,4) B .(-1,-2,-4) C .(1,2,-4) D .(1,-2,4)3.如下图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,则点B 1的坐标是( ) A .(1,0,0) B .(1,0,1) C .(1,1,1) D .(1,1,0)4.坐标原点到下列各点的距离最小的是( ) A .E (1,1,1) B .F (1,2,2) C .G (2,-3,5) D .H (3,0,4)5.在△ABC 中,已知A (-1,2,3),B (2,-2,3),C (12,52,3),则AB 边上的中线CD 的长是________.6.如下图所示,V -ABCD 是正棱锥,O 为底面中心,E ,F 分别为BC ,CD 的中点.已知|AB |=2,|VO |=3,建立如所示空间直角坐标系,试分别写出各个顶点的坐标.。
第四章 圆与方程 4.1.1 圆的标准方程三维目标:知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。
2、会用待定系数法求圆的标准方程。
过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。
情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣。
教学重点:圆的标准方程教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。
教学过程:1、情境设置:在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究:2、探索研究:确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。
(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件r = ①化简可得:222()()x a y b r -+-= ②引导学生自己证明222()()x a y b r -+-=为圆的方程,得出结论。
方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。
3、知识应用与解题研究例(1):写出圆心为(2,3)A -半径长等于5的圆的方程,并判断点12(5,7),(1)M M --是否在这个圆上。
分析探求:可以从计算点到圆心的距离入手。
探究:点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法: (1)2200()()x a y b -+->2r ,点在圆外 (2)2200()()x a y b -+-=2r ,点在圆上 (3)2200()()x a y b -+-<2r ,点在圆内例(2): ABC 的三个顶点的坐标是(5,1),(7,3),(2,8),A B C --求它的外接圆的方程师生共同分析:从圆的标准方程222()()x a y b r -+-= 可知,要确定圆的标准方程,可用待定系数法确定a b r 、、三个参数.(学生自己运算解决)例(3):已知圆心为C 的圆:10l x y -+=经过点(1,1)A 和(2,2)B -,且圆心在:10l x y -+=上,求圆心为C 的圆的标准方程.师生共同分析: 如图确定一个圆只需确定圆心位置与半径大小.圆心为C 的圆经过点(1,1)A 和(2,2)B -,由于圆心C 与A,B 两点的距离相等,所以圆心C 在险段AB 的垂直平分线m 上,又圆心C 在直线l 上,因此圆心C 是直线l 与直线m 的交点,半径长等于CA 或CB 。
圆的标准方程教学目标(1)在理解推导过程的基础上,掌握圆的标准方程的形式特点,理解方程中各个字母的含义,能合理应用平面几何中圆的有关性质,结合方程解决圆的有关问题.(2)理解掌握圆的切线的求法.包括已知切点求切线;从圆外一点引切线;已知切线斜率求切线等.教学重点和难点重点:圆的标准方程的理解、应用;圆的切线方程.(已知切点求切线;从圆外一点引切线;已知切线斜率求切线).难点:从圆外一点引切线,求切线方程,已知切线斜率求切线.教学过程设计(一)导入新课,教师讲授.同学们,前面我们研究了直线(特殊的曲线)的方程及其有关问题,今天我们研究圆及与圆有关的问题.什么是“圆”.想想初中我们学过的圆的定义.“平面内与定点距离等于定长的点的集合(轨迹)是圆”.定点就是圆心,定长就是半径.根据圆的定义,我们来求圆心是c(a,b),半径是r的圆的方程.(引导学生推导)设 M(x,y)是圆上任意一点,圆心坐标为(a,b),半径为r.则│CM│=r,两边平方. (x-a)2+(y-b)2=r2,我们得到圆的标准方程,这就是圆心为C(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程.如果圆的圆心在原点.O(0,0).即a=0.b=0.问题1.说出下列圆的方程:(1)圆心在点C(3, -4), 半径为7.(2) 经过点P(5,1),圆心在点C(8,-3).问题2 说出下列方程所表示的圆的圆心坐标和半径:(1) (x + 7)2 + ( y- 4)2 = 36(2) x2 + y2 - 4x + 10y + 28 = 0(3) (x- a)2 + y2 = m2例1.写出圆心为C(2,-3),半径长等于5的圆的方程,并判断点 m1(5.-7),m2(-5,-1) 是否在这个圆上。
跟踪训练已知两点M(3,8)和N(5,2).(1)求以MN为直径的圆C的方程;(2)试判断P1(2,8),P2(3,2),P3(6,7)是在圆上,在圆内,还是在圆外?探究:在平面几何中,如何确定点与圆的位置关系?点与圆的位置关系:(x0-a)2+(y0-b)2>r2时,点M在圆C外(x0-a)2+(y0-b)2=r2时,点M在圆C上(x0-a)2+(y0-b)2<r2时,点M在圆C内例2 ⊿ABC的三个顶点的坐标分别是A(5,1), B(7,-3),C(2,-8),求它的外接圆的方程例3 己知圆心为C的圆经过点A(1,1)和B(2,-2),且圆心在直线l:x-y+1=0上,求圆心为C的圆的标准方程.(二)学生课堂练习1.点(2a, 1 a)在圆x2 + y2 = 4的内部,求实数a 的取值范围.2.根据下列条件,求圆的方程:(1)求过两点A(0,4)和B(4,6),且圆心在直线x-y+1=0上的圆的标准方程。
4.1.2 圆的一般方程【教学目标】1.使学生掌握圆的一般方程的特点;能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程.2.使学生掌握通过配方求圆心和半径的方法,熟练地用待定系数法由已知条件导出圆的方法,熟练地用待定系数法由已知条件导出圆的方程,培养学生用配方法和待定系数法解决实际问题的能力.3.通过对待定系数法的学习为进一步学习数学和其他相关学科的基础知识和基本方法打下牢固的基础.【教学重难点】教学重点:(1)能用配方法,由圆的一般方程求出圆心坐标和半径;(2)能用待定系数法,由已知条件导出圆的方程.教学难点:圆的一般方程的特点.【教学过程】(一)情景导入、展示目标前面,我们已讨论了圆的标准方程(x-a)2+(y-b)2=r2,现将展开可得x2+y2-2ax-2by+a2+b2-r2=0.可见,任何一个圆的方程都可以写成x2+y2+Dx+Ey+F=0.请大家思考一下:形如x2+y2+Dx+Ey+F=0的方程的曲线是不是圆?下面我们来深入研究这一方面的问题.复习引出课题为“圆的一般方程”.(二)检查预习、交流展示1.写出圆的标准方程.2.写出圆的标准方程中的圆心与半径.(三)合作探究、精讲精练探究一:圆的一般方程的定义1.分析方程x2+y2+Dx+Ey+F=0表示的轨迹将方程x2+y2+Dx+Ey+F=0左边配方得:(1)(1)当D2+E2-4F>0时,方程(1)与标准方程比较,可以看出方程半径的圆;(3)当D2+E2-4F<0时,方程x2+y2+Dx+Ey+F=0没有实数解,因而它不表示任何图形.这时,教师引导学生小结方程x2+y2+Dx+Ey+F=0的轨迹分别是圆、法.2.引出圆的一般方程的定义当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0称为圆的一般方程.探究二:圆的一般方程的特点请同学们分析下列问题:问题:比较二元二次方程的一般形式Ax2+Bxy+Cy2+Dx+Ey+F=0.(2) 与圆的一般方程x2+y2+Dx+Ey+F=0,(D2+E2-4F>0).(3) 的系数可得出什么结论?启发学生归纳结论.当二元二次方程 Ax2+Bxy+Cy2+Dx+Ey+F=0具有条件:(1)x2和y2的系数相同,不等于零,即A=C≠0;(2)没有xy项,即B=0;(3)D2+E2-4AF>0.它才表示圆.条件(3)通过将方程同除以A或C配方不难得出.强调指出:(1)条件(1)、(2)是二元二次方程(2)表示圆的必要条件,但不是充分条件;(2)条件(1)、(2)和(3)合起来是二元二次方程(2)表示圆的充要条件.例1 求下列圆的半径和圆心坐标:(1)x2+y2-8x+6y=0,(2)x2+y2+2by=0.解析:先配方,将方程化为标准形式,再求圆心和半径.解:(1)圆心为(4,-3),半径为5;(2)圆心为(0,-b),半径为|b|,注意半径不为b.点拨:由圆的一般方程求圆心坐标和半径,一般用配方法,这要熟练掌握.变式训练1:1.方程x2+y2+2kx+4y+3k+8=0表示圆的充要条件是()A.k>4或者k<-1 B.-1<k<4C.k=4或者k=-1 D.以上答案都不对2.圆x2+y2+Dx+Ey+F=0与x轴切于原点,则有()A.F=0,DE≠0 B.E2+F2=0,D≠0C.D2+F2=0,E≠0 D.D2+E2=0,F≠0答案:1.A2.C例2 求过三点O(0,0)、A(1,1)、B(4,2)的圆的方程.解析:已知圆上的三点坐标,可设圆的一般方程,用待定系数法求圆的方程.解:设所求圆的方程为x2+y2+Dx+Ey+F=0,由O、A、B在圆上,则有解得:D=-8,E=6,F=0,故所求圆的方程为x 2+y 2-8x+6=0.点拨:1.用待定系数法求圆的方程的步骤:(1)根据题意设所求圆的方程为标准式或一般式;(2)根据条件列出关于a 、b 、r 或D 、E 、F 的方程;(3)解方程组,求出a 、b 、r 或D 、E 、F 的值,代入所设方程,就得要求的方程.2.关于何时设圆的标准方程,何时设圆的一般方程:一般说来,如果由已知条件容易求圆心的坐标、半径或需要用圆心的坐标、半径列方程的问题,往往设圆的标准方程;如果已知条件和圆心坐标或半径都无直接关系,往往设圆的一般方程.变式训练2:求圆心在直线 l :x+y=0上,且过两圆C 1∶x 2+y 2-2x+10y-24=0和C 2∶x 2+y 2+2x+2y-8=0的交点的圆的方程.解:解方程组⎩⎨⎧=+++=++08-2y 2x y x 024-10y 2x -y x 2222,得两圆交点为(-4,0),(0,2). 设所求圆的方程为(x-a)2+(y-b)2=r 2,因为两点在所求圆上,且圆心在直线l 上所以得方程组为⎪⎩⎪⎨⎧--a+b=0=r+(2-b)a=r+ba222222)4( 解得a=-3,b=3,r=10.故所求圆的方程为:(x+3)2+(y-3)2=10.(四)反馈测试导学案当堂检测(五)总结反思、共同提高1.圆的一般方程的定义及特点;2.用配方法求出圆的圆心坐标和半径;3.用待定系数法,导出圆的方程.【板书设计】一:圆的一般方程的定义1.分析方程x2+y2+Dx+Ey+F=0表示的轨迹2.圆的一般方程的定义二:圆的一般方程的特点(1)(2)(3)例1变式训练1:例2变式训练2:【作业布置】导学案课后练习与提高4. 1. 2 圆的一般方程课前预习学案一.预习目标回顾圆的标准方程,了解用圆的一般方程及其特点.二.预习内容1.圆的标准方程形式是什么?圆心和半径呢?2.圆的一般方程形式是什么?圆心和半径呢?3.圆的方程的求法有哪些?三.提出疑惑同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中课内探究学案一.学习目标1.掌握圆的一般方程的特点;能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程.2.掌握通过配方求圆心和半径的方法,熟练地用待定系数法由已知条件导出圆的方法,熟练地用待定系数法由已知条件导出圆的方程,培养用配方法和待定系数法解决实际问题的能力.3.通过对待定系数法的学习为进一步学习数学和其他相关学科的基础知识和基本方法打下牢固的基础.学习重点:(1)能用配方法,由圆的一般方程求出圆心坐标和半径;(2)能用待定系数法,由已知条件导出圆的方程.学习难点:圆的一般方程的特点.二.学习过程前面,我们已讨论了圆的标准方程(x-a)2+(y-b)2=r2,现将展开可得x2+y2-2ax-2by+a2+b2-r2=0.可见,任何一个圆的方程都可以写成x2+y2+Dx+Ey+F=0.请大家思考一下:形如x2+y2+Dx+Ey+F=0的方程的曲线是不是圆?下面我们来深入研究这一方面的问题.复习引出课题为“圆的一般方程”.探究一:圆的一般方程的定义1.分析方程x2+y2+Dx+Ey+F=0表示的轨迹2.引出圆的一般方程的定义探究二:圆的一般方程的特点请同学们分析下列问题:问题:比较二元二次方程的一般形式Ax2+Bxy+Cy2+Dx+Ey+F=0.(2)与圆的一般方程x2+y2+Dx+Ey+F=0,(D2+E2-4F>0).(3)的系数可得出什么结论?例1 求下列圆的半径和圆心坐标:(1)x2+y2-8x+6y=0,(2)x2+y2+2by=0.变式训练1:1.方程x2+y2+2kx+4y+3k+8=0表示圆的充要条件是()A.k>4或者k<-1 B.-1<k<4 C.k=4或者k=-1 D.以上答案都不对2.圆x2+y2+Dx+Ey+F=0与x轴切于原点,则有()A.F=0,DE≠0 B.E2+F2=0,D≠0C.D2+F2=0,E≠0 D.D2+E2=0,F≠0例2 求过三点O(0,0)、A(1,1)、B(4,2)的圆的方程.变式训练2:求圆心在直线l :x+y=0上,且过两圆C1∶x 2+y 2-2x+10y-24=0和C2∶x 2+y 2+2x+2y-8=0的交点的圆的方程.三.反思总结四.当堂检测 1.方程342-+-=x x y 表示的曲线是( )A.在x 轴上方的圆 B.在y 轴右方的圆 C.x 轴下方的半圆 D.x 轴上方的半圆2.以(0,0)、(6,-8)为直径端点的圆的方程是 .3.求经过两圆x 2+y 2+6x-4=0和x 2+y 2+6y-28=0的交点,并且圆心在直线x-y-4=0上的圆的方程.参考答案:1.D 2.x 2+y 2-6x+8y=0 3.x 2+y 2-x+7y-32=0课后练习与提高1.方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示圆,则实数m 的取值X 围是( )word11 / 11 A.-71<m <1 B.-1<m <71 C.m <-71或m >1 D.m <-1或m >71 2.方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的曲线关于直线x +y =0对称,则有( )A.D +E =0 B.D +F =0 C.E +F =0 D.D +E +F =0 3.经过三点A (0,0)、B (1,0)、C (2,1)的圆的方程为( )A.x 2+y 2+x -3y -2=0 B. x 2+y 2+3x +y -2=0C. x 2+y 2+x +3y =0 D. x 2+y 2-x -3y =04.方程220x y x y k +-++=表示一个圆,则实数k 的取值X 围是. 5.过点A (-2,0),圆心在(3,-2)的圆的一般方程为.6.等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点的轨迹方程,并说明它的轨迹是什么.参考答案:1.A 2.A 3.D 4.k 21<5.x 2+y 2-6x +4y -16=0 6.所求的轨迹方程为x 2+y 2-8x-4y+10=0(x ≠3,x ≠5),轨迹是以A 为圆心、10为半径的圆,但除去两点.。
4.1.2圆的一般方程●三维目标1.知识与技能(1)掌握圆的一般方程及一般方程的特点.(2)能将圆的一般方程化成圆的标准方程,进而求圆心和半径.(3)能用待定系数法由已知条件求出圆的方程.(4)能用坐标法求动点的轨迹方程.2.过程与方法(1)进一步培养学生用代数方法研究几何问题的能力.(2)加深对数形结合思想的理解和加强待定系数法的运用.3.情感、态度与价值观(1)培养学生主动探究知识、合作交流的意识.(2)培养学生勇于思考、探究问题的精神.●重点难点重点:圆的一般方程及待定系数法求圆的方程.难点:用坐标法求动点的轨迹方程.重点突破:以教材的思考为切入点,采取由特殊到一般、由具体到抽象的方法,结合圆的标准方程,突破“二元二次方程同圆的关系”这一重难点,通过学生探究合作与交流,结合题组训练,引导学生进一步掌握用“待定系数法”求解圆的一般方程;借助多媒体演示及学生的直观感知突破“求动点的轨迹方程”这一难点.【课前自主导学】【问题导思】1.圆的标准方程(x-a)2+(y-b)2=r2展开可得到一个什么式子?【提示】x2+y2-2ax-2by+a2+b2-r2=0.2.观察以下三个方程:(1)x2+y2+2x+2y+8=0;(2)x2+y2+2x+2y+2=0;(3)x 2+y 2+2x +2y =0.先将它们分别配方,分析它们分别表示什么图形?【提示】 (1)配方得(x +1)2+(y +1)2=-6,不表示任何图形. (2)配方得(x +1)2+(y +1)2=0,表示点(-1,-1). (3)配方得(x +1)2+(y +1)2=2,表示圆.3.当m 为何值时方程x 2+y 2+mxy -2x =0表示圆?【提示】 由圆的一般方程可知,若方程表示圆,则满足m =0,且(-2)2+0-0>0,即m =0. 方程x 2+y 2+Dx +Ey +F =0(*)表示的图形(1)变形:⎝ ⎛⎭⎪⎫x +D 22+⎝ ⎛⎭⎪⎫y +E 22=D 2+E 2-4F4.(2)图形:①当D 2+E 2-4F >0时,方程表示的曲线为圆,且圆心为⎝ ⎛⎭⎪⎫-D2,-E 2,半径为12D 2+E 2-4F ,方程(*)称为圆的一般方程;②当D 2+E 2-4F =0时,方程(*)表示一个点-D 2,-E2; ③当D 2+E 2-4F <0时,方程(*)不表示任何图形. 【课堂互动探究】下列方程能否表示圆?若能,求出圆心和半径.(1)2x 2+y 2-7y +5=0; (2)x 2-xy +y 2+6x +7y =0; (3)x 2+y 2-2x -4y +10=0; (4)2x 2+2y 2-5x =0.【思路探究】 分析每个方程是否具有圆的一般方程的特征,也可以把方程配方观察求解. 【自主解答】 (1)∵方程2x 2+y 2-7y +5=0中x 2与y 2的系数不相同,∴它不能表示圆. (2)∵方程x 2-xy +y 2+6x +7y =0中含有xy 这样的项,∴它不能表示圆. (3)方程x 2+y 2-2x -4y +10=0化为(x -1)2+(y -2)2=-5,∴它不能表示圆.(4)方程2x 2+2y 2-5x =0化为⎝ ⎛⎭⎪⎫x -542+y 2=⎝ ⎛⎭⎪⎫542,∴它表示以⎝ ⎛⎭⎪⎫54,0为圆心,54为半径长的圆.二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆,应满足的条件是:①A =C ≠0,②B =0,③D 2+E 2-4AF >0.如果x 2+y 2-2x +y +k =0是圆的方程,则实数k 的范围是________.【解析】 由题意可知(-2)2+12-4k >0,即k <54. 【答案】 ⎝ ⎛⎭⎪⎫-∞,54求过三点O (0,0),M (1,1),N (4,2)的圆的方程,并求这个圆的半径长和圆心坐标.【思路探究】 设圆的一般式方程―――――――→过点O 、M 、N 求圆的一般式方程――――→公式法求圆心坐标、半径【自主解答】 设圆的一般式方程为x 2+y 2+Dx +Ey +F =0,由题意可知点O (0,0),M (1,1),N (4,2)满足圆的方程,即⎩⎨⎧F =0,D +E +F +2=0,4D +2E +F +20=0,解得⎩⎨⎧D =-8,E =6,F =0.所以,所求圆的一般方程是x 2+y 2-8x +6y =0化为标准方程为(x -4)2+(y +3)2=25.∴圆的圆心坐标是(4,-3),半径r =5.1.本题是待定系数法求圆的方程,由于已知条件是圆上三点,不易求出圆心、半径,故选用一般方程,先设出圆的一般方程,再把三点坐标代入得到关于D 、E 、F 的一个三元一次方程组,解得结果.2.用待定系数法求圆的方程时一般方程和标准方程的选择(1)如果由已知条件容易求得圆心坐标、半径或需利用圆心的坐标或半径列方程的问题,一般采用圆的标准方程,再用待定系数法求出a ,b ,r .(2)如果已知条件和圆心或半径都无直接关系,一般采用圆的一般方程,再用待定系数法求出参数D ,E ,F .(2014·吉林高一检测)已知圆C :x 2+y 2+Dx +Ey +3=0,圆心在直线x +y -1=0上,且圆心在第二象限,半径为2,求圆的一般方程.【解】 圆心C ⎝ ⎛⎭⎪⎫-D2,-E 2,因为圆心在直线x +y -1=0上,所以-D 2-E2-1=0,即D +E =-2,① 又r =D 2+E 2-122=2,所以D 2+E 2=20,②由①②可得⎩⎨⎧ D =2,E =-4或⎩⎨⎧D =-4,E =2.又圆心在第二象限,所以-D2<0即D >0,所以⎩⎨⎧D =2,E =-4,所以圆的一般方程为x 2+y 2+2x -4y +3=0.已知点A (4,0),P 是圆x 2+y 2=1上的动点,求线段AP 的中点M 的轨迹方程.【思路探究】 本题考查动点轨迹方程的求法,关键是寻找动点M 的横、纵坐标之间的关系. 【自主解答】 设M (x ,y ),由于M 是AP 的中点,∴P 点的坐标是(2x -4,2y ). ∵P 是圆x 2+y 2=1上的点,∴(2x -4)2+(2y )2=1.即动点M 的轨迹方程为(x -2)2+y 2=14.1.本题是运用代入法求轨迹方程.用动点坐标表示相关坐标,再根据相关点所满足的方程即可求动点的轨迹方程,这种求轨迹方程的方法叫作相关点法或代入法.2.求轨迹方程的一般步骤(1)建立适当坐标系,设出动点M 的坐标(x ,y ). (2)列出点M 满足条件的集合.(3)用坐标表示上述条件,列出方程f (x ,y )=0. (4)将上述方程化简.(5)证明化简后的以方程的解为坐标的点都是轨迹上的点.已知动点M 到点A (2,0)的距离是它到点B (8,0)的距离的一半. (1)求动点M 的轨迹方程;(2)若N 为线段AM 的中点,试求点N 的轨迹. 【解】 (1)设动点M 的坐标为(x ,y ),∵A (2,0),B (8,0),|MA |=12|MB |,∴(x -2)2+y 2=14[(x -8)2+y 2]. 化简得x 2+y 2=16,即动点M 的轨迹方程为x 2+y 2=16. (2)设点N 的坐标为(x ,y ),∵A (2,0),N 为线段AM 的中点,∴点M 的坐标为(2x -2,2y ). 又点M 在圆x 2+y 2=16上,∴(2x -2)2+4y 2=16,即(x -1)2+y 2=4. ∴点N 的轨迹是以(1,0)为圆心,2为半径的圆. 【易错易误辨析】忽略圆的一般方程中D 2+E 2-4F >0致误已知定点A (a,2)在圆x 2+y 2-2ax -3y +a 2+a =0的外部,求a 的取值范围.【错解】 因为点A (a,2)在圆的外部,所以a 2+4-2a 2-3×2+a 2+a >0, 解得a >2.故所求a 的范围为(2,+∞).【错因分析】 上述解法的错误在于“忘记判断二元二次方程表示圆的条件”.【防范措施】 对于二元二次方程x 2+y 2+Dx +Ey +F =0只有在D 2+E 2-4F >0的前提下,它才表示圆,故求解本题在判定出点与圆的位置关系后,要验证所求参数的范围是否满足D 2+E 2-4F >0.【正解】 因为点A 在圆的外部,所以有⎩⎨⎧a 2+4-2a 2-3×2+a 2+a >0, -2a 2+ -3 2-4 a 2+a >0, 解得⎩⎪⎨⎪⎧a >2,a <94,即2<a <94.所以a 的取值范围为⎝ ⎛⎭⎪⎫2,94.【课堂小结】1.圆的一般方程x 2+y 2+Dx +Ey +F =0是圆的另一种表示形式,其隐含着D 2+E 2-4F >0,同圆的标准方程类似,求圆的一般式方程也需要三个独立的条件.2.求轨迹的方法很多,注意合理选取,在求与圆有关的轨迹时,注意充分利用圆的性质. 【当堂达标检测】1.已知圆x 2+y 2-4x +2y -4=0,则圆心坐标、半径的长分别是( ) A .(2,-1),3 B .(-2,1),3 C .(-2,-1),3D .(2,-1),9【解析】 圆x 2+y 2-4x +2y -4=0可化为(x -2)2+(y +1)2=9. 故其圆心坐标为(2,-1),半径的长为3. 【答案】 A2.点P (x 0,y 0)是圆x 2+y 2=16上的动点,点M 是OP (O 为原点)的中点,则动点M 的轨迹方程是________.【解析】 设M (x ,y ),则⎩⎪⎨⎪⎧x =x 02,y =y 02,即⎩⎨⎧x 0=2x ,y 0=2y ,又P (x 0,y 0)在圆上,∴4x 2+4y 2=16,即x 2+y 2=4. 【答案】 x 2+y 2=43.若方程x 2+y 2-4x +2y +5k =0表示圆,则实数k 的取值范围是________. 【解析】 由(-4)2+22-4×5k >0,得k <1. 【答案】 (-∞,1)4.已知圆C 过点O (0,0),A (1,0),B (0,-1),求圆C 的方程.【解】 设圆C 的方程为x 2+y 2+Dx +Ey +F =0.将O ,A ,B 三点坐标依次代入,得⎩⎨⎧F =0,1+D +F =0,-1 2-E +F =0,解之得D =-1,E =1,F =0.所以圆C 的方程为x 2+y 2-x +y =0.【课后知能检测】 一、选择题1.方程x 2+(a +2)y 2+2ax +a =0表示一个圆,则( ) A .a =-1 B .a =2 C .a =-2 D .a =1 【解析】 由题意可知a +2=1,∴a =-1. 【答案】 A2.过三点A (-1,5),B (5,5),C (6,-2)的圆的方程是( ) A .x 2+y 2+4x -2y -20=0 B .x 2+y 2-4x +2y -20=0 C .x 2+y 2-4x -2y -20=0 D .x 2+y 2+4x +4y -20=0【解析】 设圆的方程为x 2+y 2+Dx +Ey +F =0分别代入(-1,5),(5,5),(6,-2)得⎩⎨⎧-D +5E +F =-26,5D +5E +F =-50,6D -2E +F =-40,解得⎩⎨⎧D =-4,E =-2,F =-20.所以圆的方程是x 2+y 2-4x -2y -20=0.【答案】 C3.(2014·惠州高一检测)若Rt △ABC 的斜边的两端点A ,B 的坐标分别为(-3,0)和(7,0),则直角顶点C 的轨迹方程为( )A .x 2+y 2=25(y ≠0)B .x 2+y 2=25C .(x -2)2+y 2=25(y ≠0)D .(x -2)2+y 2=25【解析】 线段AB 的中点为(2,0),因为△ABC 为直角三角形,C 为直角顶点,所以C 到点(2,0)的距离为12|AB |=5,所以点C (x ,y )满足 x -2 2+y 2=5(y ≠0),即(x -2)2+y 2=25(y ≠0).【答案】 C4.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为22,则a 的值为( ) A .-2或2 B.12或32C .2或0D .-2或0【解析】 由圆心(1,2)到直线的距离公式得|1-2+a |2=22得a =0或a =2.故选C.【答案】 C5.已知两定点A (-2,0),B (1,0),如果动点P 满足|P A |=2|PB |,则点P 的轨迹所围成的图形的面积等于( )A .πB .4πC .8πD .9π【解析】 设点P 的坐标为(x ,y ),由|P A |=2|PB |得(x +2)2+y 2=4(x -1)2+4y 2 即(x -2)2+y 2=4. 故点P 的轨迹所围成的图形的面积S =4π. 【答案】 B 二、填空题6.若方程x 2+y 2+Dx +Ey +F =0表示以(2,-4)为圆心,4为半径的圆,则F =________.【解析】 由题意可知⎩⎪⎨⎪⎧-D2=2,-E2=-4,12D 2+E 2-4F =4,解得D =-4,E =8,F =4.【答案】 47.圆x 2+y 2-2x +6y +8=0的周长等于________.【解析】 圆的半径r =12 -2 2+62-4×8=2,故圆的周长为22π. 【答案】 22π8.设圆x 2+y 2-4x +2y -11=0的圆心为A ,点P 在圆上,则P A 的中点M 的轨迹方程是________. 【解析】 设M 的坐标为(x ,y ),由题意可知圆心A 为(2,-1),P (2x -2,2y +1)在圆上, 故(2x -2)2+(2y +1)2-4(2x -2)+2(2y +1)-11=0,即x 2+y 2-4x +2y +1=0. 【答案】 x 2+y 2-4x +2y +1=0 三、解答题9.(2014·台州高一检测)自A (4,0)引圆x 2+y 2=4的割线ABC ,求弦BC 中点P 的轨迹方程. 【解】 设P (x ,y ),O 为原点,连接OP ,当x ≠0时,OP ⊥AP ,即k OP ·k AP =-1,∴y x ·y x -4=-1,即x 2+y 2-4x =0.①当x =0时,P 点坐标(0,0)是方程①的解,∴BC 中点P 的轨迹方程为x 2+y 2-4x =0(在已知圆内的部分).10.设圆的方程为x 2+y 2-4x -5=0, (1)求该圆的圆心坐标及半径;(2)若此圆的一条弦AB 的中点为P (3,1),求直线AB 的方程.【解】 (1)将x 2+y 2-4x -5=0配方得:(x -2)2+y 2=9.∴圆心坐标为C (2,0),半径为r =3. (2)设直线AB 的斜率为k .由圆的几何性质可知:CP ⊥AB ,∴k CP ·k =-1.又k CP =1-03-2=1,∴k =-1.∴直线AB 的方程为y -1=-(x -3),即x +y -4=0.11.设△ABC 顶点坐标A (0,a ),B (-3a ,0),C (3a ,0),其中a >0,圆M 为△ABC 的外接圆.(1)求圆M 的方程;(2)当a 变化时,圆M 是否过某一定点,请说明理由. 【解】 (1)设圆M 的方程为x 2+y 2+Dx +Ey +F =0.∵圆M 过点A (0,a ),B (-3a ,0),C (3a ,0),∴⎩⎨⎧a 2+aE +F =0,3a -3aD +F =0,3a +3aD +F =0,解得D =0,E =3-a ,F =-3a .∴圆M 的方程为x 2+y 2+(3-a )y -3a =0. (2)圆M 的方程可化为(3+y )a -(x 2+y 2+3y )=0.由⎩⎨⎧3+y =0,x 2+y 2+3y =0,解得x =0,y =-3.∴圆M 过定点(0,-3).。
圆的一般方程
例3 点P(10,0),Q 为圆x 2+y 2
=16上一动点.当Q 在圆上运动时,求PQ 的中点M 的轨迹方程.
活动:学生回想求曲线方程的方法与步骤,思考讨论,教师适时点拨提示,此题可利用平面几何的知识,见中点作中线,利用中线定长可得方程,再就是利用求曲线方程的办法来求.
图1
解法一:如图1,作MN∥OQ 交x 轴于N, 那么N 为OP 的中点,即N(5,0). 因为|MN|=
2
1
|OQ|=2(定长). 所以所求点M 的轨迹方程为(x-5)2
+y 2
=4.
点评:用直接法求轨迹方程的关键在于找出轨迹上的点应满足的几何条件,然后再将条件代数化.但在许多问题中,动点满足的几何条件较为隐蔽复杂,将它翻译成代数语言时也有困难,这就需要我们探讨求轨迹问题的新方法.转移法就是一种很重要的方法.用转移法求轨迹方程时,首先分析轨迹上的动点M 的运动情况,探求它是由什么样的点控制的. 解法二:设M(x,y)为所求轨迹上任意一点Q(x 0,y 0).
因为M 是PQ 的中点,所以⎪⎩⎪⎨⎧=-=⎪⎪⎩
⎪⎪⎨⎧+=+=.2.102,20,2100000y y x x y y x x 即(*) 又因为Q(x 0,y 0)在圆x 2
+y 2
=16上,所以x 02
+y 02
=16.将(*)代入得 (2x-10)2
+(2y)2
=16.
故所求的轨迹方程为(x-5)2
+y 2
=4.
点评:相关点法步骤:①设被动点M(x,y),主动点Q(x 0,y 0).
②求出点M 与点Q 坐标间的关系⎪⎩⎪⎨⎧==).
,(),
,(002001y x f y y x f x (Ⅰ)。
高中数学 4.1.2圆的一般方程学案设计新人教A版必修24.1 圆的方程4.1.2 圆的一般方程学习目标1.在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心、半径.掌握方程x2+y2+Dx+Ey+F=0表示圆的条件.2.能通过配方等手段,把圆的一般方程化为圆的标准方程.能用待定系数法求圆的方程.3.体会数形结合思想,初步形成代数方法处理几何问题能力.能根据不同的条件,利用待定系数法求圆的标准方程.学习过程一、设计问题,创设情境我们已经学习了圆的标准方程,请同学们思考方程(x-1)2+(y+2)2=4表示什么图形?它与方程x2+y2-2x+4y+1=0是什么关系?问题1:把圆的标准方程(x-a)2+(y-b)2=r2展开后是什么形式?问题2:方程:x2+y2-6x+8y+20=0表示的曲线是什么图形?二、自主探索,尝试解决1.我们知道,圆的一般方程是(x-a)2+(y-b)2=r2,它体现了圆心和半径.展开后是一个关于x,y的二元二次式:;2.圆的标准方程展开都是一个关于x,y的二元二次式x2+y2-2ax-2by+a2+b2-r2=0,反之关于x、y的二元二次方程x2+y2+Dx+Ey+F=0都表示圆吗?三、信息交流,揭示规律3.圆的一般方程是(x-a)2+(y-b)2=r2,它体现了圆心和半径.展开后是一个关于x,y的二元二次式:x2+y2-2ax-2by+a2+b2-r2=0.关于x,y的二元二次式x2+y2+Dx+Ey+F=0表示圆,通过对其进行配方得:;当,即时表示圆心为(-,-),半径为r=的圆.当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0表示.当D2+E2-4F<0时,x2+y2+Dx+Ey+F=0不表示任何图形.四、运用规律,解决问题4.求下列各方程表示的圆的圆心坐标和半径长:(1)x2+y2-6x=0(2)x2+y2+2by=0(3)x2+y2-2ax-2ay+3a2=0总结规律:(试总结如何判断“点与圆的位置关系”)5.求过三点O(0,0),M1(1,1),M2(4,2)的圆的方程,并求这个圆的半径长和圆心坐标.解:总结规律:(试总结如何判断“点与圆的位置关系”)五、变练演编,深化提高从所给的题目来看,题目主要涉及圆的一般方程的求解和利用圆的一般方程确定圆心和半径进行设计,而所涉及的条件主要是圆上的点,同学们仿照例题可以自己进行题目的编写.6.平面直角坐标系中有A(0,1),B(2,1),C(3,4),D(-1,2)四点,这四点能否在同一个圆上?为什么?解:六、信息交流,教学相长请同学们把你编写的较为典型的题目选几个写在下面.七、反思小结,观点提炼1.圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0)2.求圆的一般方程的方法:待定系数法.3.求圆的一般方程需要三个条件:待定方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)中的D,E,F.参考答案二、1.x2+y2-2ax-2by+a2+b2-r2=0三、3.不都,(x+)2+(y+)2=>0,D2+E2-4F>0,一个点(-,-)四、4.(1)(x-3)2+y2=9 圆心(3,0) 半径r=3(2)x2+(y+b)2=b2圆心(0,-b) 半径r=|b|(3)(x-a)2+(y-a)2=a2圆心(a,a) 半径r=|a|5.设所求圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0)则解得所求圆的方程为:x2+y2-8y+6x=0圆心为(4,-3),半径为r=5五、6.设经过A,B,C三点的圆的方程为x2+y2+Dx+Ey+F=0,把A(0,1),B(2,1),C(3,4)的坐标分别代入圆的方程,得解得∴经过A,B,C三点的圆方程为x2+y2-2x-6y+5=0.再将点D的坐标(-1,2)代入上面方程的左边,得(-1)2+22-2×(-1)-6×2+5=0,所以点D也在经过A,B,C三点的圆上,即A,B,C,D这四点在同一个圆上.。
4.1.2圆的一般方程
三维目标:
知识与技能 : (1)在掌握圆的标准方程的基础上,理解记忆圆的一般方程的
代数特征,由圆的一般方程确定圆的圆心半径.掌握方
程x 2+y 2
+Dx +Ey +F=0表示圆的条件
(2)能通过配方等手段,把圆的一般方程化为圆的标准方程.能用
待定系数法求圆的方程。
(3):培养学生探索发现及分析解决问题的实际能力。
过程与方法:通过对方程x 2+y 2+Dx +Ey +F=0表示圆的条件的探究,培养学生探索发现
及分析解决问题的实际能力。
情感态度价值观:渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,
激励学生创新,勇于探索。
教学重点:圆的一般方程的代数特征,一般方程与标准方程间的互化,根据已知条件
确定方程中的系数,D 、E 、F .
教学难点:对圆的一般方程的认识、掌握和运用
教 具:多媒体、实物投影仪
教学过程:
课题引入:
问题:求过三点A (0,0),B (1,1),C (4,2)的圆的方程。
利用圆的标准方程解决此问题显然有些麻烦,得用直线的知识解决又有其简单的局限性,那么这个问题有没有其它的解决方法呢?带着这个问题我们来共同研究圆的方程的另一种形式——圆的一般方程。
探索研究:
请同学们写出圆的标准方程:
(x -a)2+(y -b)2=r 2
,圆心(a ,b),半径r .
把圆的标准方程展开,并整理:
x 2+y 2-2ax -2by +a 2+b 2-r 2=0. 取222,2,2r b a F b E a D -+=-=-=得
022=++++F Ey Dx y x ①
这个方程是圆的方程.
反过来给出一个形如x 2+y 2
+Dx +Ey +F=0的方程,它表示的曲线一定是圆吗?
把x 2+y 2+Dx +Ey +F=0配方得 4
4)2()2(2222F E D E y D x -+=+++ ② (配方过程由学生去完成)这个方程是不是表示圆?
(1)当D 2+E 2-4F >0时,方程②表示(1)当0422>-+F E D 时,表示以(-2
D ,-2
E )为圆心,
F E D 42122-+为半径的圆; (2)当0422=-+F E D 时,方程只有实数解2D x -
=,2
E y -=,即只表示一个点(-2D ,-2E ); (3)当0422<-+
F E D 时,方程没有实数解,因而它不表示任何图形
综上所述,方程022=++++F Ey Dx y x 表示的曲线不一定是圆
只有当0422>-+F E D 时,它表示的曲线才是圆,我们把形如
022=++++F Ey Dx y x 的表示圆的方程称为圆的一般方程()2
214x y ++= 我们来看圆的一般方程的特点:(启发学生归纳)
(1)①x 2和y 2的系数相同,不等于0.
②没有xy 这样的二次项.
(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆
的方程就确定了.
(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,
圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
知识应用与解题研究:
例1:判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半
径。
()()222214441290244412110
x y x y x y x y +-++=+-++=
学生自己分析探求解决途径:①、用配方法将其变形化成圆的标准形式。
②、运用圆
的一般方程的判断方法求解。
但是,要注意对于()2214441290x y x y +-++=来说,这
里的
91,3,4
D E F =-==而不是D=-4,E=12,F=9. 例2:求过三点A (0,0),B (1,1),C (4,2)的圆的方程,并求这个圆的半径长和圆心坐标。
分析:据已知条件,很难直接写出圆的标准方程,而圆的一般方程则需确定三个系数,而条件恰给出三点坐标,不妨试着先写出圆的一般方程
解:设所求的圆的方程为:022=++++F Ey Dx y x
∵(0,0),(11
A B ,),C(4,2)在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于F E D ,,的三元一次方程组,
即⎪⎩
⎪⎨⎧=+++=+++=02024020F E D F E D F
解此方程组,可得:0,6,8==-=F E D
∴所求圆的方程为:06822=+-+y x y x
542
122=-+=F E D r ;32,42-=-=-F D 得圆心坐标为(4,-3).
或将06822=+-+y x y x 左边配方化为圆的标准方程,25)3()4(22=++-y x ,从而求出圆的半径5=r ,圆心坐标为(4,-3)
学生讨论交流,归纳得出使用待定系数法的一般步骤:
①、 根据提议,选择标准方程或一般方程;
②、 根据条件列出关于a 、b 、r 或D 、E 、F 的方程组;
③、 解出a 、b 、r 或D 、E 、F ,代入标准方程或一般方程。
例3、已知线段AB 的端点B 的坐标是(4,3),端点A 在圆上()2
214x y ++=运动,求线段AB 的中点M 的轨迹方程。
分析:如图点A 运动引起点M 运动,而点A 在已知圆上运动,点A 的坐标满足方程()2214x y ++=。
建立点M 与点A 坐标之间的关系,就可以建立点M 的坐标满足的条件,求出点M 的轨迹方程。
解:设点M 的坐标是(x,y ),点A 的坐标是
()()00,.B 43M AB x y 由于点的坐标是,
且是线段的重点,所以000043,,22
24,23
x y x y x x y y ++===-=-于是有 ① 因为点A 在圆()2
214x y ++=上运动,所以点A 的坐标满足方程()2214x y ++=,即()220014x y ++=
()
220014x y ++= ② 把①代入②,得 130p
()()22241234,x y -++-=22
312y ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭
3整理,得x-2 M ⎛⎫ ⎪⎝⎭
33所以,点的轨迹是以,为圆心,半径长为1的圆22
课堂练习:课堂练习130p 第1、2、3题
小结 :
1.对方程022=++++F Ey Dx y x 的讨论(什么时候可以表示圆)
2.与标准方程的互化
3.用待定系数法求圆的方程
4.求与圆有关的点的轨迹。
p习题4.1第2、3、6题课后作业:
130。