当前位置:文档之家› “补集思想”在解题中的应用

“补集思想”在解题中的应用

“补集思想”在解题中的应用

高中数学《补集及集合运算的综合应用》导学案

1.1.3集合的基本运算 第2课时补集及集合运算的综合应用 1.全集 (1)全集定义:□1如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集. (2)全集符号表示:□2全集通常记作U. 2.补集的定义 (1)自然语言:□3对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合 A的补集,记作?U A. (2)符号语言:?U A=□4{x|x∈U且x?A}. (3)图形语言:□5用Venn图表示,如下图阴影部分所示,表示?A. U □6 1.判一判(正确的打“√”,错误的打“×”) (1)一个集合的补集一定含有元素.() (2)集合?B C与?A C相等.() (3)集合A与集合A在全集U中的补集没有公共元素.() 答案(1)×(2)×(3)√

2.做一做 (1)(教材改编P11T4)设集合U={1,2,3,4,5,6},M={1,2,4},则?U M 等于() A.U B.{1,3,5} C.{3,5,6} D.{2,4,6} (2)(教材改编P11T4)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则?U(A∪B)等于() A.{1,3,4} B.{3,4} C.{3} D.{4} (3)设集合S={x|x>-2},T={x|-4≤x≤1},则(?R S)∪T等于() A.{x|-2

数思想方法与数学解题方法

中学解题数学思想方法与解题方法 第一部分:数学思想方法 数学思想是指现实世界的空间形式和数量关系反映到人的意识之中,经过思维活动而产生的结果,它是对数学事实与数学理论的本质认识,而数学方法是以数学为工具进行科学研究的方法。数学思想与数学方法是数学知识中莫基性成分,是学生获得数学能力必不可少的。 一、函数与方程思想 函数与方程的思想是中学数学最基本的思想。 所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用。 所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。方程思想是解决各类计算问题的基本思想,是运算能力的基础。 高考把函数与方程思想作为七种重要思想方法重点来考查。 二、数形结合思想 数形结合的思想和方法数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。 数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。 数形结合思想研究的对象是数量关系和空间形式,即数与形两个方面由数思形,由形思数数形结合,用形解决数的问题。在一维空间,实数与数轴上的点建立一一对应关系;在二维空间,实数对与坐标平面上的点建立一一对应关系。 三、分类与整合思想 分类讨论思想是对数学对象进行分类寻求解答的一种思想方法,其作用在于克服思维的片面性,全面考虑问题。 1)分类是自然科学乃至社会科学研究中的基本逻辑方法 2)从具体出发,选取适当的分类标准;划分只是手段,分类研究才是目的

中考专题--方程思想

方程应用试题 姓名___________ 应用方程思想解题时应注意:①要具备用方程思想解题的意识;②要具有正确列出方程的能力;(正确的找到等量关系)③要掌握运用方程思想解决问题的要点 一.方程思想在代数问题中的应用 (1)整式与方程思想 1.已知25A x mx n =-+,2 321B y x =-+-,若A B +中不含有一次项和常数项,则222m mn n -+的值为 2.单项式2343m n m n x y ++与422y x -是同类项,则m n 的值为 (2)函数与方程思想 3.若函数2 1 5m m y mx --=+是一次函数,且y 随x 的增大而减小,则m = 4.已知反比例函数k y x = 与一次函数2y x k =+的图像的一个交点的纵坐标是4-,则k 的值为 5.已知点(1,)P m 在正比例函数2y x =的图像上,那么点P 的坐标为 二.方程思想在几何问题中的应用 在解答几何问题中经常会①运用勾股定理建立方程;②运用相似三角形对应边成比例建立方程;③运用锐角三角函数的意义建立方程 (1)三角形和四边形与方程思想 通常解决等腰三角形相关问题时要列出方程 6.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( ) A .1 B . 34 C .2 3 D .2 7.如图,如图,矩形ABCD 中,AB =2,BC =3,对角线AC 的垂直平分线分别交AD ,BC 于点E 、F ,连接CE , 则CE 的长________. 8.如图,已知等腰△ABC 中,顶角∠A=36°,BD 为∠ABC 的平分线,则 AD AC 的值为( ) . A . 1 2 B .51- C .1 D .51+ 9.如图,在△ABC 中,∠C=45°,BC=10,高AD=8,矩形EFPQ 的一边QP 在边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H 。设EF=x ,当x 为何值时,矩形EFPQ 的面积最大?并求其最大值 (3)圆与方程思想 通常以半径相等或者切线长相等为突破口 以“勾股定理”为等量关系列出方程 10.如图,ABC Rt ?中,?=∠90ACB ,4=AC ,3=BC ,以BC 上一点O 为圆心作⊙O,与AC 、AB 分别相切于C 点、E 点,则⊙O 的半径为 11.如图,已知AB 是⊙O 的弦,P 是AB 上一点,若AB =10cm ,PB =4cm ,OP =5cm ,则⊙O 的半径等于______________cm 。 A ′ G D C 6题 第7题 F A D O E B C E B O 第10题 O B A P D 第11题 第8题

人教新课标版数学高一-必修1课时作业.2补集及综合应用

第2课时补集及综合应用 课时目标 1.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.2.熟练掌握集合的基本运算. 1.全集:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为________,通常记作________. 2.补集 自然 语言 对于一个集合A,由全集U中________________的所有元素组成的集合称为集合A 相对于全集U的补集,记作________ 符号 语言 ?U A=____________ 图形 语言 (1)?U U=____;(2)?U?=____;(3)?U(?U A)=____;(4)A∪(?U A)=____;(5)A∩(?U A)=____. 一、选择题 1.已知集合U={1,3,5,7,9},A={1,5,7},则?U A等于() A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9} 2.已知全集U=R,集合M={x|x2-4≤0},则?U M等于() A.{x|-22} D.{x|x≤-2或x≥2} 3.设全集U={1,2,3,4,5},A ={1,3,5},B={2,5},则A∩(?U B)等于() A.{2} B.{2,3} C.{3} D.{1,3} 4.设全集U和集合A、B、P满足A=?U B,B=?U P,则A与P的关系是() A.A=?U P B.A=P C.A P D.A P

5.如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是() A.(M∩P)∩S B.(M∩P)∪S C.(M∩P)∩?I S D.(M∩P)∪?I S 6.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},那么集合{2,7}是() A.A∪B B.A∩B C.?U(A∩B) D.?U(A∪B) 题号12345 6 答案 二、填空题 7.设U={0,1,2,3},A={x∈U|x2+mx=0},若?U A={1,2},则实数m=________. 8.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则?U A=____________________,?U B=________________,?B A=____________. 9.已知全集U,A B,则?U A与?U B的关系是____________________. 三、解答题 10.设全集是数集U={2,3,a2+2a-3},已知A={b,2},?U A={5},求实数a,b的值.

数形结合思想在解题中的应用

数形结合思想在解题中的应用

数形结合思想在解题中的应用 摘要 数学是研究现实世界的空间形式和数量关系的学科,数和形是数学研究的两个重要方面,在研究过程中,一方面,许多数量关系的抽象概念和解析式,若赋予几何意义,往往变得非常的直观形象,另一方面,一些图形的属性又可以通过数量关系的研究使得图形的性质更丰富、更精确、更深刻,这种“数”与“形”的信息转换,相互渗透,不仅可以使一些题目的解决简捷明快,同时还可以大大开拓我们的解题思路,为研究和探求数学问题开辟了一条重要的途径。 数形结合包含“以形助数”和“以数助形”两个方面,在高中阶段用的较多的是以形助数。数量关系如果能有效地结合图形,往往会使抽象问题直观化,复杂问题简单化,巧妙地应用数形结合的思想方法来处理一些抽象的数学问题,可起到事半功倍的效果,达到优化解题途径的目的,在选择题,填空题中,数形结合更能显示出其简捷的优越性。 关键词:数形结合思想方法应用解题

第一章 绪论 数学是研究现实世界中空间形式与数量关系的一门学科,故数学的研究是围绕数和形展开的,而数形结合的实质在于数量关系决定着几何图形属性,几何图形的属性反映着数量关系[1]。在现代数学研究中,数形结合既是一种常用的数学方法又是一种数学思想。由此可见,在高中阶段,掌握并熟练运用这一思想是十分必要的。本文针对数形结合思想的形成和演进,数形结合思想解题能力的培养,以及在高中数学解题中的应用范围和数形结合思想在解题中的实际应用做了浅显成述。

第二章数形结合思想的概述和历史演进 2.1数形结合思想的概述 数学的两个最古老、最普遍的研究对象是数、形,在某些条件的作用下,两者可以相互转化。中学数学研究的对象可以分为数和形两大部分,数与形的联系则称作数形结合,它包含“以形助数”和“以数助形”两个方面[1]。以形助数,即借助形的直观性来阐明数之间的关系;以数助形,即借助数的精确性来阐明形的某些属性。 2.2数形结合思想的历史演进 随着时间的推移,数学得到了不断的拓展和充实,数学中最原始的研究对象数与形也在不断地变化,从最初因需要而产生数到欧几里德撰写的《几何原本》,再到从笛卡尔创立平面直角坐标系到近、现代数学研究,数形结合一直伴随其行。在古希腊数学时期,毕达哥斯拉学派在研究数学时,就借助形来归纳数的性质,这便是早期的“数”与“形”结合的体现。 数轴的建立使人类对数与形的统一有了初步的认识,把实数与数轴上的点一一对应起来,数可视为点,点可当作数,点在直线上的位置关系可以数量化,而数的运算可以几何化。1637年,笛卡尔在其《几何学》中,首次提出了点的坐标和变数的思想,并借助坐标系用含有数的代数方程来表示和研究曲线[2]。笛卡尔把数轴(一维)扩展到平面直角坐标系,把有序数对) P与平面上的点 x , (y 一一对应起来,从而使得平面曲线的点集与二元方程组的解集一一对应起来。于是就可以用代数方法来研究几何图形的性质,把几何研究转换成对应的代数的研究。

数形结合思想在高中数学解题中的应用

第5讲 数形结合思想在解题中的应用 一、知识整合 1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。 2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。 如等式()()x y -+-=21422 3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。 二、例题分析 例1.的取值范围。之间,求和的两根都在的方程若关于k k kx x x 310322 -=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令 ()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >, ()()02b f f k a - =-<10(10) k k -<<∈-同时成立,解得,故, 例2. 解不等式x x +>2 解:法一、常规解法: 原不等式等价于或()()I x x x x II x x ≥+≥+>??? ? ?<+≥??? 020 20202

新教材2020-2021学年1.3集合的基本运算 1.3.2补集及综合应用 教案

1.3 集合的基本运算 1.3.2 补集及综合应用 教学目的: (1)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (2)能用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。 课 型:新授课 教学重点:集合的补集的概念; 教学难点:集合的补集“是什么”,“为什么”,“怎样做”; 教学过程: 一、引入课题 我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢? 二、新课教学 1.全集 (1)概念:如果一个集合含有所研究问题中涉及的所有元素,那么就称这个集合为全集 (2)记法:通常记作U . 思考1:在集合运算问题中,全集一定是实数集吗? 提示:全集是一个相对性的概念,只包含研究问题中涉及的所有的元素,所以全集因问题的不同而异. 2.补集 思考2:怎样理解补集? 提示:(1)补集是相对于全集而言的,一方面,若没有定义全集,则不存在补集的说法;另一方面,补集的元素逃不出全集的范围. (2)补集既是集合之间的一种关系,也是集合之间的一种运算.在给定全集U 的情况下,求集合A 的补集的前提是A 为全集U 的子集,随着所选全集的不同,得到的补集也是不同的. 3.基础自测 已知集合{|5A x x =<-或7}x >,则R C A =( ) A .{|57}x x -<< B .{|57}x x -≤≤ C .{|5}{|7}x x x x <-?> D .{|5}{|7}x x x x ≤-?≥

解析:∵{|5A x x =<-或7}x >,∴{|57}R C A x x =-≤≤,故选B . 2.(2019·贵州遵义市高一期末测试)已知集合{1,2,3,4,5}U =,集合{1,3,4}A =,{2,4}B =,则()U C A B ?= ( ) A .{2,4,5} B .{1,3,4} C .{1,2,4} D .{2,3,4,5} 解析:∵{2,5}U C A =,∴(){2,5}{2,4}{2,4,5}U C A B ?=?=. 3.(2019·浙江,1)已知全集{1,0,1,2,3}U =-,集合{0,1,2}A =,{1,0,1}B =-,则()U C A B ?=( ) A .{1}- B .{0,1} C .{1,2,3}- D .{1,0,1,3}- 解析:∵{1,3}U C A =-,∴(){1,3}{1,0,1}{1}U C A B ?=-?-=-,故选A . 三、题型探究 题型一 补集的基本运算 例1 (1)已知全集为U ,集合{1,3,5,7}A =,{2,4,6}U C A =, {1,4,6}U C B =,则集合B =______. (2)已知全集{|5}U x x =≤,集合{|35}A x x =-≤<,则U C A _______. 分析:(1)先结合条件,由补集的性质求出全集U ,再由补集的定义求出集合B ,也可借助Venn 图求解. (2)利用补集的定义,借助于数轴的直观作用求解. 解析:(1)∵{1,3,5,7}A =,{2,4,6}U C A =,∴{1,2,3,4,5,6,7}U =. 又{1,4,6}U C B =,∴{2,3,5,7}B =. (2)将全集U 和集合A 分别表示在数轴上,如图所示. 由补集的定义可知{|3U C A x x =<-或5}x =. 归纳提升 求集合的补集的方法 1.定义法:当集合中的元素较少时,可利用定义直接求解. 2.Venn 图法:借助Venn 图可直观地求出全集及补集. 3.数轴法:当集合中的元素连续且无限时,可借助数轴求解,此时需注意端点问题. 题型二 交集、并集、补集的综合运算 例2 已知全集{|4}U x x =≤,集合{23}A x =-<<,{|32}B x x =-≤≤,求A B ?,()U C A B ?,()U A C B ?.

函数与方程思想在初中数学解题中的应用

函数与方程思想在初中数学解题中的应用 张猛 【内容提要】:函数与方程思想是初中数学中的基本思想。它们密切相关,有时需要互相转化来解决问题。本文对初中数学中的函数与方程思想的内涵作了探讨,并结合一些具体案例说明了函数与方程思想在初中数学解题中的应用。 关键词:函数;方程;函数与方程思想应用案例 数学知识可以记忆一时,但数学思想和方法却随时随地发挥作用,使人受益终身。近年来中考考纲已明确提出不仅要考察学生的数学知识和思维能力,还要考察学生思想方法的运用能力。其中,函数与方程思想是众多考试考查的最基本的数学思想方法之一。学生仅仅学习了函数与方程的知识是不够的,应通过解题和对解题过程的反思来领悟函数与方程思想。 一:函数与方程思想的地位与作用 函数与方程思想,简单地说,就是学会用函数和变量来思考,学会转化已知与未知的关系。在解题时,用函数思想做指导就需要把字母看作变量,把代数式看作函数,利用函数性质做工具进行分析,或者构造一个函数把表面上不是函数的问题化归为函数问题。用方程思想做指导就需要把含字母的等式看作方程,研究方程的根有什么要求。函数与方程思想在解题过程中有着密切的联系。 目前初中阶段主要数学思想有:函数与方程思想、数形结合思想、分类讨论思想,化归与转化思想、图形运动思想、数学模型思想。函数与方程思想,既是函数与方程思想的体现,也是两种思想综合运用

的体现,是研究变量与函数,相等与不等过程中的基本数学思想。 本文例析函数与方程思想在解题中的应用: 二:函数与方程思想的应用案例 通过整理与归纳,可以发现,在数学解题中,函数与方程思想常用于以下几类问题的解决。 1 求代数式的值 例1 已知 22a b ==求22(3124)(2813)a a b b -+-+的值。 解:因为24,1,,410a b ab a b x x +==-+=所以为方程的两个根。 当x a =时,2410.a a -+=可得2231243(41)11a a a a -+=-++=; 当x b =时,222410.28132(41)1111b b b b b b -+=-+=-++=可得 ∴ 原式=1?11=11。 解题反思:此题若将a ,b 的值分别代入所求式中计算,显然运算过程很麻烦。观察发现,所求式中两个括号内的二次项系数之比与一次项系数之比相等,因此可先算出a +b =4,ab =1.利用根与系数的关系构建一元二次方程,这样解起来就简便多了,体现了方程思想的简捷性。 2 解应用问题 例2 某开发公司生产的960件新产品需要精加工后才能投放市场,现有甲、乙两个工厂同时加工这批产品。已知甲厂单独完成加工任务比乙厂单独完成加工任务多用20天,而乙厂每天比甲厂多加工8件产品。公司每天需付甲厂加工费800元,每天需付乙厂加工费1200元。 (1)甲、乙两个工厂每天各加工多少件新产品? (2)请你计算两厂合作完成加工任务公司所付费用。 解:(1)设甲厂每天加工x 件新产品,则乙厂每天加工(x +8)件。 依题意得方程 960960208x x -=+。

新人教版高中数学必修一《补集及集合运算的综合应用》学案

第2课时补集及集合运算的综合应用 课时目标 1.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.2.熟练掌握集合的基本运算. 1.全集:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为________,通常记作________. 2.补集 自然 语言 对于一个集合A,由全集U中________________的所有元素组成的集合称为集合A 相对于全集U的补集,记作________ 符号 语言 ?U A=____________ 图形 语言 (1)?U U=____;(2)?U?=____;(3)?U(?U A)=____;(4)A∪(?U A)=____;(5)A∩(?U A)=____. 一、选择题 1.已知集合U={1,3,5,7,9},A={1,5,7},则?U A等于() A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9} 2.已知全集U=R,集合M={x|x2-4≤0},则?U M等于() A.{x|-22} D.{x|x≤-2或x≥2} 3.设全集U={1,2,3,4,5},A={1,3,5},B={2,5},则A∩(?U B)等于() A.{2} B.{2,3} C.{3} D.{1,3} 4.设全集U和集合A、B、P满足A=?U B,B=?U P,则A与P的关系是() A.A=?U P B.A=P C.A P D.A P

5.如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是() A.(M∩P)∩S B.(M∩P)∪S C.(M∩P)∩?I S D.(M∩P)∪?I S 6.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},那么集合{2,7}是() A.A∪B B.A∩B C.?U(A∩B) D.?U(A∪B) 题号12345 6 答案 二、填空题 7.设U={0,1,2,3},A={x∈U|x2+mx=0},若?U A={1,2},则实数m=________. 8.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则?U A=____________________,?U B=________________,?B A=____________. 9.已知全集U,A B,则?U A与?U B的关系是____________________. 三、解答题 10.设全集是数集U={2,3,a2+2a-3},已知A={b,2},?U A={5},求实数a,b的值. 11.已知集合A={1,3,x},B={1,x2},设全集为U,若B∪(?U B)=A,求?U B. 能力提升 12.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(?U B)∩A={9},则A 等于() A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9} 13.学校开运动会,某班有30名学生,其中20人报名参加赛跑项目,11人报名参加跳跃项目,两项都没有报名的有4人,问两项都参加的有几人?

初中数学解题思想方法

初中数学解题思想方法 数学解题思想方法有配方法、换元法、判别式法、待定系数法、消元法。以上是解题技 巧上的思想方法,比它们更具有普遍意义的思想方法有转化与化简思想方法、数学结合思想方法、归纳猜想、分类讨论、函数与方程思想等。在数学解题过程中我们要养成灵活运用数学思想方法的意义和习惯。 联想在解题中起着重要的作用,从自己的大脑知识仓库中找出与要解题目接 很相似 的原理、方法或结论,变通使用这些知识使问题得以解决。 一、配方法:是指将代数式通过配凑等途径,得到完全平方式或立方式,它广泛应用于 初中数学的各个方面,代数式的化简求值、解方程(组)、求最值等方面。 例1、求5245422 2-+-++y x y xy x 的最小值。 例2、设a ,b 为实数,求b a b ab a 222--++的最小值。 例3、在直角坐标中,有三点A (0,1),B (1,3),C (2,6),已知b ax y +=上横 坐标为0,1,2的点分别为D 、E 、F ,试求:222CF BE AD ++的最小值。 例4、已知x ,y ,z 是实数,且 0))((4)2=----z y y x x z (,求y z x 2+的值。 例5.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( )(2012) A .18-. B .0. C .1. D . 98. 例6 .已知a<0,动点11(,),(1,0),,A a a B A B AB a a +-定点则两点距离的最小值为 二、换元思想方法 根据问题的特征或关系适当引进辅助的元素,替换原问题中的数、字母或式子,从而使 原问题得以解决,这种通过引用变量替换来解决问题的思想方法叫做换元思想方法,它是数学解题的一种基本思想方法,有着广泛的应用。 例722011 例8、已知12433++=a ,求 32133a a a ++的值。 (其中0402≥-≠mq ,n m )

浅谈初中数学中的方程教学与方程思想_1

浅谈初中数学中的方程教学与方程思想 方程是数学发展史上的一个重要里程碑.它可以包容和展示丰富的数量关系,使数学语言有了质的飞跃;用等式作为数学思维的工具,对不同结构形式的方程,人们逐步探索出一套分类处理解方程的方法.正是源于解决数学问题的需求意识发展,人类才创造出方程这一璀璨的数学明珠.今天,课改教材遵循知识的历史发展观:阐明形成方程知识的背景,强调数学思维发展依赖数学工具、语言的功能创新;重视等式变形意义:解方程所采用的数学法则、方法和程序,不仅是学生对方程类型辨识和结构分析,而且又是对数学本质和意义理解的感悟,更是数学化归思想、优化意识在解题对策中的思辨.教材编写意图,旨在让学生体验:方程建模是解决实际问题的有效手段,它是小学后数学新思维、新语言、新方法、新功能的发展. 一、重视方程解法的教学 (一)引导学生探究并理解方程的解法原理 要让学生把方程解法掌握得更好、更牢固,而不是空中楼阁,就必须让学生理解方程的解法原理。一元一次方程解法原理是等式基本性质;一元二次方程按其解法不同其解法原理有两个,直接开平方法、配方法,公式法的解法原理是平方根的定义即若则叫做的平方根,即;因式分解法的解法原理是若则;二元一次方程组解法原理是通过等量代换进行消元转化成一元一次方程来解 (二)进行适量的解方程(组)的训练,让学生形成较稳定的解方程(组)的能力

解一元一次方程,一元二次方程,二元一次方程组的能力是新课程标准规定的初中阶段的学生必须掌握的一项基本技能,要形成熟练的解方程(组)的能力,适当的训练是必须的,而且在训练时,选题应该典型有代表性,全面有覆盖性。 (三)适时归纳解方程(组)基本步骤和基本思路。在训练的基础上,适时对解方程(组)的基本步骤和基本思路进行归纳,可以使学生站在更高的层次上理解方程解法和思路,掌握得会更好、更牢固。例如解一元一次方程的基本步骤是①有分母去分母;②有括号去括号; ③移项;④合并同类项;⑤系数化为1;处理方程或方程组的基本思路是:无理方程有理化,分式方程整式化,高次方程低次化,多元方程一元化,总而言之一句话,消元降次简单化。 二、重视方程应用题的教学 (一)用方程来解决问题是初中数学学习的重点、难点。《新课程标准》对方程提出了这样的要求“能够根据具体问题中的数量关系列出方程,体会方程是刻画现实世界的一个有效的数学模型”,因此对于方程的应用,也应当成为教学的一大重点,对绝大多数学生来说学习方程的一个重要原因就是能够应用它解决问题,包括数学的问题和非数学的问题。列方程(组)解应用题,是初中数学的一个难点,许多学生怕应用题,主要是他们理不清纷繁复杂的数量及其关系,或者难以将实际问题数学化,因而列不出正确的方程,教学中要把握这个重点,设法破解这个难点。 (二)重视教会学生审题和寻找相等关系的方法

北师大版数学高一-1.3素材 “补集思想在解题中的应用

“补集思想”在解题中的应用 在集合运算中,大家都知道这样一个性质:U A C A U =)( ,可是你知道它到底有何作用呢? 本文将通过几个例题与大家谈谈其作用。 例1、 已知集合A={y|y 2-(a 2+a+1)y+a(a 2+1)>0},B={y|y 2-6y+8≤0}, 若A ∩B ≠φ,求实数a 的 取值范围。 分析:本题若直接去解,情形较复杂,也不容易求得正确结果,若我们先考虑其反面,再求其补 集,同样也可以求解。 解:易解得A={y|y>a 2 +1或ya a a 或. 评注:一般地,我们在解时,若正面情形较为复杂,我们就可以先考虑其反面,再利用其补集求得其解,这就是“补集思想”。 例2、若下列三个方程:x 2+4ax-4a+3=0,x 2+(a-1)x+a 2=0, x 2+2ax-2a=0中至少有一个方程有实 根,试求实数a 的取值范围。 分析:本题的正面有七种情形需要考虑,而其反面只有一种,即“三个方程均无实根”。故先考 虑其反面是捷径。 解:若三个方程均无实根,则有 ???? ?????<<->-<<<-??????<--=?<--=?<+--=?023*******)2(4)2(04)1(0)34(4)4(2322221a a a a a a a a a a 或

高中数学基本数学思想:函数与方程思想在数列中的应用

高中数学基本数学思想:函数与方程思想在数列中的应用 函数思想和方程思想是学习数列的两大精髓.“从基本量出发,知三求二.”这是方程思想的体现.而“将数列看成一种特殊的函数,等差、等比数列的通项公式和前n项和公式都是关于n的函数.”则蕴含了数列中的函数思想.借助有关函数、方程的性质来解决数列问题,常能起到化难为易的功效。以下是小编给大家带来的方程思想在数列上的应用,仅供考生阅读。 函数与方程思想在数列中的应用(含具体案例) 本文列举几例分类剖析: 一、方程思想 1.知三求二 等差(或等比)数列{an}的通项公式,前n项和公式集中了等差(或等比)数列的五个基本元素a1、d(或q)、n、an、Sn.“知三求二”是等差(或等比)数列最基本的题型,通过解方程的方法达到解决问题的目的. 例1等差数列{an}的前n项和为Sn,已知a10=30,a20=50,(1)求数列{an}的通项公式;(2)若Sn=242,求n的值. 解(1)由a10=a1+9d=30, a20=a1+19d=50, 解得a1=12, 因为n∈N*,所以n=11. 2.转化为基本量 在等差(等比)数列中,如果求得a1和d(q),那么其它的量立即可得. 例2在等比数列{an}中,已知a6―a4=24,a3a5=64,求{an}的前8项的和S8. 解a6―a4=a1q3(q2―1)=24.(1) 由a3a5=(a1q3)2=64,得a1q3=±8. 将a1q3=―8代入(1), 得q2=―2(舍去); 将a1q3=8代入(1),得q=±2. 当q=2时,a1=1,S8=255; 当q=―2时,a1=―1,S8=85.

高中数学解题思想方法技巧:西瓜开门 滚到成功

第2 西瓜开门 滚到成功 ●计名释义 比起“芝麻”来,“西瓜”则不是一个“点”,而一个球. 因为它能够“滚”,所以靠“滚到成功”. 球能不断地变换碰撞面,在滚动中能选出有效的“触面”. 数学命题是二维的. 一是知识内容,二是思想方法. 基本的数学思想并不多,只有五种:①函数方程思想,②数形结合思想,③划分讨论思想,④等价交换思想,⑤特殊一般思想. 数学破题,不妨将这五种思想“滚动”一遍,总有一种思想方法能与题目对上号. ●典例示范 [题1] (2006年赣卷第5题) 对于R 上可导的任意函数f (x ),若满足(x -1)f '(x )≥0,则必有 A. f (0)+f (2)< 2f (1) B. f (0)+f (2)≤2 f (1) C. f (0)+f (2)≥ 2f (1) D. f (0)+f (2)>2f (1) [分析] 用五种数学思想进行“滚动”,最容易找到感觉应是③:分类讨论思想. 这点在已条件(x -1)f '(x )≥0中暗示得极为显目. 其一,对f '(x )有大于、等于和小于0三种情况; 其二,对x -1,也有大于、等于、小于0三种情况. 因此,本题破门,首先想到的是划分讨论. [解一] (i)若f '(x ) ≡ 0时,则f (x )为常数:此时选项B 、C 符合条件. (ii)若f '(x )不恒为0时. 则f '(x )≥0时有x ≥1,f (x )在[)∞,1上为增函数;f '(x )≤0时x ≤1. 即f (x )在(]1,-∞上为减函数. 此时,选项C 、D 符合条件. 综合(i),(ii),本题的正确答案为C. [插语] 考场上多见的错误是选D. 忽略了f '(x ) ≡ 0的可能. 以为(x-1)f '(x ) ≥0中等号成立的条件只是x -1=0,其实x-1=0与f '(x )=0的意义是不同的:前者只涉x 的一个值,即x =1,而后是对x 的所有可取值,有f '(x ) ≡ 0. [再析] 本题f (x )是种抽象函数,或者说是满足本题条件的一类函数的集合. 而选择支中,又是一些具体的函数值f (0),f (1),f (2). 因此容易使人联想到数学⑤:一般特殊思想. [解二] (i)若f '(x )=0,可设f (x )=1. 选项B、C符合条件. (ii)f '(x )≠0. 可设f (x ) =(x-1)2 又 f '(x )=2(x-1). 满足 (x-1) f '(x ) =2 (x-1)2≥0,而对 f (x )= (x-1)2. 有f (0)= f (2)=1,f (1)=0 选项C ,D 符合条件. 综合(i),(ii)答案为C. [插语] 在这类 f (x )的函数中,我们找到了简单的特殊函数(x -1)2. 如果在同类中找到了(x -1)4 ,(x-1)3 4 ,自然要麻烦些. 由此看到,特殊化就是简单化. [再析] 本题以函数(及导数)为载体. 数学思想①——“函数方程(不等式)思想”. 贯穿始终,如由f '(x )= 0找最值点x =0,由f '(x )>0(<0)找单调区间,最后的问题是函数比大小的问题. 由于函数与图象相联,因此数形结合思想也容易想到. [解三] (i)若f (0)= f (1)= f (2),即选B ,C ,则常数f (x ) = 1符合 条件. (右图水平直线) (ii)若f (0)= f (2)< f (1)对应选项A.(右图上拱曲线),但不满足条件(x -1)

初中数学专题复习方程思想想 专题训练(含解答)

方程思想 在解决数学问题时,有一种从未知转化为已知的手段就是通过设元,寻找已知与未知之间的等量关系,构造方程或方程组,然后求解方程完成未知向已知的转化,这种解决问题的思想称为方程思想。 1. 要具有正确列出方程的能力 有些数学问题需要利用方程解决,而正确列出方程是关键,因此要善于根据已知条件,寻找等量关系列方程。 2. 要具备用方程思想解题的意识。 有些几何问题表面上看起来与代数问题无关,但是要利用代数方法——列方程来解决,因此要善于挖掘隐含条件,要具有方程的思想意识,还有一些综合问题,需要通过构造方程来解决。在平时的学习,应该不断积累用方程思想解题的方法。 3. 要掌握运用方程思想解决问题的要点。 除了几何的计算问题要使用方程或方程思想以外,经常需要用到方程思想的还有一元二次方程根的判别式,根与系数关系,方程、函数、不等式的关系等内容,在解决与这些内容有关的问题时要注意方程思想的应用。 例题分析 例1:一商店以每3盘16元钱的价格购进一批录音带,又从另外一处以每4盘21元钱价格购进比前一批数量加倍的录音带,如果以每3盘k 元的价格全部出售可得到所投资的20%的收益,求k 的值。 分析:可以设商店第一次购进x 盘录音带,则第二次购进2x 盘录音带。根据题意,列出方程: ()()(x x k x x x k x x x k +? =?+?+?= +??≠=23163221 4 120%)326366 5 019 解这个方程:两边除以,得: 答:k 的值是19。 小结:上述例题是应用问题,正确列出方程是解题的关键,在学习过程中要不断培养这方面的能力。其中所设的x 是辅助元,它在解题过程中是参加变化的量,可以消去,也叫做参变量,并不是最终所求的未知量。从本题可以看出,设辅助元x 以后可以方便我们解题。 例2:?ABC AB AC 中,,=以AB 为直径的圆交BC 于D ,交AC 于F ,DE 切半圆于D ,交AC 于E ,若AB :BC =5:6,且AF =7,求CE 的长。 解:连结AD 、FD 。 AB 是直径 ∴∠=? =∴∴=ADB AC AB D BC CD BD 90 是中点

竺永 化归思想在中学数学中的应用.doc

化归思想在中学数学中的应用 西盟县第一中学竺永 摘要:数学思想方法是人们从具体数学内容中提炼出来的对数学知识的本质认识,是在研究和解决数学问题的过程中所采用的手段、途径和方式。数学化归思想方法是最基本、最常用的思想方法。化归思想方法在对知识整体把握方面和解题方面都有巨大的作用,是复杂的问题简单化,使边疆的少数民族的学生都能学到一定的数学知识。 关键词:化归思想整体把握解题 当今世界各国都非常重视数学教育,尤其重视数学思想方法,美国把“学会数学的思想方法”作为培养“有数学素养”的社会成员五项标志性的条件之一。我国在新一轮数学课程改革中也注重加强了能力培养和数学思想方法渗透,在数学课程改革的总体目标中提出“倡导学习有价值的、必须的数学知识、技能和思想方法”。在内容安排和教学中更加强调在数学知识的传授时注重知识发生过程中数学思想方法的教学,在揭示知识发生、揭示解决方法规律的抽象过程时,使学生学会正确的思维方法。 数学思想是人们认识、理解、掌握数学的意识,数学方法是人们解决数学问题的方略。数学思想方法是数学意识和数学方略的总称。数学思想是在一定的数学知识、数学方法的基础上形成的,反之,数学思想对理解、掌握、运用数学知识和数学方法,解决数学问题能起到促进和深化的作用。随着教育改革的深入发展,人们把学习数学知

识,渗透数学思想方法的教育,作为数学教育的出发点和落脚点 如果将“问题”比作数学的心脏,那么方法就是数学的行为,思想则是整个数学的灵魂所在。纵观古今,无论是数学概念的建立,数学规律的发现,还是数学问题的解决,乃至整个“数学大厦”的构建,核心问题在于数学思想方法的培养和建立。在一个人的一生中,最有用的不仅是数学知识,更重要的是数学的思想和数学的意识。因此我们在教学中,不仅要重视知识的形成过程,还要重视发掘在数学知识的发生、形成和发展过程中所蕴藏的重要思想方法:化归的思想方法。 1.化归方法的基本涵义 所谓“化归”,从字面上看,可理解为转化和归结的意思。数学方法论中所论及到的“化归方法”,是解决数学问题的一般方法,其基本含义是:人们在解决数学问题时,常常是将待解决的问题A ,通过某种转化手段,归结为另一个问 题B ,而问题B 是相对较易解决 或已有固定解决程式的问题,且 通过对问题B 的解决可得原问 题A 的解答,用框图可直观表示 为: 1.1化归三要素 从化归的涵义可以看出,化归包括三个基本要素。 (1)化归对象:即把什么东西进行化归; (2)化归目标:即化归到何处去; (3)化归途径:即如何进行化归。 转 化 — — — — → 化归途径 还原 ← — — — — 化归目标 ————→ ————→ 化归对象 化归方法直观框图

高中数学数形结合思想在解题中的应用

高中数学数形结合思想在解题中的应用 一、知识整合 1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。 2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。 如等式()()x y -+-=21422 3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。 二、例题分析 例1.的取值范围。之间,求和的两根都在的方程若关于k k kx x x 310322 -=++ 分析:0)(32)(2 =++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令 ()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >, ()()02b f f k a - =-<10(10)k k -<<∈-同时成立,解得,故, 例2. 解不等式x x +>2 解:法一、常规解法: 原不等式等价于或()()I x x x x II x x ≥+≥+>??? ? ?<+≥??? 020 20202 解,得;解,得()()I x II x 0220≤<-≤<

相关主题
文本预览
相关文档 最新文档