当前位置:文档之家› 扩频通信系统仿真实验报告

扩频通信系统仿真实验报告

扩频通信系统仿真实验报告
扩频通信系统仿真实验报告

重庆交通大学信息科学与工程学院综合性设计性实验报告

专业:通信工程专业11级

学号:

姓名:

实验所属课程:移动通信原理与应用

实验室(中心):软件与通信实验中心

指导教师:

2013年3月

一、题目

扩频通信系统仿真实验

二、仿真要求

扩频通信系统的多用户数据传输

①传输的数据随机产生,要求采用频带传输(BPSK调制);

②扩频码要求采用周期为63(或127)的m序列;

③仿真从基站发送数据到三个不同的用户,各不同用户分别进行数据接收;

④设计三种不同的功率延迟分布,从基站到达三个不同的用户分别经过多径衰落(路径数分别为2,3,4);

⑤三个用户接收端分别解出各自的数据并与发送前的数据进行差错比较。

三、仿真方案详细设计

通信系统的总体框图如下

发射机原理图

信道主要模拟信号的多径传输,在这个信道中一共有三个用户的数据进行传输,用户一经过了2径衰落,用户二经过了3径衰落,用户三经过了4径衰落。

接收端接收到的信号是几路多径信号的加噪后的叠加,首先要完成信号的解扩,然后再解调,滤波,抽样判决最后分别与原始信号比较并统计误码率

现对主要功能部分进行详细描述 1.扩频码(m 序列)的产生

扩频码为伪随机序列,本实验采用自相关特性好,互相关特性较差的M 序列,因为有三路用户,故选取带有6位移位寄存器,周期为63的m 序列。其对应的二进制序列分别为:1000011,1100111,1101101.以1000011为例,其具体的寄存器结构图如下所示:初始化各寄存器单元内容为1

产生m 序列的matlab 程序如下

? function c=genMseq(b)

扩频码

t

0cos ω

?N=length(b)-1;

? D=ones(1,N);

? A=b(N:-1:1);

? c=[];

? for i=1:2^N-1

? c1=rem(sum(D.*A),2);

? c=[c,D(N)];

? D=[c1,D(1:N-1)];

? end

? c=c*2-1; %变为1,-1的序列

? End

2、扩频

扩频的主要思想是每一位数据位都扩展成长度为m序列长的信息,其具体做法是将数据信息中的‘1’用m序列代替,而对于‘-1’用-m序列代替,这样对每一个数据位都进行扩展就实现了对原始数据的扩频。其结构框图如下

扩频码

M序列

其仿真代码如下:

function ssignal=dsss(signal,c)

signal=signal*2-1;

ssignal=[];

for i=1:length(signal)

ssignal=[ssignal,signal(i)*c];

end

end

3、多径信道的仿真

function multiS=channels(modusignal,snr,k)

%模拟多径衰落

len=length(modusignal);

x1=randn(1,len);

y1=randn(1,len);

r1=abs(x1+j*y1).*modusignal;

r1=[zeros(1,5),r1(1:length(modusignal)-5)];

x2=randn(1,len);

解扩代码如下:

?

? L=fs/chipRate; ? c1=[];

? for i=1:length(c)

? c1=[c1,c(i)*ones(1,L)];

? end

? dessignal=[];

? for i=1:length(c1):length(receiveSignal)

? dessignal=[dessignal,reciveSignal(i:i+length(c1)-1).*c1];

? end

?end

5、调制与解调

本文采用的是BPSK调制解调方式。发送端将扩频后的信号s乘上载波cos(2*πft)即完成了调制,接收端再乘以载波cos(2*πft)做相干解调,必须保证接收端乘以的载波与发送端的载波是相干的才能很好的解调,最后再经过一个低通滤波器滤除相乘过程中产生的高频成分即完成了解调。

四、仿真结果及结论

原信号和扩频之后的信号

图1

原信号频谱与扩频后信号频谱

图2

x 104

扩频后信号频谱

x 104

第一个用户信号经过扩频,调制之后的信号以及三个用户信号分别经过2径,3径,4径信道后的叠加信号之和如下图所示

图3

第一个原始用户信号与其经过接收端解扩,解调,抽样判决之后的最终信号的比较如下图4

第二个原始用户信号与其经过接收端解扩,解调,抽样判决之后的最终信号的比较如下 图5

第三个原始用户信号与其经过接收端解扩,解调,抽样判决之后的最终信号的比较如下 实验结果分析 图6

00.20.40.60.81

00.20.40.60.81

00.20.40.60.81

00.20.40.60.8

1-1

-0.500.51

00.20.40.60.81

扩频通信的理论基础为香农公式:C=Blog(1+S/N)

由公式可知,我们可以用牺牲带宽的办法来换取较低的信噪比,增加系统的抗干扰能力。直接序列扩频,是直接利用具有高码率的扩频码序列在发送端扩展信号的频谱,而在接收端,用相同的扩频码序列进行解扩,把展宽的扩频信号还原成原始的信息,是一种数字调制方法。

由图2可知,信号经过扩频后信号的频谱被展宽了,并且频谱功率降低了,这使得扩频通信系统具有较强的抗干扰能力,且具有很强的隐蔽性和抗侦查,抗窃听的能力。这种能力随着扩频增益的增大而增大。扩频增益的提高就需要提高扩频码m序列的位数了。

因为m序列具有良好的自相关特性和互相关特性,正是这两大特性使得在接收端可以很好的进行扩频码的同步,以及多路用户的区分,从而具有很好的抗多径干扰能力。

图三的上半部分为用户1的信号,下半部分为三个用户经过叠加的信号,由图可知,三个信号叠加过后有点儿像一个信号上面叠加了一些噪声。

A用户经过的是两径信道,B用户经过的是三径信道,C用户经过的是四径信道,所以在接收端A用户的误码率最低,其次是B用户,最后是C用户。本实验没有进行扩频码的同步,所以效果不是那么地好。

由图四、五、六可知接收端还是能比较好的恢复出原信号的。说明了扩频通信还是具有较好的抗干扰能力的。

五、总结与体会

通过本次实验,我对直接序列扩频的原理有了一个更加全面的认识,对扩频系统在通信过程中的作用有了深刻的理解,特别是扩频通信抗多径衰落的能力在本实验中得到了很好的体现。

在实验过程中也遇到了一些问题,中途连滤波器的设计也是拿出以前写过的代码重读了一遍然后参照那个写的。感觉到知识具有很强的遗忘性,那我们在今后的学习中要经常温习学过的东西,这样不仅能巩固知识还能学到新的东西,正所谓温故而知新嘛。

MATLAB确实是一个很好的模拟软件,它能够让人很直观的理解通信的过程。

我深知实验中还是存在着很大的不足的,比如说由于时间关系没有在接收端进行扩频码序列的跟踪同步,使得系统的抗多径效果不是特别明显,在接下来的时间里,我会继续努力的,最后感谢李老师的辛苦教学。

六、主要仿真代码

主程序代码如下:

%主函数

function main()

clc;

clear;

close all;

N=100;

%扩频部分

sscPara1=[1 0 0 0 0 1 1];

sscPara2=[1 1 0 0 1 1 1];

sscPara3=[1 1 0 1 1 0 1];

c1=genMseq(sscPara1);

c2=genMseq(sscPara2);

c3=genMseq(sscPara3);

[modusignal1,dataRate,fc,fs,ssignal1,c hipRate,data1]=transmitters(c1,N);

data=[];

for i=1:1/(8*63):length(data1)

data=[data,2*data1(fix(i))-1];

end

figure;

subplot(2,1,1);

n=1:1/(8*63):length(data1);

plot(n,data);

ssignal=[];

for i=1:1/8:length(ssignal1)

ssignal=[ssignal,ssignal1(fix(i))];

end

subplot(2,1,2);

l=1:1/8:length(ssignal1);

plot(l,ssignal);

N1=length(data);

figure;subplot(2,1,1);

sff1=-fix(N1/2):1:(fix(N1/2));

plot(sff1,fftshift(abs(fft(data))));

title('扩频前信号频谱');

N2=length(ssignal);

subplot(2,1,2);

sff2=-fix(N2/2):1:(fix(N2/2));

plot(sff2,fftshift(abs(fft(ssignal)))) ;

title('扩频后信号频谱');

t=1:length(modusignal1);

figure;subplot(2,1,1);

plot(t,modusignal1);

[modusignal2,dataRate,fc,fs,ssignal2,c hipRate,data2]=transmitters(c2,N);

[modusignal3,dataRate,fc,fs,ssignal3,c hipRate,data3]=transmitters(c3,N);

modusignal1=channels(modusignal1,2);

t=1:length(modusignal1);

subplot(2,1,2);

plot(t,modusignal1);

modusignal2=channels(modusignal1,3);

modusignal3=channels(modusignal1,4);

modusignal=modusignal1+modusignal2+mod usignal3;

BER1=[];BER2=[];BER3=[];

for snr=-10:2:10

wr1=0; wr2=0; wr3=0;

for i=1:10

receiveSignal=awgn(modusignal,snr);

[d1]=receiver(receiveSignal,dataRate,c hipRate,fc,fs,c1);

[d2]=receiver(receiveSignal,dataRate,c hipRate,fc,fs,c2);

[d3]=receiver(receiveSignal,dataRate,c hipRate,fc,fs,c3);

wr1=wr1+sum(d1~=data1)/100;

wr2=wr2+sum(d2~=data2)/100;

wr3=wr3+sum(d3~=data3)/100;

end

wr1=wr1/11;

wr2=wr2/11;

wr3=wr3/11;

BER1=[BER1,wr1];

BER2=[BER2,wr2];

BER3=[BER3,wr3];

end

BER1

BER2

BER3

figure;

subplot(2,1,1);

n=1:1/8:length(data);

plot(n,data);

n=1:1/8:length(d1);

da1=[];

for i=1:1/8:length(d1)

da1=[da1,d1(fix(i))];

end

subplot(2,1,2);

plot(n,da1);

figure;

n=0:1:10;

semilogy(n,BER1,'*r');

hold on

semilogy(n,BER2,'*y');

hold on

semilogy(n,BER3,'*b');

%解扩实现

function

dessignal=dedsss(receiveSignal,c,chipRate,f s)

L=fs/chipRate;

c1=[];

for i=1:length(c)

c1=[c1,c(i)*ones(1,L)];

end

dessignal=[];

for i=1:length(c1):length(receiveSignal) dessignal=[dessignal,receiveSignal(i:i+leng th(c1)-1).*c1];

end

end

%接收端信号解调

function

[demoSignal,b]=demodu(dessignal,dataRate,fc ,fs)

t=linspace(0,1/dataRate,fs/dataRate);

carrier=cos(2*pi*fc*t);

demoSignal=[];

for i=1:length(carrier):length(dessignal) demoSignal=[demoSignal,carrier.*dessignal(i :i+length(carrier)-1)];

end

load lowpas;

l=fix((length(lowpas))/2);

demoSignal=[demoSignal,zeros(1,l)];

b=filter(lowpas,1,demoSignal);

b=b(l+1:end);

panjue=[];

for i=1:length(demoSignal)/length(carrier) if

demoSignal((i-1)*length(carrier)+3)>=0

panjue=[panjue,1];

else

panjue=[panjue,0];

end

end

b=panjue;

end

(注:可编辑下载,若有不当之处,请指正,谢谢!)

集装箱港口生产作业系统仿真与优化

学术研究Academic Survey 港口是交通运输的枢纽、水陆联运的咽喉。据统计,我国90%以上对外贸易的货物都是经由港口装运的。随着改革开放的不断深入,作为对外开放门户的港口所担负的任务也越来越重,港口已成为我国国民经济发展的重要支柱。 国际集装箱运输方式始于20世纪50年代中期。由于它具有装卸效率高、船舶周转快、包装费用省、货损货差少,以及适合多式联运等 优点,因此,在短短几十年间集装箱运输得到了飞速的发展。集装箱吞吐量已经成为衡量一个港口现代化水平的核心指标。2003年,我国的集装箱吞吐量超过美国成为世界第一,上海港、深圳港分别成为世界集装箱运输第三和第四大港。集装箱运输的中国时代已经到来。但是,随着经济全球化的不断深入,集装箱港口之间的国际竞争也愈加激烈。如何降低生产作业成本、提高生产作业效率,已经成为我国集装箱港口企业关注的核心问题。如何配置和调度这些资源是优化集装箱港口生产作业系统的关键。 目前,我国多数港口的生产机械调度还主要凭经验。由于集装箱港口生产作业系统十分复杂,采用传统的数学建模优化方法不能从整体上解决问题,因此,笔者提出一套仿真优化框架来分析和优化集装箱港口生产作业系统。 仿真优化框架 1.集装箱港口生产作业系统 仿真优化框架(如图1所示)。 2.关于调度策略生成算法。 调度策略生成算法的基本原理 是将可调度的机械(即岸桥、集装 箱卡车、场桥)数量,船舶作业面 限制(即最多可让多少岸桥同时作 业)等条件转换成数学约束。由于 该问题的决策变量(各种机械的配 置数量)都是整数,故可以采用全 枚举的算法得到满足约束条件的所 有可行解。因此,在船舶即将到港 时,输入集装箱港口当前可调度的 生产机械数量,船舶装载的集装箱 数量,船舶作业面限制和集装箱港 口基本调度原则,通过该调度策略 生成算法就可以产生所有可行的调 度策略。 3.仿真模型的建立。 仿真模型是集装箱港口生产作 业系统优化的关键。通过调度策略 生成算法只能得到各种生 产机械配置的所有可行方 案,但如何比选这些方案 并从中挑出最佳的进行实 际操作,都依赖于仿真模 型。因为,将每个调度方 案输入仿真模型,然后运 行仿真模型,就可以得到 在该配置下生产系统的作 业时间和岸桥、集装箱卡 车、场桥的利用率等。这 些数据都是比选方案的基 础。那么,如何建立集装 箱港口生产作业系统的仿 真模型呢? 系统的状态通常可用一个或多 个状态变量来表示。在离散事件系 统中,状态变量仅在随机的时间点 上发生瞬间的跃变,而在两个相邻 的时间点之间,系统的状态保持不 变。集装箱港口生产作业系统属于 离散事件系统。因为,该系统当中 事件的发生具有随机性,例如:岸 桥装卸时间不同,集装箱卡车运输 时间不同等。所以,在建立集装箱 港口生产作业系统的仿真模型时, 主要考虑以下几个因素:(1)随机 离散事件:这是一系列按时序、随 机发生的具体事实。它们只在离散 的可数时刻上发生。这些事实一旦 出现,将使系统中一个或多个状态 变量瞬时跃变。在集装箱港口生产 作业系统仿真中,存在许多离散事 件,比如,船舶到港、各种机械发 生故障等。(2)仿真时钟及其推进 方式:仿真时钟是仿真模型中的时 集装箱港口生产作业系统仿真与优化 文/ 王辉球 缪立新 图1 集装箱港口生产作业系统仿真优化框架 66CHINA LOGISTICS & PURCHASING

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

通信综合实训系统实验报告

通信综合实训系统实验 (程控交换系统实验) 学生姓名 学号 专业班级通信工程班 指导老师 年月日

实验1 局内呼叫处理实验 一、实验目的 1. 通过对模拟用户的呼叫追踪,加深对程控交换机呼叫处理过程的理解; 2. 掌握程控交换机配置数据的意义及原理; 3. 根据设计要求,完成对程控交换机本局数据的配置。 二、实验内容 1.学习ZXJ10 程控交换机本局数据配置方法; 2.模拟用户动态跟踪,深入分析交换机呼叫流程; 3.按照实验指导书的步骤配置本局数据,电话号码7000000~7000023 分配到ASLC 板 卡的0~23 端口,并用7000000 拨打7000001 电话,按照实验指导书方法创建模拟用 户呼叫跟踪,观察呼叫动态迁移,理解单模块呼叫流程。 4.本局数据配置需要配置如下: 局信息配置 局容量数据配置 交换局配置 物理配置 号码管理、号码分析 三、实验仪器 程控交换机 1 套 维护终端若干 电话机若干四、实验步骤 (一)、启动后台维护控制中心 启动程控交换机网管终端计算机,点击桌面快捷方式的,启动后的维护控制中心如下图2-1(利用众友开发软件CCTS可省略该步骤): (二)、启动操作维护台 选中后台维护系统控制中心,单击右键,选中【启动操作维护平台】, 出现如下的对话框,输入操作员名【SYSTEM】, 口令为空,单击【确定】后,将会登陆操作维护系统。

(三)、告警局配置 打开“系统维护(C)”---- “告警局配置(B)”,点击“局信息配置(B)”后,弹出如下界面。 输入该局的区号532,局号 1 ,然后点击【写库】。 (四)、局容量数据配置 打开【基本数据管理】-【局容量数据配置】, 点击后弹出如下操作界面(分别进行全局容量、各模块容量进行规划设置),点击【全局规划】,出现如下的对话框. 点击【全部使用建议值】, 当前值自动填上系统默认的数值,点击【确定】后返回容量规划界面,点击【增加】, 模块号 2 ,MP内存128 ,普通外围、远端交换模块,填写完,点击【全部使用建议值】。 (五)、交换局配置 在后台维护系统打开[数据管理→基本数据管理→交换局配置]弹出如下的对话框,按照 图示,只填写【本交换局】-【交换局配置数据】,点击设置。 (六)、物理配置 在后台维护系统打开[数据管理→基本数据管理→物理配置]: 1. 新增模块 点击【新增模块】,填完模块号,选中紧凑型外围交换模块,点击确定,返回开始的对话 框。

基于matlab的直接序列扩频通信系统仿真

基于MATLAB的直接序列扩频通信系统仿真 1.实验原理:直接序列扩频(DSSS)是直接利用具有高码率的扩频码系列采用各种调 制方式在发端与扩展信号的频谱,而在收端,用相同的扩频码序去进行解扩,把扩展宽的扩频信号还原成原始的信息。它是一种数字调制方法,具体说,就是将信源与一定的PN码(伪噪声码)进行摸二加。例如说在发射端将"1"用11000100110,而将"0"用00110010110去代替,这个过程就实现了扩频,而在接收机处只要把收到的序列是11000100110就恢复成"1"是00110010110就恢复成"0",这就是解扩。这样信源速率就被提高了11倍,同时也使处理增益达到10DB以上,从而有效地提高了整机倍噪比。 1.1 直扩系统模型 直接序列扩频系统是将要发送的信息用伪随机码(PN码)扩展到一个很宽的频带上去,在接收端用与发送端相同的伪随机码对接收到的扩频信号进行相关处理,恢复出发送的信号。对干扰信号而言,与伪随机码不相关,在接收端被扩展,使落入信号通频带的干扰信号功率大大降低,从而提高了相关的输出信噪比,达到了抗干扰的目的。直扩系统一般采用频率调制或相位调制的方式来进行数据调制,在码分多址通信中,其调制多采用BPSK、DPSK、QPSK、MPSK等方式,本实验中采取BPSK方式。 直扩系统的组成如图1所示,与信源输出的信号a(t)是码元持续时间为Ta的信息流,伪随机码产生器产生伪随机码c(t),每个伪随机码的码元宽度为Tc (Tc<

扩频通信及matlab仿真

扩 频 通 信 及Matlab 仿 真 江西师范大学 物理与通信电子学院2009级通信工程(2)班姓名xxx 学号xxxxxxxx

目录 一、摘要 (3) 二、数字通信原理 (4) 三、衰落信道与抗衰落技术 (5) 四、多址通行 (6) 五、扩频通信原理 (6) 六、直接序列扩频通信 (8) 七、基于matlab的直接序列扩频仿真 (10) 八、结束语 (13) 九、参考书目 (14) 十、致谢 (15)

摘要 扩频通信即扩展频谱通信,它与光纤通信、卫星通信一同被誉为信息时代的三大高技术通信传输方式。扩频通信技术自50年代中期美国军方开始研究,一直为军事通信所独占,广泛应用于军事通信、电子对抗以及导航、测量等各个领域,直到80年代初才被应用于民用通信领域。为了满足日益增长的民用通信容量的需求和有效地利用频谱资源,各国都纷纷提出在数字峰窝移动通信、卫星移动通信和未来的个人通信中采用扩频技术,扩频技术现已广泛应用于蜂窝电话、无绳电话、微波通信、无线数据通信、遥测、监控、报警等系统中。本文根据扩频通信的原理,利用MATALB对扩频通信中最常用的直扩通信系统进行了仿真。

数字通信原理: 1)所谓数字通信就是利用数字传输技术来进行的通信。它包括对模拟信号的编码和调制,传输媒介以及对数字信号的解调和解码。 2)典型的数字通信系统模型如图1-1: 图1-1 信源:信息的来源一般是模拟信号。 信源编码:模拟信号转变为数字信号; 信号压缩处理;信号的高效率编码。 信道编码:检错、纠错编码,提高信号抗干扰能力;

信息加密,防止信息被窃取。 调制变换:波形编码,信号调制,使基带信号适合在特定的 道中传输。 传输媒介:有线、无线信道,网络交互设备。 解调、信道译码、信源译码:对信号作上述处理相反对变换。 信宿:信息的最终传输目的地 衰落信道与抗衰落技术: 1)衰落信道的产生:无线通信是基于电磁波在空间中的传播来实现信息的传递的。无线信道的电波传播特性与电波传播的环境密切相关。电波环境主要包括:地形地貌、各种建筑物、气候气象、电磁干扰、移动体的运动速度和工作频段等。因此在实际应用中不可避免的产生衰落信道。 2)衰落信道主要包括:阴影衰落和多径衰落。 3)抗衰落技术主要包括:①空间分集技术 ②Rake接收方式 ③信道交织技术 ④多载波传输技术 ⑤信道均衡技术 ⑥扩频通信技术等等

系统仿真示例

Flexsim应用案例示例 示例一港口集装箱物流系统仿真 (根据:肖锋,基于Flexsim集装箱码头仿真平台关键技术研究,武汉:武汉理工大学硕士学位论文,2006改编) 1、港口集装箱物流系统概述与仿真目的 1.1港口集装箱物流系统概述 1.2港口集装箱物流系统仿真的目的 2、港口集装箱物流系统的作业流程 2.1港口集装箱物流系统描述 2.2港口集装箱物流系统作业流程 2.3港口集装箱物流系统离散模型分析 3、港口集装箱物流系统仿真模型 3.1港口集装箱物流系统布局模型设计 3.2港口集装箱物流系统设备建模 3.3港口集装箱物流系统仿真 4、仿真运行及数据分析 4.1仿真运行及数据处理 4.2仿真数据的结果分析 小结与讨论 示例二物流配送中心仿真 (根据:XXX改编) 1、物流配送中心概述与仿真目的 1.1物流配送中心简介 1.2仿真目的 2、配送中心的作业流程描述 2.1配送中心的功能 2.2配送中心的系统流程

3、配送中心的仿真模型 3.1配送中心的仿真布局模型设计 3.2配送中心的设备建模 3.3配送中心的仿真 4、仿真运行及数据分析 4.1仿真运行及数据处理 4.2仿真数据结果分析 4.3系统优化 小结与讨论 “我也来编书”示例 示例一第X章排队系统建模与仿真学习要点 1、排队系统概述 2、排队系统问题描述 3、排队系统建模 4、排队系统仿真 5、模型运行与结果分析 小结 思考题与习题(3-5题) 参考文献 1、李文锋,袁兵,张煜.2010.物流系统建模与仿真(第6章) 北京:科学出版社 2、王红卫,谢勇,王小平,祁超.2009.物流系统仿真(第6章) 北京:清华大学出版社 3、马向国,刘同娟.2012.现代物流系统建模、仿真及应用案例(第5章)

MATLAB通信系统仿真实验报告1

MATLAB通信系统仿真实验报告

实验一、MATLAB的基本使用与数学运算 目的:学习MATLAB的基本操作,实现简单的数学运算程序。 内容: 1-1要求在闭区间[0,2π]上产生具有10个等间距采样点的一维数组。试用两种不同的指令实现。 运行代码:x=[0:2*pi/9:2*pi] 运行结果: 1-2用M文件建立大矩阵x x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] 代码:x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] m_mat 运行结果: 1-3已知A=[5,6;7,8],B=[9,10;11,12],试用MATLAB分别计算 A+B,A*B,A.*B,A^3,A.^3,A/B,A\B. 代码:A=[56;78]B=[910;1112]x1=A+B X2=A-B X3=A*B X4=A.*B X5=A^3 X6=A.^3X7=A/B X8=A\B

运行结果: 1-4任意建立矩阵A,然后找出在[10,20]区间的元素位置。 程序代码及运行结果: 代码:A=[1252221417;111024030;552315865]c=A>=10&A<=20运行结果: 1-5总结:实验过程中,因为对软件太过生疏遇到了些许困难,不过最后通过查书与同学交流都解决了。例如第二题中,将文件保存在了D盘,而导致频频出错,最后发现必须保存在MATLAB文件之下才可以。第四题中,逻辑语言运用到了ij,也出现问题,虽然自己纠正了问题,却也不明白错在哪了,在老师的讲解下知道位置定位上不能用ij而应该用具体的整数。总之第一节实验收获颇多。

数字通信系统设计实验报告

实验1:用 Verilog HDL 程序实现乘法器 1实验要求: (1) 编写乘法器的 Veirlog HDL 程序. (2) 编写配套的测试基准. (3) 通过 QuartusII 编译下载到目标 FPGA器件中进行验证 (4) 注意乘法逻辑电路的设计. 2 试验程序: Module multiplier(input rst,input clk,input [3:0]multiplicand, input [3:0]multiplier,input start_sig,output done_sig,output [7:0]result); reg [3:0]i; reg [7:0]r_result; reg r_done_sig; reg [7:0]intermediate; always @ ( posedge clk or negedge rst ) if( !rst ) begin i<=4'b0; r_result<=8'b0; end else if(start_sig) begin case(i) 0: begin intermediate<={4'b0,multiplicand}; r_result<=8'b0; i<=i+1; end 1,2,3,4: begin if(multiplier[i-1]) begin r_result<=r_result+intermediate; end intermediate<={intermediate[6:0],1'b0}; i<=i+1; end 5: begin r_done_sig<=1'b1;

i<=i+1; end 6: begin r_done_sig<=1'b0; i<=1'b0; end endcase end assign result=r_done_sig?r_result:8'bz; assign done_sig=r_done_sig; endmodule3 测试基准: `timescale 1 ps/ 1 ps module multiplier_simulation(); reg clk; reg rst; reg [3:0]multiplicand; reg [3:0]multiplier; reg start_sig; wire done_sig; wire [7:0]result; /***********************************/ initial begin rst = 0; #10; rst = 1; clk = 1; forever #10 clk = ~clk; end /***********************************/ multiplier U1 ( .clk(clk), .rst(rst), .multiplicand(multiplicand), .multiplier(multiplier), .result(result), .done_sig(done_sig), .start_sig(start_sig) ); reg [3:0]i; always @ ( posedge clk or negedge rst ) if( !rst )

扩频通信系统仿真实验

重庆交通大学信息科学与工程学院综合性设计性实验报告 专业:通信工程专业11级 学号: 姓名: 实验所属课程:移动通信原理与应用 实验室(中心):信息技术软件实验室 指导教师:李益才 2013年11月

一、题目 扩频通信系统仿真实验 二、仿真要求 扩频通信系统的多用户数据传输 ①传输的数据随机产生,要求采用频带传输(BPSK调制); ②扩频码要求采用周期为63(或127)的m序列; ③仿真从基站发送数据到三个不同的用户,各不同用户分别进行数据接收; ④设计三种不同的功率延迟分布,从基站到达三个不同的用户分别经过多径衰落(路径数分别为2,3,4); ⑤三个用户接收端分别解出各自的数据并与发送前的数据进行差错比较。三、仿真方案详细设计 整个实验主要通过matlab仿真,产生基带信号,产生M序列,并且进行BPSK调制以及扩频和解扩等,实现三个不同用户不同径的数量的多径衰落,最终得出误码率。

整个通信系统的总体框图如下: 扩频通信发射机设计 扩频通信接收机设计

由流程图可知,整个设计主要由发送端、信道和接收机组成。 其中发射端主要完成m序列的产生,随机0,1序列的产生。然后利用m序列对产生的随机序列进行扩频,然后再用cos(wt)对其进行调制。 信道主要模拟信号的多径传输,在这个信道中一共有三个用户的数据进行传输,用户一经过了2径衰落,用户二经过了3径衰落,用户三经过了4径衰落。 接收端接收到的信号是几路多径信号的加噪后的叠加,首先要完成信号的解扩,然后再解调,滤波,抽样判决最后分别与原始信号比较并统计误码率现对主要功能部分进行详细描述: 1.主程序流程图

扩频通信系统仿真论文

扩频信号处理仿真技术 摘要 本文阐述了扩展信号处理过程的基本原理、主要性能指标及其工作特点,然后根据香农定理,利用MATLAB提供的可视化工具Simulink,建立了扩频通信系统仿真模型,详细讲述了各个模块的设计,并指出了仿真建模过程中所需注意的问题。通过建模深入理解MATLAB/Simulink基本建模仿真方法的实质性,掌握通信系统仿真的思维方法,增强系统建模和设计的自主能力和创造力。并根据给定的参数设置,仿真出结果,证明了所建仿真模型的正确性

Simulation Technology of spread-spectrum signal processing Abstract This article elaborated the spread spectrum communication technology's basic principle, the main performance index and the operating feature, then act according to the Shannon theorem, provides visualization tool Simulink using MATLAB, has established the wide frequency communications system simulation model, narrated in detail each module's design, and had pointed out in the simulation model must pay attention question. Through the modeling further understanding the substantive of this simulation based on MATLAB, master the methods of communication system simulation. Enhance the independent ability and creativity of system modeling and design, and according to a given set of parameters, and the simulation the results. Had proven constructs the simulation model the accuracy. 目录 1 绪论 (1) 1.1选题的背景 (1) 1.2选题的主要任务 (2) 2 扩频通信系统 (3) 2.1扩频通信的基本原理 (3) 2.2扩频通信的特点 (3) 2.2.1抗干扰性强 (3) 2.2.2 抗干扰性强 (4) 2.2.3 抗多径干扰 (4) 2.2.4 保密性好 (4) 3 线性调频扩频系统 (5)

港口系统仿真实验报告

港口系统仿真实验报告

一、线性同余法产生随机数 1、递推公式 m c aI I n n m od )(1+=+ I 0: 初始值(种子seed) a : 乘法器 (multiplier) c : 增值(additive constant) m : 模数(modulus) mod :取模运算:(aIn+c )除以m 后的余数 a, c 和m 皆为整数 产生整型的随机数序列,随机性来源于取模运算,如果c=0 , 乘同余法:速度更快,也可产 生长的随机数序列 2、特点 最大容量为m : 独立性和均匀性取决于参数a 和c 的选择 例:a =c =I 0=7, m=10 ? 7,6,9,0,7,6,9,0,… 3、模数m 的选择: m 应尽可能地大,因为序列的周期不可能大于m ; 通常将m 取为计算机所能表示的最大的整型量,在32位计算机上,m =231=2x109 4、乘数因子a 的选择: 用线性乘同余方法产生的随机数序列具有周期m 的条件是: 1. c 和m 为互质数; 2. a-1是质数p 的倍数,其中p 是a-1和m 的共约数; 3. 如果m 是4的倍数,a-1也是4的倍数。 对于本报告用线性同余法产生1000个[0,1]独立均匀分布的随机数,要求按照以下规则尝试两组参数,产生两组1000个随机数,并得到每组随机数的平均间隔、最小数据间隔、最大 数据间隔。 (1)取m=2^26=1073741824 c=12357 a=4*270+1=21 =0X 18710324 m c X a X i i m od )*(1+=+ 将得到的1000个随即数据排序,并求差值, 具体数据见excel ,得到 最大间隔 0.007746292 最小间隔 1.77883E-06 平均间隔 0.000998246 (2) 取m=2^29= 33554432 c=0 a=8*139+3=1117 0123X =4567 m c X a X i i m od )*(1+=+ 将得到的1000个随即数据排序,并求差值, 具体数据见excel ,得到 最大间隔 0.008767486

杭电通信系统课程设计报告实验报告

通信系统课程设计实验报告 XX:田昕煜 学号:13081405 班级:通信四班 班级号:13083414 基于FSK调制的PC机通信电路设计

一、目的、容与要求 目的: 掌握用FSK调制和解调实现数据通信的方法,掌握FSK调制和解调电路中相关模块的设计方法。初步体验从事通信产品研发的过程. 课程设计任务:设计并制作能实现全双工FSK调制解调器电路,掌握用Orcad Pspice、Protel99se进行系统设计及电路仿真。 要求:合理设计各个电路,尽量使仿真时的频率响应和其他参数达到设计要求。尽量选择符合标称值的元器件构成电路,正确完成电路调试。 二、总体方案设计 信号调制过程如下: 调制数据由信号发生器产生(电平为TTL,波特率不超过9600Baud),送入电平/幅度调整电路完成电平的变换,再经过锁相环(CD4046),产生两个频率信号分别为30kHz和40kHz(发“1”时产生30kHz方波,发“0”时产生40kHz方波),再经过低通滤波器2,变成平滑的正弦波,最后通过线圈实现单端到差分信号的转换。

信号的解调过程如下: 首先经过带通滤波器1,滤除带外噪声,实现信号的提取。在本设计中FSK 信号的解调方式是过零检测法。所以还要经过比较器使正弦信号变成方波,再经过微分、整流电路和低通滤波器1实现信号的解调,最后经过比较器使解调信号成为TTL电平。在示波器上会看到接收数据和发送数据是一致的。 各主要电路模块作用: 电平/幅度调整电路:完成TTL电平到VCO控制电压的调整; VCO电路:在控制电压作用下,产生30KHz和40KHz方波; 低通2:把30KHz、40KHz方波滤成正弦波; 线圈:完成单端信号和差分信号的相互转换; 带通1:对带外信号抑制,完成带信号的提取; 限放电路:正弦波整形成方波,同时保留了过零点的信息; 微分、整流、脉冲形成电路:完成信号过零点的提取; 低通1:提取基带信号,实现初步解调; 比较器:把初步解调后的信号转换成TTL电平 三、单元电路设计原理与仿真分析 (1)带通1(4阶带通)-- 接收滤波器(对带外信号抑制,完成带信号的提取) 要求通带:26KHz—46KHz,通带波动3dB; 阻带截止频率:fc=75KHz时,要求衰减大于10dB。经分析,二级四阶巴特沃斯带通滤波器来提取信号。 具体数值和电路见图1仿真结果见图2。

通信工程系统仿真实验报告

通信原理课程设计 实验报告 专业:通信工程 届别:07 B班 学号:0715232022 姓名:吴林桂 指导老师:陈东华

数字通信系统设计 一、 实验要求: 信源书记先经过平方根升余弦基带成型滤波,成型滤波器参数自选,再经BPSK ,QPSK 或QAM 调制(调制方式任选),发射信号经AWGN 信道后解调匹配滤波后接收,信道编码可选(不做硬性要求),要求给出基带成型前后的时域波形和眼图,画出接收端匹配滤波后时域型号的波形,并在时间轴标出最佳采样点时刻。对传输系统进行误码率分析。 二、系统框图 三、实验原理: QAM 调制原理:在通信传渝领域中,为了使有限的带宽有更高的信息传输速率,负载更多的用户必须采用先进的调制技术,提高频谱利用率。QAM 就是一种频率利用率很高的调制技术。 t B t A t Y m m 00sin cos )(ωω+= 0≤t ≤Tb 式中 Tb 为码元宽度t 0cos ω为 同相信号或者I 信号; t 0s i n ω 为正交信号或者Q 信号; m m B A ,为分别为载波t 0cos ω,t 0sin ω的离散振幅; m 为 m A 和m B 的电平数,取值1 , 2 , . . . , M 。 m A = Dm*A ;m B = Em*A ; 式中A 是固定的振幅,与信号的平均功率有关,(dm ,em )表示调制信号矢量点在信号空

间上的坐标,有输入数据决定。 m A 和m B 确定QAM 信号在信号空间的坐标点。称这种抑制载波的双边带调制方式为 正交幅度调制。 图3.3.2 正交调幅法原理图 Pav=(A*A/M )*∑(dm*dm+em*em) m=(1,M) QAM 信号的解调可以采用相干解调,其原理图如图3.3.5所示。 图3.3.5 QAM 相干解调原理图 四、设计方案: (1)、生成一个随机二进制信号 (2)、二进制信号经过卷积编码后再产生格雷码映射的星座图 (3)、二进制转换成十进制后的信号 (4)、对该信号进行16-QAM 调制 (5)、通过升余弦脉冲成形滤波器滤波,同时产生传输信号 (6)、增加加性高斯白噪声,通过匹配滤波器对接受的信号滤波 (7)、对该信号进行16-QAM 解调 五、实验内容跟实验结果:

通信系统仿真实验报告(DOC)

通信系统实验报告——基于SystemView的仿真实验 班级: 学号: 姓名: 时间:

目录 实验一、模拟调制系统设计分析 -------------------------3 一、实验内容-------------------------------------------3 二、实验要求-------------------------------------------3 三、实验原理-------------------------------------------3 四、实验步骤与结果-------------------------------------4 五、实验心得------------------------------------------10 实验二、模拟信号的数字传输系统设计分析------------11 一、实验内容------------------------------------------11 二、实验要求------------------------------------------11 三、实验原理------------------------------------------11 四、实验步骤与结果------------------------------------12 五、实验心得------------------------------------------16 实验三、数字载波通信系统设计分析------------------17 一、实验内容------------------------------------------17 二、实验要求------------------------------------------17 三、实验原理------------------------------------------17 四、实验步骤与结果------------------------------------18 五、实验心得------------------------------------------27

扩频通信系统的systemvue仿真

扩频通信系统的systemvue仿真研究 【摘要】由于通信技术的迅猛发展,在无线通信中扩频通信技术的应用越来越广泛。扩频通信技术具有抗干扰能力强等诸多优点,使该技术越来越受到人们的关注。到目前为止,其最主要的两个应用领域是移动通信系统和军事抗干扰通信,而直扩系统和跳频系统则分别是在这两个领域应用最多的扩频方式。 SystemView是一种基于Windows平台,主要用于通信系统与电路的设计、仿真和分析,是一个系统仿真分析的可视化软件工具。 本论文主要是以扩频通信系统的理论为基础实现扩频系统SystemView的仿真分析。本论文主要内容是直接序列扩频系统的仿真分析,扩频增益和扩频码序列对系统性能的影响等相关问题,并给出相应仿真结果。 【关键字】扩频通信 SystemView 仿真

Spread spectrum communication system of systemvue simulation 【Abstract】As an important branch of communication ,spread spectrum communication is also channel of communication system development direction.It has strong anti-jamming capability,good secrecy,realize muti-assess communicatiom easily.Therefore, this technology is getting people's attention increasingly.So far,two of its main application fields is still mobile communication system and military anti-jamming communication.The direct sequences spread spectrum system and the frequency hopping system in the two respectively application is the most spread spectrum way. SystemView is based on Windows platforms, mainly for the circuit and communication system design,simulation and analysis of EDA software.It is a powerful dynamic system analysis tools. In this paper mainly with the theory of systems for fundamental to realize system simulation by the SystemView. The main content of this paper is the simulation analysis of direct sequence spread spectrum, spread spectrum gain and spread spectrum yards sequence effect the performance of the system and other related problems, and gives corresponding simulation results. 【Keywords】Spread spectrum communication SystemView simulation

OFDM系统仿真实验报告

无线通信——OFDM系统仿真

一、实验目的 1、了解OFDM 技术的实现原理 2、利用MATLAB 软件对OFDM 的传输性能进行仿真并对结论进行分析。 二、实验原理与方法 1 OFDM 调制基本原理 正交频分复用(OFDM)是多载波调制(MCM)技术的一种。MCM 的基本思想是把数据流串并变换为N 路速率较低的子数据流,用它们分别去调制N 路子载波后再并行传输。因子数据流的速率是原来的1/N ,即符号周期扩大为原来的N 倍,远大于信道的最大延迟扩展,这样MCM 就把一个宽带频率选择性信道划分成N 个窄带平坦衰落信道,从而“先天”具有很强的抗多径衰落和抗脉冲干扰的能力,特别适合于高速无线数据传输。OFDM 是一种子载波相互混叠的MCM ,因此它除了具有上述毗M 的优势外,还具有更高的频谱利用率。OFDM 选择时域相互正交的子载波,创门虽然在频域相互混叠,却仍能在接收端被分离出来。 2 OFDM 系统的实现模型 利用离散反傅里叶变换( IDFT) 或快速反傅里叶变换( IFFT) 实现的OFDM 系统如图1 所示。输入已经过调制(符号匹配) 的复信号经过串P 并变换后,进行IDFT 或IFFT 和并/串变换,然后插入保护间隔,再经过数/模变换后形成OFDM 调制后的信号s (t ) 。该信号经过信道后,接收到的信号r ( t ) 经过模P 数变换,去掉保护间隔以恢复子载波之间的正交性,再经过串/并变换和DFT 或FFT 后,恢复出OFDM 的调制信号,再经过并P 串变换后还原出输入的符号。 图1 OFDM 系统的实现框图 从OFDM 系统的基本结构可看出, 一对离散傅里叶变换是它的核心,它使各子载波相互正交。设OFDM 信号发射周期为[0,T],在这个周期内并行传输的N 个符号为001010(,...,)N C C C -,,其中ni C 为一般复数, 并对应调制星座图中的某一矢量。比如00(0)(0),(0)(0)C a j b a b =+?和分别为所要传输的并行信号, 若将

通信综合实训系统实验报告

. 通信综合实训系统实验 (程控交换系统实验) 学生姓名 学号 专业班级通信工程班 指导老师 年月日

实验1 局内呼叫处理实验 一、实验目的 1.通过对模拟用户的呼叫追踪,加深对程控交换机呼叫处理过程的理解; 2.掌握程控交换机配置数据的意义及原理; 3.根据设计要求,完成对程控交换机本局数据的配置。 二、实验内容 1.学习ZXJ10程控交换机本局数据配置方法; 2.模拟用户动态跟踪,深入分析交换机呼叫流程; 3.按照实验指导书的步骤配置本局数据,电话号码7000000~7000023分配到ASLC板 卡的0~23端口,并用7000000拨打7000001电话,按照实验指导书方法创建模拟用户呼叫跟踪,观察呼叫动态迁移,理解单模块呼叫流程。 4.本局数据配置需要配置如下: 局信息配置 局容量数据配置 交换局配置 物理配置 号码管理、号码分析 三、实验仪器 程控交换机1套 维护终端若干 电话机若干 四、实验步骤 (一)、启动后台维护控制中心 启动程控交换机网管终端计算机,点击桌面快捷方式的,启动后的维护控制中心如下图2-1(利用众友开发软件CCTS可省略该步骤): (二)、启动操作维护台 选中后台维护系统控制中心,单击右键,选中【启动操作维护平台】,出现如下的对话框,输入操作员名【SYSTEM】,口令为空,单击【确定】后,将会登陆操作维护系统。

(三)、告警局配置 打开“系统维护(C)”----“告警局配置(B)”,点击“局信息配置(B)”后,弹出如下界面。 输入该局的区号532,局号1,然后点击【写库】。 (四)、局容量数据配置 打开【基本数据管理】-【局容量数据配置】,点击后弹出如下操作界面(分别进行全局容量、各模块容量进行规划设置),点击【全局规划】,出现如下的对话框. 点击【全部使用建议值】,当前值自动填上系统默认的数值,点击【确定】后返回容量规划界面,点击【增加】, 模块号2,MP内存128,普通外围、远端交换模块,填写完,点击【全部使用建议值】。 (五)、交换局配置 在后台维护系统打开[数据管理→基本数据管理→交换局配置]弹出如下的对话框,按照图示,只填写【本交换局】-【交换局配置数据】,点击设置。 (六)、物理配置 在后台维护系统打开[数据管理→基本数据管理→物理配置]:

基于Arena的港口泊位三维仿真系统的实现

第3卷第1期 System Simulation Technology V ol. 3, No.1 中图分类号:TP39 文献标识码:A 基于Arena 的港口泊位三维仿真系统的实现 王永辉,胡青泥,舒宏 (大连理工大学机械工程学院,辽宁,116023) 摘要:本文在三维仿真软件Arena 3DPlayer平台上实现了港口泊位作业系统的三维动画仿真。首先分析了港口泊位作业系统并利用Arena对该系统进行了二维仿真模拟,然后给出该系统在Arena 3DPlayer平台上三维仿真动画的实现过程,最后总结了其中的关键技术。 关键词:港口泊位;Arena;Arena 3DPlayer;三维仿真 Implementation of Berth 3D Animation Simulation System Based on Arena W ANG Yonghui, HU Qingni, SHU Hong (School of Mechanical Engineering, Dalian University of Technology, Liaoning, 116023) Abstract: The paper presents a 3D Simulation model of berth operation system in a container terminal using the Arena 3DPlayer. The author analyzes and models the berth operation system with Rockwell Arena, and animates the model with 2D animation tools, then, the working flow of 3D Simulation is proposed based on Arena 3DPlayer, finally, the key technology of Arena 3D simulation is summarized. Keywords: berth; Arena; Arena 3DPlayer; 3D simulation 1 引言 港口泊位作业过程中存在着许多随机因素,运用系统仿真的方法可以对泊位营运过程进行模拟,通过对仿真输出结果的分析,决策得出在给定的岸线长度条件下,规划合理的泊位数量,用以提高岸线利用率,减少船舶等待时间。 本文利用可视化仿真软件Arena及基于其上开发的Arena 3Dplayer,建立了港口泊位作业系统的仿真模型。该模型具有动画效果和交互功能,可实时演示港口泊位作业系统的服务过程并可以与使用者进行实时交互。2 港口泊位作业系统描述 港口泊位作业系统的服务对象是集装箱船舶,服务设备是港口的所有设施,其中最主要的是供船舶停靠的泊位数量及其装卸设备。 当集装箱船舶到港后,首先需要为其安排泊位,然后再配置相应的装卸设备资源以及堆场空间资源,以便进行装卸作业。由于泊位空间是港口的一种稀缺资源,因此,泊位配置问题是提高集装箱港口效率的关键点之一。 所谓泊位配置问题,就是为到港的集装箱船舶指定适当的位置,供其靠泊作业,以减少船舶的在港时间,提高港口的运作效率。目前,集装箱港口的泊位配置大多是计划人员根据以往经验来安排,

相关主题
文本预览
相关文档 最新文档