当前位置:文档之家› 直接序列扩频通信系统仿真设计—移动通信课程设计

直接序列扩频通信系统仿真设计—移动通信课程设计

直接序列扩频通信系统仿真设计—移动通信课程设计
直接序列扩频通信系统仿真设计—移动通信课程设计

直接序列扩频通信系统仿真设计

摘要:综合利用前期相关课程及移动通信课程所学的各种知识,设计扩频通信系统,利用Matlab/Simulink对直接序列扩频系统进行了仿真,并对仿真结果做了详细的讲解分析。先对直接序列扩频系统原理进行介绍,然后基于Simulink 的发射机和接收机的仿真,同时对直接序列扩频系统的抗干扰能力与直接序列扩频系统的同步方法进行了相关仿真,最后在该系统中加入特定的干扰,进行测试,研究整个系统的抗干扰性能。

关键词:通信系统;直接序列扩频;调制解调保密通信

目录

目录..................................................................... II 第1章绪论.. (1)

1.1背景 (1)

1.2 实验目的及总体介绍 (2)

1.3 本次设计任务与要求 (2)

第2章直接序列扩频通信原理 (3)

2.1扩频通信概念及分类 (3)

2.1.1扩频通信概念 (3)

2.1.2扩频通信分类 (3)

2.2直接序列扩频定义 (5)

2.3直接序列扩频的基本原理 (6)

2.4 直扩系统的性能分析 (7)

2.4.1 直扩系统的抗干扰性 (7)

2.4.2 直扩系统的抗多径干扰性能 (8)

第3章扩频码序列 (10)

3.1 码序列的相关性 (10)

3.2 m序列 (11)

第4章基于Simulink的仿真 (12)

4.1 MATALB及SIMULINK的介绍 (12)

4.1.1 MATLAB简介 (12)

4.1.2 SIMULINK简介 (12)

4.2发射机部分的Simulink的仿真 (13)

4.3接收机部分的Simulink仿真 (16)

第5章直接序列扩频通信系统的抗干扰性能分析 (20)

第6章 CDMA系统仿真设计 (24)

结论 (28)

参考文献 (29)

致谢 (30)

第1章绪论

1.1背景

扩展频谱(SS,Spread Spectrum)通信简称为扩频通信。扩频通信的定义可简单表述如下:扩频通信技术是一种信息传输方式,在发端采用扩频码调制,使信号所占的频带宽度远大于所传信息必需的带宽,在收端采用相同的扩频码进行相关解扩以恢复所传信息数据。随着信息技术的发展,通信技术变得越来越复杂,技术更新的周期也越来越短。对于大部分学者,特别是我们学生来说,在学习通信技术时,若对每一个系统都要实体研究是不现实的。此时通信系统仿真对我们来说可以说是必不可少的。通过建立相应的通信系统的模型,对其进行仿真,可以使我们把琐碎的知识联系在一起,形成一个个通信系统的概念,可以让我们对各个知识点的原理有更加深刻的理解和掌握。

扩频通信系统由于在发端扩展了信号频谱,在收端解扩后恢复了所传信息,这一处理过程带来了信噪比上的好处,即接收机输出的信噪比相对于输入的信噪比大有改善,从而提高了系统的抗干扰能力。因此,可以用系统输出信噪比与输入信噪比二者之比来表征扩频系统的抗干扰能力。理论分析表明,各种扩频系统的抗干扰能力大体上都与扩频信号带宽B与信息带宽Bm之比成正比。

Matlab是由mathworks公司于1984年推出的一种面向科学与工程的设计的计算机软件,它将不同的领域的计算用函数的形式提供给给用户;用户在使用时,只需要用这些函数并赋予实际参数就能解决实际问题,它涉及数值分析、自动控制、数字信号处理、图像处理、小波分析及神经元网络等十几个领域的计算和图形显示,而且随着新出版的推出,涉及的领域更多,功能强大。

Simulink工作环境经过几年的发展,已经成为学术和工业界用来建模和仿真的主流工具包。在Simulink环境中,它为用户提供了方框图进行建模的图形接口,采用这种结构画模型图就如同用手在纸上画模型一样自如、方便,故用户只需进行简单的点击和拖动就能完成建模,并可直接进行系统的仿真,快速的得到仿真结果。模型分析工具包括线性化和整理工具,MATLAB的所有工具及Simulink本身的应用工具箱都包含这些工具。由于MATLAB和SIMULINK的集成在一起的,因此用户可以在这两种环境下对自己的模型进行仿真、分析和修改模型。但是Simulink不能脱离MATLAB而独立工作。

1.2 实验目的及总体介绍

首先设计直接序列扩频通信系统的发射机和接收机。发射机的设计采用m序列来扩展二进制数据流,将其扩频为宽频信号,并采用QPSK调制方式将信号调制后发送出去。信号经过AWGN信道传输到接收端。接收机采用相干解调原理解调信号,采用的解扩码序列与发射机扩频码序列完全相同,信号经解扩调制后,带宽恢复原始宽度。在Simulink平台上分别对系统的发射机和接收机进行仿真测试,研究信号在整个扩频调制、解扩调制过程中的变化情况。最后在该系统中加入特定的干扰,进行仿真测试,研究整个系统的抗干扰性能。

1.3 本次设计任务与要求

1、说明直接序列扩频原理及PN序列的生成和作用,画出直接序列扩频原理图;

2、熟悉SIMULINK中各通信模块,根据原理图完成扩频通信仿真系统模块设计,分为发射机、接收机部分;

3、设计误码率分析模块部分,完成前后扩频解扩频谱波形比较及收发误码率分析;

4、对设计完成的系统加入干扰源,完成对系统抗干扰性能的分析。

5、按课程设计格式要求完成设计报告。

第2章直接序列扩频通信原理

2.1扩频通信概念及分类

2.1.1扩频通信概念

扩频通信是扩展频谱通信的简称。它是指用来传输信息的射频带宽远大于信息本身带宽的

一种通信方式。

2.1.2扩频通信分类

扩频通信的一般原理如图 2-1所示。在发端输入的信息经信息调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱。展宽以后

的信号再对载频进行调制(如PSK或QPSK、OQPSK等),通过射频功率放大送到天线上发射出去。在收端,从接收天线上收到的宽带射频信号,经过输入电路、高频放大器后送入变频器,下变频至中频,然后由本地产生的与发端完全相同的扩频码序列去解扩,最后经信息解调,恢复成原始信息输出。

图 2-1 扩频通信原理框图

1 直序列(DS)扩频

所谓直接序列(DS,Direct Sequency)扩频,就是直接用具有高码率的扩频码序列在发端去扩展信号的频谱。而在收端,用相同的扩频码序列去进行解扩,把展宽的扩频

信号还原成原始的信息。直接序列扩频的原理如图 2-2 所示。

图 2-2 直接序列扩展频谱示意图

2 跳频(FH)

另外一种扩展信号频谱的方式称为跳频(FH, Frequency Hopping)。所谓跳频,比较确切的意思是:用一定码序列进行选择的多频率频移键控。也就是说,用扩频码序列

去进行频移键控调制,使载波频率不断地跳变,因此称为跳频。简单的频移键控如2FSK,只有两个频率,分别代表传号和空号。而跳频系统则有几个、几十个甚至上千个频率,由所传信息与扩频码的组合去进行选择控制,不断跳变。图 2-3(a)为跳频的原理示意图。

图 2-3 跳频(FS)系统

(a) 原理示意图; (b) 频率跳变图案

3 跳时(TH)

与跳频相似,跳时(TH,Time Hopping)是指使发射信号在时间轴上跳变。我们先把时间轴分成许多时片。在一帧内哪个时片发射信号由扩频码序列去进行控制。因此,可以把跳时理解为用一定码序列进行选择的多时片的时移键控。由于采用了窄很多的时片去发送信号,相对来说,信号的频谱也就展宽了。图 2-4是跳时系统的原理图。在发端,输入的数据先存储起来,由扩频码发生器产生的扩频码序列去控制通—断开关,经二相或四相调制后再经射频调制后发射。

图 2-4 跳时系统

(a) 组成框图; (b) 跳时图例

4 脉冲调频

发信端发出射频脉冲信号,在每一脉冲周期中频率按某种方式变化。在收信端用色散滤波器解调信号,使进入滤波器的宽脉冲前后经过不同时延而同时到达输出端,这样就把每个脉冲5信号压缩为瞬时功率高、但脉宽窄得多的脉冲,因而提高了信扰比。这种调制主要用于雷达,但在通信中也有应用。

6混合扩频

几种不同的扩频方式混合应用,例如:直扩和跳频的结合(DS/FH),跳频和跳时的结合(FH/TH),以及直扩、跳频与跳时的结合(DS/FH/TH)等。

2.2直接序列扩频定义

直接序列扩频(DirectSequenceSpreadSpectrum)工作方式,简称直扩方式(DS 方式)。就是用高速率的扩频序列在发射端扩展信号的频谱,而在接收端用相同的扩频码序列进行解扩,把展开的扩频信号还原成原来的信号。直接序列扩频方式是直接用伪

噪声序列对载波进行调制,要传送的数据信息需要经过信道编码后,与伪噪声序列进行模2和生成复合码去调制载波。

2.3直接序列扩频的基本原理

直接序列扩频(direct sequence spread spectrum)直接用具有高码片(chip)速率的扩频码序列去扩展数字信号的频谱。简称直扩(DS)。在接收端,用相同的扩频码序列将频谱展宽的扩频信号还原成原始信号。

图2-5 直接序列扩频通信系统的原理框图

图2-5是直接序列扩频通信系统的原理框图。欲传输的数字信号与码片速率很高的扩频码进行调制,其输出为频谱带宽被扩展的信号,这个过程称为扩频。扩展频谱信号再变换为射频信号发射出去。

在接收端,射频信号经过变频后输出中频信号,通常是N个发射信号和干扰及噪声的混合信号。它与发端相同的本地扩频码进行扩频解调(解扩),使宽带信号变为窄带信号。再经信息解调器恢复成原始数字信号。扩展频谱的特性取决于所采用的扩频码序列的码型和码片速率。为了获得具有近似噪声的频谱,采用伪噪声(PN)序列作为扩频系统的扩频码。

扩频和解扩的频谱变化过程如图2-6所示。

图2-6 扩频和解扩的频谱变化

采用码片速率很高的PN码序列进行扩频调制,扩频信号的带宽可达1~100MHz。通过扩频解扩处理能够提高抗干扰能力。扩展频谱信号在接收端做相关解扩处理,有用信号被解扩为窄带谱信号;宽带无用信号与本地伪码不相关,因此不能解扩,仍为宽带谱;窄带干扰信号则被本地伪码扩展成为宽带谱。用一个窄带滤波器排除带外的干扰,这样窄带内的信噪比就大大提高了。

2.4 直扩系统的性能分析

2.4.1 直扩系统的抗干扰性

直扩系统最早应用是在军事通信中作为很强抗干扰性的通信手段。直扩系统对窄带干扰、宽带干扰等,都具有抗干扰能力,其抗干扰能力大小就是前面提供的扩频处理增益Gp,Gp 越大,抗干扰能力就越强。下面就来分析直扩系统抗宽带干扰和抗窄带干扰的原理。图2-7 为直扩系统抗宽带干扰的示意图。

这里的带宽干扰是泛指的与扩频信号不相关的,在CDMA 通信网中,其他用户的信号就是一种带宽干扰。相关处理前,信号频谱是很宽的,经相关处理后,有用信息被解

扩,其功率谱集中于信息带宽内,而带宽干扰通过相关器,其功率谱密度基本不变。由于解扩后必然连接窄带滤波器保证信号能顺利通过,对信号频带之外的各种干扰起到很大的抑制作用,从而提高了输出额信噪比。

图2-7 直扩系统抗带宽干扰的示意图

对单频或窄带干扰,直扩系统有很强的抗干扰能力。图4- 4(a )为解扩前的功率谱,

窄带干扰功率很大,由于干扰与本地扩频码(PN 码)是不相关的。对干扰来说,相关器起

到扩展频谱的目的,功率谱密度就大大下降,其中对信号有害的干扰分量只有落入信息带宽

部分,从而抑制了大部分干扰。由于有用信号能顺利通过窄带滤波器,因此提高了输出的信

噪比。

图2-8 直扩系统抗窄带干扰示意图

2.4.2 直扩系统的抗多径干扰性能

多径信道就是发射机和接收机之间电波传播的路径不止一条。例如由于大气层的反射和折射,以及由于建筑物等对电波的反射都是形成多径信道的原因。不同的传播路径使电波在幅度上衰减不同,到达时间额延迟也不同。

直扩系统能够同步锁定在最强的直达路径的电波上。其它有延迟到达的电波,由于相关解扩的作用,只起到噪声干扰的作用。这就是利用PN 码自相关特性,只是延迟超过半个 PN码时片,其相关值就很小,可作为噪声来对待。另外,如果采用不同时延的匹配滤波器,把多径信号分离出来,还可以变害为利,将这些多径信号在相位上对齐相加,起到增加接收信号能量的作用。因此,直扩系统是一种有效的抗多径干扰的通信系统。

第3章 扩频码序列

3.1 码序列的相关性

相关性概念

前面讨论中,伪随机码在扩频系统或码分多址系统中起着十分重要的作用。这是由于这类码序列最重要的特性是它具有近似于随机信号的性能,也可以说具有近似于白噪声的性能。但是,真正的随机信号或白噪声是不能重复再现和产生的。我们只能产生一种周期性的脉冲信号(即码序列)来逼近它的性能, 故称为伪随机码或PN 码。 选用随机信号来传输信息的理由是这样的: 在信息传输中各种信号之间的差异性越大越好,这样任意两个信号不容易混淆,也就是说,相互之间不易发生干扰,不会发生误判。 理想的传输信息的信号形式应是类似白噪声的随机信号, 因为取任何时间上不同的两段噪声来比较都不会完全相似, 若能用它们代表两种信号, 其差别性就最大。 换句话说, 为了实现选址通信, 信号间必须正交或准正交(互相关性为零或很小)。 所谓正

交, 比如两条直线垂直称为正交, 又如同一个载频相位差为 90° 的两个波形也为正

交, 用数学公式可表示为 一般情况下, 在数学上是用自相关函数来表示信号与其自身时延以后的信号之间的相似性的。

随机信号的自相关函数的定义为

式中,f(t)为信号的时间函数,τ为延迟时间。Ra(τ)的大小表征f(t)与自身延迟后的f(t-τ)的相关性,故称为自相关函数。下面让我们来看看随机噪声的自相关性。图3-1(a)为任一随机噪声的时间波形及其延迟一段τ后的波形。图3-1(b)为其自相关函数。当τ=0时,两个波形完全相同、重叠,相乘积分为一常数。

?

=?πωωω200cos sin t td t ?-∞→-=2

/2/d )()(lim )(T T T a t

t f t f R τ

τ

图 3-1 随机噪声的自相关函数

(a) 波形; (b) 自相关函数

自相关函数只用于表征一个信号与延迟τ后自身信号的相似性,而两个不同信号的相似性则需用互相关函数来表征。互相关性的概念在码分多址通信中尤为重要。 在码分多址系统中,不同的用户应选用互相关性小的信号作为地址码。两个不同信号波形f(t)与g(t)之间的相似性用互相关函数表示为

3.2 m 序列

二进制的m 序列是一种重要的伪随机序列, 有优良的自相关特性, 有时称为伪噪声(PN)序列。 “伪”的意思是说这种码是周期性的序列, 易于产生和复制, 但其随机性接近于噪声或随机序列。 m 序列在扩展频谱及码分多址技术中有着广泛的应用, 并且在m 序列基础上还能构成其它的码序列, 因此无论从m 序列直接应用还是从掌握伪随机序列基本理论而言, 必须熟悉m 序列的产生及其主要特性。

(1) m 序列的含义。

m 序列是最长线性移位寄存器序列的简称。 顾名思义,m 序列是由多级移位寄存器或其延迟元件通过线性反馈产生的最长的码序列。 在二进制移位寄存器中, 若n 为移位寄存器的级数, n 级移位寄存器共有 2n 个状态, 除去全 0 状态外还剩下 2n-1 种状态, 因此它能产生的最大长度的码序列为 2n-1 位。 产生m 序列的线性反馈移位寄存器称作最长线性移位寄存器。

产生m 序列的移位寄存器的电路结构, 其反馈线连接不是随意的, m 序列的周期P 也不能取任意值, 而必须满足

P=2n-1 式中, n 是移位寄存器的级数。

例如,n=3,P=7;n=4,P=15;n=5,P=31,等等。在CDMA 蜂窝系统中,使用了两种m 序列,一种是n=15,称作短码m 序列;另一种是n=42,称作长码m 序列。

t t g t f T R T T T c d )()(1lim )(2/2/ττ-=?-∞→

第4章基于Simulink的仿真

4.1MATALB及SIMULINK的介绍

4.1.1 MATLAB简介

MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。MATLAB和Mathematica、Maple、MathCAD并称为四大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

4-1 matlab操作界面

4.1.2 SIMULINK简介

Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。Simulink可以用连续采样时间、离散

采样时间或两种混合的采样时间进行建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率。为了创建动态系统模型,Simulink 提供了一个建立模型方块图的图形用户接口(GUI) ,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。 Simulink

是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。

4.2发射机部分的Simulink 的仿真

建立一个传输速率a R =100bps ,扩频码片速率为R =2000chip/s ,/c a R R =20,采用m

序列作为扩频序列,以QPSK 为调制方式的仿真模型,进行发射系统的仿真,观察其扩频前后的输出波形及频谱。发射机的系统仿真模型如图4-2所示。

图4-2 直接序列扩频通信系统发射机的仿真模型

设置以下参数:

Random Integer Generator ——数据输入源:用于产生数据流,采样时间0.01s 。如图4-3

图4-3

PN Sequence Generator ——伪码产生器: 用于产生伪随机扩频序列,其采样频率

为0.0005s。

图4-4

Rate Transition ——升速处理器:用于做升速处理,使扩频模块上的数据采样速率相同。输出速率为2000chip/s。Rate Transition1和Rate Transition2的输出速率为8000 chip/s。

Unipolar to Bipolar Converter——单双极转换器:用于完成数据和扩频的单双极变换。

Product——乘法器:用于完成输入信号与扩频码的模2加[1.3]。其输出就是扩频输出,其码速率等于采样速率,即每个采样点代表一个码片。如图4-5

图4-5

Bipolar to Unipolar Converter——双单极转换器:完成扩频输出由双极性到单极性转换。

QPSK——调制器:用于将扩频信号调制到中频。调制输出信号是复信号,采样率为2000次/s。如图4-6

图4-6

Scope——波形观测器:用于观测输入输出信号波形。

B-FFT——频谱观测器:用于观察输入和输出信号的频谱变化。仿真结果如图4-7,4-8,4-9,4-10所示。

图4-7 发射机的仿真波形图

图4-8 扩频前的信号频谱图

图4-9 扩频后的信号频谱图

组图发射机的仿真频谱图

仿真结果分析:

从时域分析:图4-7就是直接序列扩频通信系统的发射机时域波形图,其中第一条波形是输入信号波形,第二条是扩频序列波形,第三条是扩频后宽频信号波形。图4-7中显示出,当数据流为+1时,扩频输出是对应的PN序列的原序列,当数据为-1时,扩频输出就是PN序列的反相结果。且输出信号的码元速率增加,码元宽度变窄。

从频域分析:图4-8为扩频前的信号频谱,可见数据信号的带宽约为100HZ,其功率峰值约为20dB。当它和2000HZ的扩频序列相乘以后,信号的频谱会和扩频码频谱做

卷积运算,输出波形如图4-8所示。从图4-8中可以看出信号经过扩频后的信号频谱带宽约为2000HZ,是原来频谱宽度的20倍。从功率峰值方面看,图4-8中输入信号的功率峰值为20dB,经过扩频之后输出的宽频信号功率谱下降到5dB处。所以从频域方面看,信号带宽增加、功率下降。

4.3接收机部分的Simulink仿真

本文信道采用AWGN信道来传输信号,信道中会有高斯噪声产生并混入信号之中。数据源采用的是发射机发送出来的扩频信号。解扩码序列采用的还是PN序列,由于Simulink仿真平台上的模块是可复制的,本文直接采用复制发射机的PN序列产生器以产生和扩频码序列一样的解扩码序列,这样本次接收机的设计就省略了时间同步系统,但是不会影响该仿真系统的性能。

图4-10 直接序列扩频通信系统接收机的仿真模型

其中从解扩开始为接收端,AWGN 为高斯白噪声信道,设置其噪声的均值为10。正弦信号发生器产生频率为200Hz的单频干扰。PN Sequence Generator为本地PN序列,是与发射机中的PN序列完全相同的。从加法器出来的信号即为接收到的信号,其中包含有有用信号,噪声和干扰,该信号和本地PN序列相乘进行解扩,Scope1频谱仪中的频谱就是解扩后的接收信号的频谱,其中有用信号被还原为窄带信号,噪声和干扰的频谱反而被展宽。利用Error Rate Calculation 模块对误码率进行测试,其中Tx为发送端,Rx为接收端,中间加入2个数据码元的延迟是为了补偿接收延迟。BPSK Demodulator Baseband1为BPSK解调器。

图4-11 接收机的时域波形图

图4-12接收机接收信号频谱图图4-13解调信号频谱图

直接序列扩频通信

MATLAB仿真直接序列扩频通信 1.摘要 直接序列扩频通信系统(DS-CDMA)因其抗干扰性强、隐蔽性好、易于实现码分多址(CDMA)、抗多径干扰、直扩通信速率高等众多优点,而被广泛应用于许多领域中。针对频通信广泛的应用,本文用MATLAB工具箱中的SIMULINK通信仿真模块和MATLAB函数对直接序列扩频通信系统进行了分析和仿真,使其更加形象和具体。 关键字:扩频通信m序列gold正交序列matlab仿真 2.引言 直接序列扩频(DSSS— Direct Sequence Spread Spectrum)技术是当今人们所熟知的扩频技术之一。这种技术是将要发送的信息用伪随机码(PN码)扩展到一个很宽的频带上去,在接收端,用与发端扩展用的相同的伪随机码对接收到的扩频信号进行相关处理,恢复出发送的信息。 它是二战期间开发的,最初的用途是为军事通信提供安全保障, 是美军重要的无线保密通信技术。这种技术使敌人很难探测到信号。即便探测到信号,如果不知道正确的编码,也不可能将噪声信号重新汇编成原始的信号。有关扩频通信技术的观点是在1941年由好莱坞女演员Hedy Lamarr 和钢琴家George Antheil提出的。基于对鱼雷控制的安全无线通信的思路,他们申请了美国专利#2.292.387。不幸的是,当时该技术并没有引起美国军方的重视,直到十九世纪八十年代才引起关注,将它用于敌对环境中的无线通信系统。 直序扩频解决了短距离数据收发信机、如:卫星定位系统(GPS)、3G移动通信系统、WLAN (IEEE802.11a, IEEE802.11b, IEE802.11g)和蓝牙技术等应用的关键问题。扩频技术也为提高无线电频率的利用率(无线电频谱是有限的因此也是一种昂贵的资源)提供帮助。 3.直接序列扩频DS-SS是直接用具有高码率的扩频码序列在发送端去扩展信 号的频谱。而在收端,用相同的扩频码序列去进行解扩,把展宽的扩频信号还原成原始的信息。

基于MATLAB的直接序列扩频通信系统课程设计报告

《扩频通信原理》课程设计报告 题目:直接扩频系统仿真 班级:0110910和0110911 姓名:詹晓丹(2009210432) 姜微(2009210503) 张建华(2009210336) 指导老师:李兆玉

1.课程设计目的 (1)了解、掌握直接扩频通信系统的组成、工作原理; (2)了解、熟悉扩频调制、解调、解扩方法,并分析其性能; (3)学习、掌握Matlab相关编程知识并用其实现仿真的直接扩频通信系统; 2.课程设计实验原理 直接扩频通信系统工作原理: 直接序列扩频,就是直接用高码率的扩频码序列在发端去扩展信号的频谱,在收端用相同的扩频码去解扩,把展宽的扩频信号还原成原始的基带信号。 在发端输入的信息与扩频码发生器产生的伪随机码序列(这里使用的是m序列)进行波形相乘,得到复合信号,实现信号频谱的展宽,展宽后的信号再调制射频载波发送出去。由于采用平衡调制可以提高系统抗侦波的能力,所以直接序列扩频调制一般都采用二相平衡调制方式。一般扩频调制时一个信息码包含一个周期的伪码,用扩频后的复合信号对载波进行二相相移监控(BPSK)调制,当gt从“0”变成“1”或从“1”变到“0”时,载波相位发生180度相移。接收端的本振信号与发射端射频载波相差一个中频,接收端收到的宽带射频信号与本振信号混频、低频滤波后得到中频信号,然后与本地产生的与发端相同并且同步的扩频码序列进行波形相乘,实现相关解扩,再经信息解调,恢复出原始信号。 3.建立模型描述 (1)直接扩频通信系统组成框图: (2)直接扩频通信系统波形图:

4.模块功能分析 (1)直扩系统的调制功能模块:(都包含模块框图和不同调制、解调方式介绍、分析)(a)扩频调制模块 用扩频码发生器产生一个伪随机码pn(这里用的是m序列),与信源信息码序列xt相乘,实现频谱的展宽 (b)BPSK调制模块

直接序列扩频系统设计

扩频通信技术实现方法的研究和设计 ——DS直接序列扩频 专业:通信工程 班级:2002级1班 姓名:佟岩

引言 3 1扩频通信系统 6 1.1扩展频谱通信的定义 6 1.2扩频通信的理论基础 6 1.3扩频通信的主要性能指标8 1.4扩频通信的主要特点10 1.5频谱扩展的实现和直接序列扩频13 1.6扩频系统需要满足以下几个条件1 7 1.7扩频通信特征17 2直序扩频通信系统 18 2.1直序扩频通信系统框图18 2.2直接序列扩频信号的产生原理18 2.3直接序列扩频原理20 2.4直接序列扩频信号的实现方法21 3用编程来实现直序扩频通信系统23 3.1直接序列扩频系统与PSK调制23 3.2信号解调 24 3.3差错概率 26 4实验28 4.1 Monte Carlo仿真28 4.2 SIMULINK仿真30 结论 36 致谢 37 参考文献 38 附录1直扩程序M-文件40 附录2直扩-SIMULINK动态仿真模框图43

扩频通信技术(简称扩频通信)是一种新兴的高科技通信技术,具有大容量、抗干扰、低截获功率等特点以及可实现码分多址(CDMA)等优点,在军事和民用通信系统中都得到了广泛的应用,并成为下一代移动通信的技术基础。在扩频通信系统中,直序扩频的应用最为广泛。首先介绍扩频通信的基本原理及组成,重点论述了直序扩频通信在通信系统中的使用。 MATLAB因具有强大的数学计算、算法推导、建模仿真和图形绘制等功能而广泛应用于各领域,本文利用MATLAB的M语言进行编程、仿真,从而对CDMA无线通信系统的性能进行了分析。 在此基础上,通过实例介绍了建立系统仿真模型的方法。利用MATLAB 软件对CDMA无线通信系统的性能进行了分析。可见利用MATLAB/SIMULINK进行系统仿真简单、方便、形象、具体,是系统仿真较好软件之一。 关键词: 直序扩频通信系统;PN序列产生器;误码率;仿真;MATLAB;干扰

扩频通信系统的FPGA实现.

扩频通信自上世纪50年代中期被美国军方开始研究以来,一直为军事通信所独占,广泛应用于军事通信、电子对抗以及导航、测量等各个领域。进入上世纪90年代以后,扩频通信又开始向各种民用通信领域发展,典型的如CDMA和GPS等。应用最广的是直接序列扩频方式(DSSS)。它是将待传送的信息数据被伪随机码调制,实现频谱扩展后再传输,接收端则采用相同的编码进行解调及相关处理,恢复原始信息数据。本文采用VHDL语言、Altera公司的集成开发环境QuartusII 6.0和Cyclone系列芯片EPlC3T144C8以及Prote199se完成对直接序列扩频发射系统和接收系统的软件仿真和硬件电路设计。 扩频通信系统发送端设计 扩频通信可以显著提高通信系统抗下扰的能力,特别是频率选择性衰落和多径干扰。为此在发端输入的信息先经信息调制形成数字信号,然后由扩频码发生器产生的扩频码序列去调制数字信号以展宽信号的频谱。展宽后的信号再调制到射频发送出去。 一般的扩频通信系统都要进行三次调制:一次调制为信息调制,二次调制为扩频调制,三次调制为射频调制,如图1所示。 扩频码序列 在扩展频谱通信中需要用高码率的窄脉冲序列,现在实际当中用得最多的是伪随机码或称PN码。这类码序列最重要的特性是具有近似于随机信号的性能。因为噪声具有完全的随机性,也可以说具有近似于噪声的特性。但是,真正的随机信号和噪声是不能重复再现和产生的。我们只能产生一种类周期性的脉冲信号来近似随机噪声特性。二元M序列是一种伪随机序列。 构造一个产生M序列的线性移位寄存器,首先要确定本原多项式,本电路设计中,我们构造的M序列:n=4,周期p=15,PN码为:111101*********.如图2所示。 D1、D2、D3、D4为四级移位寄存器,求和符号为模二加法器。移位寄存器的作用为在时钟脉冲驱动下,能将所暂存的"1" 和"0"逐级向右移。模二加法器的作用为异或运算。在时钟脉冲的驱动下,四级移位寄仔器的暂存数据按顺序改变,输出序列在时钟脉冲作用下做周期性的重复。

直接序列扩频通信系统的误码率仿真培训讲学

直接序列扩频通信系统的误码率仿真

直接序列扩频通信系统的误码率仿真 1.引言 扩展频谱通信系统是将基带信号的频谱扩展至很宽的频带上,然后再进行 传输的一种通信系统,即将待传送的信息数据用伪随机编码调制,实现频谱扩展后再传输,接收端则采用同样的编码进行解调及相关处理,恢复原始信息数据。 扩频通信的基础理论根据信息论中的shannon 公式 ) (N S B C /1log 2+= 式中,C 是系统的信道容量,B 是系统信道带宽,N 是噪声功率,S 为信号的功率,S/N 即为信噪比。 Shannon 公式表明了一个系统信道无误差的传输信息的能力与存在于信道中的信噪比以及用于传输信息的系统信道带宽之间的关系。该公式说明了两个极为重要的概念:一是在一定的信道容量条件下,可以用减少发送信号功率、增加带宽的方法来达到信道容量的要求;另一个是可以采用减少带宽而增加信号功率的方法来达到信道容量的要求。这也就说明了信道容量可以通过带宽与信噪比的互换来保持不变。在实际的工程应用中,改变信号的功率并不容易,相比较而言,扩展信号的带宽更容易操作,所以,要提高信道容量,采用增加信号的带宽比提高信号功率的方法要有效的多。 由于扩频通信系统可以在信号功率远低于噪声功率的环境中工作,因此扩 频通信系统具有抗干扰能力强,保密性强等优点,在现在通信领域内的应用越 来越广泛。 2.系统概述 本次仿真实验是以MATLAB 为仿真平台,信号是8位双极性二进制信号,由 1和-1组成。随后对产生的双极性信号进行时域抽样,得到基带信号s ,是一组1024位的信息码。伪随机序列由mgen 函数产生,共有1024个码元。对已得到的基带信号进行扩频调制,直接把基带信号S 与产生的伪随机序列相乘,得到扩频信号。然后对已作扩频处理的信号作BPSK 载波调制,得到发射信号。发射信号通过存在高斯白噪声的信道,到达接到端,接收端首先对信号进

数字信号处理课设--二进制扩频通信系统

一.引言 扩频通信,即扩展频谱通信(Spread Spectrum Communication),它与光纤通信,卫星通信,一同被誉为进入信息时代的三大高技术通信传输方式。扩频通信技术自50 年代中期美国军方便开始研究,一直为军事通信所独占,广泛应用于军事通信、电子对抗以及导航、测量等各个领域。直到80年代初才被应用于民用通信领域。为了满足日益增长的民用通信容量的需求和有效地利用频谱资源,各国都纷纷提出在数字峰窝移动通信、卫星移动通信和未来的个人通信中采用扩频技术,扩频技术现已广泛应用于蜂窝电话、无绳电话、微波通信、无线数据通信、遥测、监控、报警等系统中。 二.概述 序列扩频系统(DS,Direct Sequence)又称为序列调制系统或伪噪声系统(PN 系统),简称为直扩系统,是目前应用较为广泛的一种扩展频谱系统。直扩系统是将要发送的信息用伪随机(PN)序列扩展到一个很宽的频带上去,在接收端,用与发送端扩展用的相同的伪随机序列对接收到的扩频信号进行相关处理,恢复出原来的信息。干扰信号由于与伪随机序列不相关,在接收端被扩展,使落入信号频带内的干扰信号功率大大降低,从而提高了系统的输出信噪(干)比,达到抗干扰的目的。一种典型的扩展频谱系统如图1 所示。 图 1 典型扩展频谱系统框图 它主要由原始信息、信源编译码、信道编译码(差错控制)、载波调制与解调、扩频调制与解扩频和信道六大部分组成。信源编码的目的是去掉信息的冗余度,压缩信源的数码率,提高信道的传输效率。差错控制的目的是增加信息在信道传输中的冗余度,使其具有检错或纠错能力,提高信道传输质量。调制部分是为使经信道编码后的符号能在适当的频段传输,如微波频段,短波频段等。扩频调制和解扩是为了某种目的而进行的信号频谱展宽和还原技术。与传统通信系统不同的是,在信道中传输的是一个宽带的低谱密度的信号。数字信号的频带传输与模拟通信相似,要使某一数字信号在带限信道中传输,就必须用数字信号对载波进行调制。对于大多数的数字传输系统来说,由于数字基带信号往往具有丰富的低频成分,而实际的通信信道又具有带通特性,因此,必须用数字信号来调制某一较高频率的正弦或脉冲载波,使已调信号能通过带限信道传输。这种用基带数字信号控制高频载波,把基带数字信号变换为频带数字信号的过程称为数字调制。那么,已调信号通过信道传输到接收端,在

直接序列扩频通信系统开题报告

哈尔滨工业大学华德应用技术学院毕业设计(论文)开题报告 题目:直接序列扩频通信系统的设计与仿真实现 系(部)应用电子与通信技术 专业通信工程 学生薛光宇 学号24 班号0992222 指导教师周凯 开题报告日期2012.10,22 哈工大华德学院

说明 一、开题报告应包括下列主要内容: 1.通过学生对文献论述和方案论证,判断是否已充分理解毕业设计(论文)的内容和要求 2.进度计划是否切实可行; 3.是否具备毕业设计所要求的基础条件。 4.预计研究过程中可能遇到的困难和问题,以及解决的措施; 5.主要参考文献。 二、如学生首次开题报告未通过,需在一周内再进行一次。 三、开题报告由指导教师填写意见、签字后,统一交所在系(部)保存,以备检查。指导教师评语: 指导教师签字:检查日期:

一、课题题目和课题研究现状 课题题目:直接序列扩频通信系统的设计与仿真实现。 研究现状:目前扩频技术中研究最多的对象是CDMA技术,其中又以码捕获技术和多用户检测(MUD)技术代表了目前扩频技术研究的现状。 1.码捕获 同步的实现是直扩系统中一个关键问题。只有在接收机将本地产生的伪码和接收信号中调制信息的伪码实现同步以后,才有可能实现直序扩频通信的各种优点。同步过程分为两步来实现:首先是捕获阶段,实现对接收信号中伪码的粗跟踪;然后是跟踪阶段,实现对伪码的精确跟踪。目前的研究主要集中在码捕获过程。 2, 多用户检测 CDMA系统容量受到来自其他用户的多址干扰的限制,多用户检测能够利用这些多址干扰来改善接收机的性能,因此是一种提高系统容量的有效方法。传统的CDMA 接收机是由一系列单用户检测器组成,每个检测器都是与特定扩频码对应的相关器,它并没有考虑多址干扰的结构,而是把来自其它用户的干扰当成加性噪声,因此当用户数量增加时,其性能急剧下降。通过对所有用户的联合译码可以极大地改善CDMA系统的性能。但是最优的多用户接收机,其复杂度随用户数量成指数增长,因此在实际通信系统中几乎不可能实现。这样寻找在性能和复杂度之间折中的次最优多用户检测器成为研究的热点 二、目的及意义 通过对该课题的研究,了解科研学术论文的撰写流程,并且将自己所学的理论知识运用到论文中,全面多角度的分析该领域的发展现状,同时提高自己的思维能力,对搜集的数据进行恰当处理和准确分析,对大学本科四年学习成果进行有效的检验,并且进一步提高自学能力和自主进行科学研究的水平。 三、课题的基本内容 所谓直接序列扩频(DS),就是直接用具有高速率的扩频码序列在发送端去扩展信号的频谱。而接收端,用相同的扩频码序列进行解扩,把展宽的扩频信号还原成原始信息。

移动通信课程设计报告

直接序列扩频通信系统Simulink的仿真设计 摘要:本次设计的是直接序列扩频通信系统,主要利用了Matlab/Simulink对直接序列扩频系统进行仿真,并详细的分析了仿真结果。首先介绍直接序列扩频的系统原理,然后基于Simulink的发射机和接收机仿真,设计误码率分析模块部分,再对前后扩频解扩频谱波形比较及收发误码率进行分析,最后对设计完成的系统加入干扰源,完成对系统抗干扰性能的分析。 关键词:直接序列扩频;扩频通信;Matlab/Simulink

目录 第一章绪论 (1) 课题背景及意义 (1) 课程设计的总体介绍 (1) 课程设计的基本任务和要求 (1) Simulink的简介 (2) 第二章直接序列扩频原理 (3) 扩频通信的定义及原理 (3) 直接序列扩频定义及原理 (3) PN序列生成与作用 (4) 第三章基于Simulink的发射机仿真设计 (6) 直接序列扩频通信系统发射机的设计 (6) 基于Simulink的发射机的仿真 (6) 基于Simulink的接收机仿真设计 (10) 第四章直接序列扩频通信系统的抗干扰性能分析 (12) 第五章结束语 (18) 参考文献 (19)

第一章绪论 课题背景及意义 扩展频谱通信是现代通信系统中的一种新兴的通信方式,其较强的抗干扰、抗衰落和抗多径性能以及频谱利用率高、多址通信等诸多优点为人们所认识,并被广泛的应用于军事通信和民用通信的各个领域,从而推动了通信事业的迅速发展。 扩频通信,即(Spread Spectrum Communication)扩展频谱通信,它与光纤通信、卫星通信,一同被誉为进入信息时代的三大高技术通信传输方式。 扩频通信是将待传送的信息数据被伪随机编码(扩频序列:Spread Sequence)调制,实现频谱扩展后再传输;接收端则采用相同的编码进行解调及相关处理,恢复原始信息数据。 随着近年来大规模、超大规模集成电路和微处理器技的广泛应用,以及一些新型器件的应用,扩频技术的应用形成了新的高潮。事实上,扩频通信已成为电子对抗环境下提高通信设备抗干扰能力的最有效的手段,并在近十几年来爆发的几场现代化战争中发挥了巨大的威力。随着CDMA扩频通信技术在民用通信中的深入应用和不断渗透,以及在卫星通信、深空通信、武器制导、GPS全球定位系统和跳频通信等民用和国防民事通信的强烈需求下,扩谱通信的地位越来越重要。 课程设计的总体介绍 首先设计直接序列扩频通信系统的发射机和接收机。发射机的设计采用m序列来扩展二进制数据流,将其扩频为宽频信号,并采用QPSK调制方式将信号调制后发送出去。信号经过AWGN信道传输到接收端。接收机采用相干解调原理解调信号,采用的解扩码序列与发射机扩频码序列完全相同,信号经解扩调制后,带宽恢复原始宽度。在Simulink平台上分别对系统的发射机和接收机进行仿真测试,研究信号在整个扩频调制、解扩调制过程中的变化情况。最后在该系统中加入特定的干扰,进行仿真测试,研究整个系统的抗干扰性能。 课程设计的基本任务和要求 1、说明直接序列扩频原理及PN序列的生成和作用,画出直接序列扩频原理图。

直接序列扩频技术(HFA3824A)

摘要 由于直接序列扩频技术所具有的优点,它在无线电通讯中得到了广泛的应用。本文主要介绍了直接扩频技术的原理,m序列的产生以及m序列发生器的结构和反馈系数,直接扩频信号的相关接收机的组成及解扩方式、直扩信号的相关处理。以及直扩信号的同步。在上述理论基础上,用Intersil公司生产的一系列芯片对直接扩频系统进行了实现,其中主要介绍了HFA3824型专用扩频电路的主要性能和用法以及在扩频通信中的应用与实现。还对HFA3524、HFA3724进行了一定的介绍,简要说明了其内部结构和外围电路以及在扩频通信中的应用。 关键字扩频通信,无线电通信,实现,应用

ABSTRACT Because of its merits .The direct sequence spread spectrum (DS SS) technology is applying widely in wireless communication. The principle of the direct sequence spread (DS SS) technology, the generation of m-sequence, the structure of m-sequence generator and the feedback coefficients of it, the de-spread mode of the correlation receiver of the direct spread spectrum single and the correlation process and the synchronization of the direct spread spectrum single are described. Family chip that is produced by Intersil Company is used to realize the direct spread spectrum system on the basis of the above-mentioned theories. The performances and the methods of applications of the Intersil’s application-specific spread spectrum circuit (HFA3824A), and its applications and realization in spread spectrum communications are mainly described. The interior structure and the peripheral circuit of HFA3524 and HFA3724, and its applications in spread spectrum communications are briefly described as well. KEY WORDS spread spectrum communications,wireless communication,realization,applications

基于m序列的直接序列扩频

扩频通信实验 实验名称:基于m序列的直接序列扩频 专业班级:通信111501班 学生姓名:穆琦沈傲立孙琳王瑞学熊晓倩

学号:201115040111 13 16 20 27 指导教师:郑秀萍 时间:2014.10.29 1 需求分析 在通信发射端将载波信号展宽到较宽的频段上;在接收端,用同样的扩频码序列进行解扩和解调,把展宽的信号还原成原始信息.通过扩展频谱的相关处理,大大降低了频谱的平均能量密度,可在负信噪比条件下工作,获得了高处理增益,从而降低了被截获和检测的概率,避免了干扰影响.通过仿真模型结果分析抗噪声性能结果。 2 概要设计 扩频通信系统分为直接序列扩频系统、跳频扩频系统、跳时扩频系统和混合式扩频系统。直接序列扩频系统,又称“平均”系统或伪噪声系统,就是采用高码率的扩频码序列PN 码(伪随机码),在发送端与编码数据信号进行模2 加,产生一扩频序列,这一码序列由于码元很窄,占用了很宽的频带,达到扩频的目的,然后用扩频序列去调制载波并予以传输。在接收端接收到的扩频信号经高频放大混频之后,用与发端相同且同步的伪随机码对扩频信号进行相关解扩,由于收发端伪随机码的相关系数为1,故可以完全恢复所传的信息,而干扰和噪声由于与接收机伪

随机码不相关,在相关解调时大大降低进入信号通频带内的干扰。它是目前应用较广泛的一种扩展频谱系统。在国外已获得成功的空间探测器“喷气推进实验室(JPL)测距技术”就是一种直接序列调制,TATS-1 军用卫星中的扩展频谱多址(SSMA)系统等都使用DSSS。 直接序列扩频系统的接收一般采用相关接收,并分成两步,即解扩和解调。在接收端,接收信号经过数控振荡器放大混频后,用与发射端相同且同步的由M 序列发生器产生的伪随机码对中频信号进行相关解扩,把扩频信号恢复成窄带信号,然后再由基带滤波器进行解调,最后恢复出原始信息序列。扩频与解扩过程中,利用PN序列生成器模块( PN Sequence Generator ) ,产生6级、传输速率500b/s的PN伪随机序列来达到扩频和多址接入效果,这里扩频增益为50倍.扩频的运算是信息流与PN码相乘或模二加的过程.解扩的过程与扩频过程完全相同,即将接收的信号用PN码进行第二次扩频处理.要求使用的PN码与发送端扩频用PN码不仅码字相同,而且相位相同.否则会使有用信号自身相互抵消.解扩处理将信号压缩到信号频带内,由宽带信号恢复为窄带信号.同时将干扰信号扩展,降低干扰信号的谱密度,使之进入到信息频带内的功率下降,从而使系统获得处理增益,提高系统的抗干扰能力.调制与解调使用二相相移键控PSK方式. 为了方便分析, 我们可对系统作如下假设: 系统各用户同步;系统各用户功率相同;仅考虑系统MAI和白噪声干扰引起的误码, 忽略信号传输、调制解调过程中的误码。 3 开发工具和编程语言 开发工具:

基于matlab的直接序列扩频通信系统仿真

基于MATLAB的直接序列扩频通信系统仿真 1.实验原理:直接序列扩频(DSSS)是直接利用具有高码率的扩频码系列采用各种调 制方式在发端与扩展信号的频谱,而在收端,用相同的扩频码序去进行解扩,把扩展宽的扩频信号还原成原始的信息。它是一种数字调制方法,具体说,就是将信源与一定的PN码(伪噪声码)进行摸二加。例如说在发射端将"1"用11000100110,而将"0"用00110010110去代替,这个过程就实现了扩频,而在接收机处只要把收到的序列是11000100110就恢复成"1"是00110010110就恢复成"0",这就是解扩。这样信源速率就被提高了11倍,同时也使处理增益达到10DB以上,从而有效地提高了整机倍噪比。 1.1 直扩系统模型 直接序列扩频系统是将要发送的信息用伪随机码(PN码)扩展到一个很宽的频带上去,在接收端用与发送端相同的伪随机码对接收到的扩频信号进行相关处理,恢复出发送的信号。对干扰信号而言,与伪随机码不相关,在接收端被扩展,使落入信号通频带的干扰信号功率大大降低,从而提高了相关的输出信噪比,达到了抗干扰的目的。直扩系统一般采用频率调制或相位调制的方式来进行数据调制,在码分多址通信中,其调制多采用BPSK、DPSK、QPSK、MPSK等方式,本实验中采取BPSK方式。 直扩系统的组成如图1所示,与信源输出的信号a(t)是码元持续时间为Ta的信息流,伪随机码产生器产生伪随机码c(t),每个伪随机码的码元宽度为Tc (Tc<

直接序列扩频系统的Simulink仿真

直接序列扩频系统的Matlab/Simulink仿真 摘要:本文利用Matlab/Simulink对直接序列扩频系统进行了仿真,对其原理进 行了相关的说明。读者可以通过对本文的阅读对直接序列扩频的相关原理有一定的了解。 关键字:扩频通信直接序列扩频 一、仿真的意义 随着信息技术的发展,通信技术变得越来越复杂,技术更新的周期也越来越短。对于大部分学者,特别是我们学生来说,在学习通信技术时,若对每一个系统都要实体研究是不现实的。此时通信系统仿真对我们来说可以说是必不可少的。通过建立相应的通信系统的模型,对其进行仿真,可以使我们把琐碎的知识联系在一起,形成一个个通信系统的概念,可以让我们对各个知识点的原理有更加深刻的理解和掌握。 二、直接序列扩频的原理 扩频通信,即扩展频谱通信(Spread Spectrum Communication)是将待传送的信息数据用伪随机编码(扩频序列:Spread Sequence)调制,实现频谱扩展后再传输而接收端则采用相同的编码进行解调及相关处理,恢复原始信息数据。扩频通信具有抗干扰能力强、抗噪声、保密性强、功率谱密度低,具有隐蔽性和较低的截获概率、可多址复用和任意选址、高精度测量等优点。 根据扩展频谱方式的不同,可以将扩频通信系统分为直接序列扩频(Direct Sequence Spread Spectrum)工作方式,简称直扩(DS)方式;跳变频率(Frequency Hopping)工作方式,简称跳频(FH)方式;跳变时间(Time Hopping)工作方式,简称跳时(TH)方式;宽带线性调频(Chirp Modulation)工作方式,简称Chirp方式和各种混合方式。 直接序列(DS-Direct Scquency)扩频,就是直接用具有高码率的扩频码序列在发端去扩展信号的频谱,而在收端,用相同的扩频码序列去进行解扩,把展宽的扩频信号还原成原始的信息。直接序列扩频是扩频通信系统最基本的工作方式。 假设信源序列对应的双极性波形为a(t),其电平取值为±1 ,码元速率为Rabps,码元宽度为Ta=1/Ra/秒。扩频所使用的伪随机序列c(t)也是电平取值为±1 的双极性波形,伪随机序列(PN序列)的码元也称为码片(chip),码片速率设为Rcchip/s,对应的码片宽度就是Tc=1/Rc/秒。对于双极性波形而言,扩频过程等价于数据流a(t)与伪随机序列c(t)相乘的过程,扩频输出序列设为d(t),也是取值为±1 的双极性波形,其速率等于码片速率。扩频序列经过调制后得到调制输出信号s(t)送入信道。对于BPSK调制,发送的信号就相当于是数据流与伪随机序列相乘后再乘于一个高频的余弦信号。在接收端,接收到的信号中有包含了有用信号s(t)及各种干扰J(t)和噪声n(t)。由于接收端采用相关解扩,即将s(t)J(t)n(t)和本地PN序列c(t)相乘,只有有用信号的频谱能够被还原为窄带信号,其他的噪声和干扰的频谱只会被展宽,当信号通过窄带滤波器后只有一小部分被展宽了的频谱会混进有用信号中,由此大大增强了其抗干扰的能力。 三、仿真的系统与结果 此处是对直接序列扩频通信系统的仿真。假设该系统以BPSK方式调制,数

直接序列扩频通信系统仿真设计—移动通信课程设计

直接序列扩频通信系统仿真设计 摘要:综合利用前期相关课程及移动通信课程所学的各种知识,设计扩频通信系统,利用Matlab/Simulink对直接序列扩频系统进行了仿真,并对仿真结果做了详细的讲解分析。先对直接序列扩频系统原理进行介绍,然后基于Simulink 的发射机和接收机的仿真,同时对直接序列扩频系统的抗干扰能力与直接序列扩频系统的同步方法进行了相关仿真,最后在该系统中加入特定的干扰,进行测试,研究整个系统的抗干扰性能。 关键词:通信系统;直接序列扩频;调制解调保密通信

目录 目录..................................................................... II 第1章绪论.. (1) 1.1背景 (1) 1.2 实验目的及总体介绍 (2) 1.3 本次设计任务与要求 (2) 第2章直接序列扩频通信原理 (3) 2.1扩频通信概念及分类 (3) 2.1.1扩频通信概念 (3) 2.1.2扩频通信分类 (3) 2.2直接序列扩频定义 (5) 2.3直接序列扩频的基本原理 (6) 2.4 直扩系统的性能分析 (7) 2.4.1 直扩系统的抗干扰性 (7) 2.4.2 直扩系统的抗多径干扰性能 (8) 第3章扩频码序列 (10) 3.1 码序列的相关性 (10) 3.2 m序列 (11) 第4章基于Simulink的仿真 (12) 4.1 MATALB及SIMULINK的介绍 (12) 4.1.1 MATLAB简介 (12) 4.1.2 SIMULINK简介 (12) 4.2发射机部分的Simulink的仿真 (13) 4.3接收机部分的Simulink仿真 (16) 第5章直接序列扩频通信系统的抗干扰性能分析 (20) 第6章 CDMA系统仿真设计 (24) 结论 (28) 参考文献 (29) 致谢 (30)

扩频通信的基本原理

扩频通信的理论基础 1.1扩频通信的基本概念 通信理论和通信技术的研究,是围绕着通信系统的有效性和可靠性这两个基本问题展开的,所以有效性和可靠性是设计和评价一个通信系统的主要性能指标。 通信系统的有效性,是指通信系统传输信息效率的高低。这个问题是讨论怎样以最合理、最经济的方法传输最大数量的信息。在模拟通信系统中,多路复用技术可提高系统的有效性。显然,信道复用程度越高,系统传输信息的有效性就越好。在数字通信系统中,由于传输的是数字信号,因此传输的有效性是用传输速率来衡量的。 通信系统的可靠性,是指通信系统可靠地传输信息。由于信息在传输过程中受到干扰,收到的信息与发出的信息并不完全相同。可靠性就是用来衡量收到信息与发出信息的符合程度。因此,可靠性决定于系统抵抗干扰的性能,也就是说,通信系统的可靠性决定于通信系统的抗干扰性能。在模拟通信系统中,传输的可靠性是用整个系统的输出信噪比来衡量的。在数字通信系统中,传输的可靠性是用信息传输的差错率来描述的。 扩展频谱通信由于具有很强的抗干扰能力,首先在军用通信系统中得到了应用。近年来,扩展频谱通信技术的理论和应用发展非常迅速,在民用通信系统中也得到了广泛的应用。 扩频通信是扩展频谱通信的简称。我们知道,频谱是电信号的频域描述。承载各种信息(如语音、图象、数据等)的信号一般都是以时域来表示的,即信息信号可表示为一个时间的函数)(t f 。信号的时域表示式)(t f 可以用傅立叶变换得到其频域表示式)(f F 。频域和时域的关系由式(1-1)确定: ?∞ ∞--=t e t f f F ft j d )()(π2 ?∞ ∞-=f e f F t f ft j d )()(π2 (1-1) 函数)(t f 的傅立叶变换存在的充分条件是)(t f 满足狄里赫莱(Dirichlet)条件,或在区间(-∞,+∞)内绝对可积,即t t f d )(?∞ ∞-必须为有限值。 扩展频谱通信系统是指待传输信息信号的频谱用某个特定的扩频函数(与待传输的信息信号)(t f 无关)扩展后成为宽频带信号,然后送入信道中传输;在接收端再利用相应的技术或手段将其扩展了的频谱压缩,恢复为原来待传输信息信号的带宽,从而到达传输信息目的的通信系统。也就是说在传输同样信息信号时所需要的射频带宽,远远超过被传输信息信号所必需的最小的带宽。扩展频谱后射频信号的带宽至少是信息信号带宽的几百倍、几千倍甚至几万倍。信息已不再是决定射频信号带宽的一个重要因素,射频信号的带宽主要由扩频函数来决定。 由此可见,扩频通信系统有以下两个特点: (1) 传输信号的带宽远远大于被传输的原始信息信号的带宽; (2) 传输信号的带宽主要由扩频函数决定,此扩频函数通常是伪随机(伪噪声)编码信号。 以上两个特点有时也称为判断扩频通信系统的准则。

扩频通信课程设计

兰州交通大学 移动通信课程设计 题目:扩频通信技术在移动通信中的应用 摘要 扩频通信,即扩展频谱通信(Spread Spectrum Communication)的简称,它是指用来传输信息的射频信号带宽远远大于信息本身带宽的一种通信方式。扩频通信系统的出现,是通信技术的一次重大突破。它与光纤通信、卫星通信一同被誉为进入信息时代的三大高技术通信传输方式。CDMA数字蜂窝移动通信等,就是利用扩频技术发展起来的一种扩频通信方式,它具有容量大,通信质量好,节约发射功率等优点。本文就一些扩频通信的原理及中CDMA采用的扩频技术作些讨论,此外也简单介绍了一些扩频通信在其他方面的应用。 关键字扩频通信;CDMA数字蜂窝移动通信;光纤通信;卫星通信

Abstract Spread spectrum communication, namely the spread spectrum communication ( Spread Spectrum Communication ) abbreviation, it is used for transmitting the information to the RF signal bandwidth is far greater than the information itself is a kind of communication bandwidth. Spread spectrum communication system, is a major breakthrough in communication technology. It and optical fiber communication, satellite communication together known as entering the information age of three big high-tech communication transmission method. CDMA digital cellular mobile communications, is the use of spread spectrum technology. It is a kind of spread spectrum communication mode, it has a large capacity, good communication quality, saving emission power. In this paper, some principle of spread spectrum communication and CDMA using spread spectrum techniques are discussed, also a brief introduction of some other aspects of the application of spread spectrum communication in. Keywords spread spectrum communication; CDMA digital cellular mobile communications;optical fiber communication;satellite communication

直接序列扩频系统matlab仿真

直接序列扩频通信系统仿真 一、实验的背景及内容 1、直接扩频通信的背景 扩频通信,即扩展频谱通信(Spread Spectrum Communication),它和光纤通信、卫星通信,一同被誉为进入信息时代的三大高技术通信传输方式。 有关扩频通信技术的观点是在1941年由好莱坞女演员Hedy Lamarr和钢琴家George Antheil提出的。基于对鱼雷控制的安全无线通信的思路,他们申请了美国专利#2.292.387[1]。不幸的是,当时该技术并没有引起美国军方的重视,直到十九世纪八十年代才引起关注,将它用于敌对环境中的无线通信系统。解决了短距离数据收发信机、如:卫星定位系统(GPS)、移动通信系统、WLAN(IEEE802.11a, IEEE802.11b, IEE802.11g)和蓝牙技术等使用的关键问题。扩频技术也为提高无线电频率的利用率(无线电频谱是有限的因此也是一种昂贵的资源)提供帮助。 扩频通信技术自50年代中期美国军方便开始研究,一直为军事通信所独占,广泛使用于军事通信、电子对抗以及导航、测量等各个领域。直到80年代初才被使用于民用通信领域。为了满足日益增长的民用通信容量的需求和有效地利用频谱资源,各国都纷纷提出在数字峰窝移动通信、卫星移动通信和未来的个人通信中采用扩频技术,扩频技术现已广泛使用于蜂窝电话、无绳电话、微波通信、无线数据通信、遥测、监控、报警等等的系统中。 2、实验的内容及意义 本次实验主要研究了直接序列扩频系统,建立了直接序列扩频系统的matlab仿真模型,在信道中存在高斯白噪声和干扰的情况下,对系统的在不同扩频增益下的误码率性能进行了仿真及分析。 近年来,随着超大规模集成电路技术、微处理器技术的飞速发展,以及一些新型元器件的使用,扩频通信在技术上已迈上了一个新的台阶,不仅在军事通信中占有重要地位,而且正迅速地渗透到了个人通信和计算机通信等民用领域,成为新世纪最有潜力的通信技术之一因此研究扩频通信具有很深远的意义。本人通过此次实验,进行深入地研究学习扩频通信技术及对它进行仿真使用,将所学的知识进行归纳和总结,从而巩固通信专业基础知识,为以后的个人学习和工作打下基础。

直接序列扩频Matlab程序

直接序列扩频Matlab程序 直接序列扩频通信可以有效地抵抗来自信道中的窄带干扰。在一个直扩通信系统中,扩频是通过伪噪声序列(PN)对发送的信息数据进行调制来实现的。在接收端,原伪噪声序列和所收信号的相关运算可将窄带干扰扩展到DS信号的整个频带,使干扰等效为幅度较低频谱较平 坦的噪声;同时,将DS信号解扩, 恢复原始信息数据。- The direct sequence spread spectrum correspondence may effectively resist from the channel in selective interference. Straight expands in the communications system in, the wide frequency is (PN) carries on through the false noise sequence to the transmission information data modulates realizes. In the receiving end, the original false noise sequence and receives the signal the correlation operation to be possible to expand the selective interference to the DS signal entire frequency band, causes the disturbance equivalent for a scope lower frequency spectrum smoother noise; At the same time, expands the DS signal solution, restores the primary information data. ====================== function [Y]=DSSS(X, mode) % 完成DSSS调制解调功能 % mode=[1,2]. 1进行调制,2进行解调,未指定时自动完成调制和解调两个功能。 switch nargin case 0 X='This is a test.'; Y=DSSS(X); return case 1 Y1=DSSS(X, 1); Y2=DSSS(Y1, 2); Y=Y2; return; case 2 if mode==1%调制 D=ones(1,7); m_sequence=Msequence(D); X_length=length(X); ascii_value=abs(X); ascii_binary=zeros(X_length,7); %将数据转换为ASCII二进制码 for ii=1:X_length ascii_binary(ii,:)=Binary(ascii_value(ii)); end subplot(2,3,1);plot(reshape(ascii_binary,1,X_length*7));title('A:输入数据'); %扩频 Sp_expand=zeros(X_length,127*7); for ii=1:X_length

相关主题
文本预览
相关文档 最新文档